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ABSTRACT

This paper articulates a novel method for the heterogeneous
feature extraction and classification directly on volumetric
images, which covers multi-scale point feature, multi-scale
surface feature, multi-level curve feature, and blob feature.
To tackle the challenge of complex volumetric inner struc-
ture and diverse feature forms, our technical solution hinges
upon the integrated approach of locally-defined diffusion ten-
sor (DT), DT-based anisotropic convolution kernel (DACK),
DACK-based multi-scale analysis, and DT-governed curve
feature growing. The extracted structural features can be
further semantically classified. At the computational fronts,
we design CUDA-based algorithm to conduct parallel com-
putation for time consuming tasks. Various experiments and
timing tests demonstrate the effectiveness, robustness, and
high performance of our method.

Index Terms— Volumetric image, Multi-scale heteroge-
neous features, Curve propagation, Diffusion tensor, CUDA.

1. INTRODUCTION AND MOTIVATION

High-resolution medical volumetric image gives rise to a huge
challenge for medical practitioners to focus on certain struc-
tural aspects. Although a variety of SIFT-like point feature
extraction algorithms have become standard out-of-the-box
tools in feature-driven registration, tissue segmentation, ob-
ject recognition, and image fusion, heterogeneous structural
features can better transform the difficult problem of under-
standing a raw data set into a simpler problem of analyzing a
collection of meaningful feature elements, for example, blood
vessels, bone cortices, and nodules can respectively be char-
acterized by curve-like, surface-like, and blob-like features.

However, since volumetric images, especially for medical
volumetric images, typically have much more complex inner
structure and the diverse features may scatter apart over non-
manifold volumetric geometry, the embedded structures usu-
ally have certain thickness, the definition of their heteroge-
neous structural feature is highly subjective and very difficult
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to express. Meanwhile, naive feature extraction might ob-
tain a large number of spurious small-scale structures, while
user is generally only interested in a small fraction of some
primary structures, thus quantitative refinement criteria with
explicit physical meaning are also non-trivial problems. Be-
sides, the overall performance of feature extraction and clas-
sification largely depends on the quality of the feature mea-
surements, noisy extent, and the original data size. Thus, a
unified and robust framework together with parallelly accel-
erated computation is urgently needed.

Fig. 1. The algorithmic architecture.

To tackle the aforementioned challenges, Fig. 1 illustrates
the pipeline of our approach, where the salient contributions
include:

(1) We devise a systematic and robust algorithm for semi-
automatic heterogeneous structural feature extraction, classi-
fication, filtering and visualization, which requires no addi-
tional manual inputs except for a few threshold parameters.

(2) We define a diffusion tensor to facilitate the recogni-
tion of candidate curve seeds and blob features, guide CUDA-
based global propagation of curve feature.

(3) We design a diffusion tensor based anisotropic convo-
lution kernel to govern multi-scale point and surface feature
extraction.

(4) We propose a projection distance based verification
technique to exclude the false-alarm candidate curve seeds.
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2. RELATED WORK

Monga et al. [1] first introduced crest lines by using image
partial derivatives. Sato et al. [2] designed 3D filters to en-
hance the specific local 3D structures for tissue classification.
However, their method often involves trials and errors due
to the empirical criteria for filter selection. Bajaj et al. [3]
proposed gradient vector diffusion based techniques for vol-
umetric boundary extraction and visualization. Their work
can produce reasonable results but sensitive to noise. Kindl-
mann et al. [4] extracted anisotropic crease from DTI image
by extending marching cube method, but never demonstrat-
ed other geometric structures. Tricoche et al. [5] studied in-
variant crease lines in tensor space to detect the white matter
structures of brain images. However, structures at significant-
ly small or large scales are poorly detected. Schultz et al. [6]
identified grid edges that are intersected by the extremal sur-
faces, and connected the intersection points to form curves or
surfaces. The method is restricted to a uniform cubic grid,
and does not guarantee the preservation of sharp surface fea-
tures. Lempitzky [7] extracted separate iso-surfaces by re-
placing the original binary volume with a continuous-valued
embedding function. It obtains smooth separating surface
with fewer artifacts. Liu et al. [8] introduced a texture feature
extraction method based on the spatial distribution patterns in
volumetric neurological images. Barakat et al. [9] extracted
high-quality crease surfaces by combining a front propaga-
tion strategy with a carefully managed parallel computation
framework.

Although most of the above algorithms are competitive,
they are rather lonesome. In sharp contrast to the existing
work that concentrates on particular feature extraction, We
have extracted multi-type structural feature on geometric sur-
face mesh by introducing anisotropic diffusion tensor based
voting scheme [10, 11]. Inspired by this, we fully extend the
idea to handle multi-type, multi-scale, multi-level structure
features directly on topology-free volumetric images.

3. DIFFUSION TENSOR AND ANISOTROPIC
CONVOLUTION KERNEL

3.1. Hessian Eigen-system based Diffusion Tensor

Hessian matrix H can fully grasp the second-order differen-
tial property, whose eigenvectors point to the directions of
the principal curvatures and the eigenvalues correspond to
the curvatures along those directions. For a unit vector n,
A(p) = nT H(p)n measures the change rate along n, which is
maximum when n is in the direction of the eigenvector cor-
responding to the largest eigenvalue of H(p). We construct
an anisotropic diffusion tensor (DT) by factorizing H with its
eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ 0) and corresponding eigen-
vectors ek:

D(p) = λ̃1e1eT1 + λ̃2e2eT2 + λ̃3e3eT3 , (1)

λ̃i = exp
(
− λi

σd

)
, i = 1, 2, 3, (2)

Diffusion parameter σd controls the diffusion velocities. DT
is equal to construct an ellipsoid at each voxel to represent the
direction and velocity of diffusion. According to the theory
of Rayleigh quotient, the diffusion velocity from p along e
can be viewed as the length of the vector projected onto the
ellipsoid, which is expressed as

vel(p, e) =
eT D(p)e

eT e
. (3)

3.2. DT Space based Anisotropic Convolution Kernel

We derive DACK from the diffusion tensor and bilateral fil-
ter kernel. Since the surfaces and boundaries in volumetric
images still have various directions due to their intrinsic geo-
metrical structure, we devise a directional anisotropic convo-
lution kernel by introducing the distance metric in diffusion
tensor space. Given two neighboring voxels located at p and
q, we first define their distance in DT space as

dD(p, q) = exp(−(p− q)T (wpq(D(p) + D(q))−1(p− q)),
(4)

wpq is introduced to amend the gradient, which changes in
response to the intensity change of the neighboring voxels.
D(p) + D(q) describes the diffusivity and controls the diffu-
sion directions and velocities. Then, we can define the DACK
as

Ψ(p) =
1

Wp

∑
q∈N(p)

Gσs(p− q)Gσk
(dD(p, q))I(q). (5)

σk is a control parameter, which is set to the inverse of the
maximal eigenvalues of diffusion tensors D(p) and D(q).

4. FEATURE EXTRACTION AND CLASSIFICATION

4.1. Multi-scale Point Features and Surface Features

Multi-scale analysis allows studying the multi-scale structure
of volumetric images. We adopt dyadic wavelet transform to
conduct DACK-based multi-scale analysis by

In+1(p, σs) =
1

Wp

∑
q∈N(q)

ωn(p−q, σs)Gσk
(dnD(p, q))In(q),

(6)

ωn(x, σs) =

{
Gσs(|| x

2n ||) if x
2n ∈ Z3 and || x

2n || < m
0 otherwise

(7)
where n represents the n-th scale level, m is a threshold to
control the size of neighboring region. To improve compu-
tation efficiency, we update dnD(p, q) only in response to the

1419



change of wpq while preserving D(p) + D(q) according to E-
q. (4). After k + 1 iterations, the approximate subband corre-
sponding to a certain scale can be obtained, and k detail sub-
bands are respectively the difference between the neighboring
approximate subband. It is exactly an anisotropic approxima-
tion to the Laplacian. Thus, multi-scale point features can
be obtained by extracting local minima/maxima from the de-
tail subbands across scales. An example is shown in Fig. 6B,
where the larger point means it is significant in a larger scale.

Fig. 2. Multi-scale surface features.

Surface features can also exist at various scales with dif-
ferent levels of details. In common sense the highest frequen-
cy details usually correspond to finest scale features while
lower frequency corresponds to coarser scale features. With
no additional computation cost, we can obtain the multi-scale
surface features directly from the decomposed detail sub-
bands. For a larger n, each individual voxel will contribute
less to the surface variation and high-frequency oscillations
will be attenuated, which is analogous to a low-pass filter. Be-
sides, the original intensity of volumetric images can provide
enough information to discriminate different materials, thus
we employ adaptive K-means algorithm to conduct semantic
classification. Fig. 2 illustrates the semantic classification re-
sults of the geometrically similar multi-scale surface features,
where the adaptively determined cluster number K is 4.

4.2. Blob Feature and Multi-level Curve Feature

We conduct DT eigen-values analysis to classify voxels into
blobs, candidate curve seeds, and noise. To separate features
without any ambiguity, we design a criterion according to the
characteristics of the normalized eigen-values (λi). Blob: λ1,
λ2, and λ3 are equally dominant (> 0.6); Candidate curve
seed: λ3 is dominant (> 0.6), λ1 and λ2 are close to 0; Noise:
λ1, λ2, and λ3 are close to 0, and its principal diffusion direc-
tions are different from its neighboring voxels. As the blob
features shown in Fig. 6E, we then adopt the same clustering
algorithm to further conduct semantic classification.

As shown in Fig. 3A, some of the candidate curve seeds
may be false-alarm due to the jagged boundary voxels, whose
projection distance to the locally fitted surface will be rela-
tively larger than the jagged voxels. Thus, we can effectively
filter out these false-alarm curve seeds according to the pro-

Fig. 3. Illustration of false-alarm curve seeds filtering.

jection distance to local fitted surface by minimizing the fol-
lowing energy function:

eMLS(x, a) =
∑
pi∈P

(< a, pi > − < a, x >)2θ(x, pi), (8)

As shown in Fig. 3B, −→a is the normal of the plane which is
passed through by the point x = s+t−→a , t is the distance from

s to the plane, and θ(x, pi) = e
−(x−pi)

2

h2 is the Gaussian func-
tion. Let lx,n(x) be the line passing through x with direction
n(x) = argminaeMLS(x, a), the surface is formed by points
x, and x satisfies x ∈ arglocalminy∈lx,n(x)

eMLS(y, n(x)).

Fig. 4. Multi-level curve features. The parameter dthrD is
a threshold value which controls the significant level of the
curve feature, while the parameter lmin limits the length of
the extracted curves.

Based on the filtered curve seed set, the curve features can
be obtained through CUDA-based parallel propagation gov-
erned by diffusion tensor, which can be defined as

c(v, t+ 1) = argmaxqdD(c(v, t), q), q ∈ Ωc(v,t)

and dD(c(v, t), q) > dthrD ,
c(v, 0) = v, v ∈ Sf ,
c(v, 0) = 0, v ∈ others,

(9)
t means iterative propagation, v ∈ R3 represents the vox-
el position, Ωv is the one-ring neighboring voxel set, dthrD

is a threshold that controls the significant level of the curve
feature, and the larger dthrD will result in the extraction of
sharper curve features. Besides, no matter how empirical-
ly fine-tuning the parameter dthrD , some small curve features
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may still occur, which makes the results rather chaotic. It is
necessary to filter out the spurious small curves, which can be
achieved by using another threshold parameter lmin to limit
the arc-length of extracted curves. By fine-tuning the param-
eters dthrD and lmin, we can extract multi-level curve features,
and Fig. 4 shows some examples resulted from different com-
binations of these two parameters.

Fig. 5. Multi-scale heterogeneous features in 10% noise-
perturbed MRI head images. By tuning the parameters dthrD

and lmin, it can extract multi-level curve features, and the
larger the dthrD leads to the sharper curve features.

Fig. 6. Heterogeneous features in MRI baby head images.

5. EXPERIMENTAL RESULTS

Our prototype system is implemented using C++ and CUD-
A. We conduct all the experiments on a commodity laptop
with NVIDIA GeForce 330M GPU, Intel Core (TM) i7 CPU
(1.6GHz, 2 cores) and 4G RAM.

To examine the robustness of our method, we perturb the
original image with 10% (of average intensity) random noise
(Fig. 5A). Fig. 5B1 to Fig. 5B4 demonstrate the multi-scale
surface features, comparing with Fig. 2, our method can al-
most obtain the same results when the scales are a bit larger

(e.g., B3 and B4). Fig. 5C1 to Fig. 5C4 show the extract-
ed multi-level curve features with the same input parameters
as Fig. 4, where all the important curves that naturally de-
pict the global structures are correctly extracted and retained.
Besides, Fig. 5E correctly removes the noisy points and illus-
trates the classification result for blob features. Therefore, our
method proves to be robust to noise. Additionally, we conduct
experiments on some other volumetric datasets. Fig. 6 shows
the heterogeneous feature classification results of MRI baby
head volume. Since the classification for each type of het-
erogenous features is further conducted based on the extract-
ed features, it will split or merge some features according to
their respective classification criterions, for example, the clas-
sification number of blob feature in Fig. 6 appears different
from that of the surface feature.

Table 1. Time testing (in seconds) of experiments.
Image Size DTC DACKD MSE BFCSE CFPF
2562 · 73 4.8 30.3 84.2 85.4 9.2
2562 · 73 4.9 36.9 77.1 96.6 12.8
2562 · 78 9.4 34.8 86.6 78.4 6.8
2562 · 62 4.1 27.7 56.8 79.5 16.7
2562 · 62 4.2 26.5 62.2 60.2 5.1

Table 1 documents the time testing results, including
CUDA-based DT construction (DTC), DACK based multi-
scale decomposition (DACKD), multi-scale surface extrac-
tion (MSE), blob feature and curve seed extraction (BFCSE),
and CUDA-based curve feature propagation and filtering
(CFPF) with 100 iterations. Benefiting from CUDA, conven-
tional time-consuming steps, such as DTC and CFPF, have
gained remarkable performance speedup, which only costs
about 10 seconds. Thus, our method can be used to enhance
mission-critical processing of patient-specific images.

6. CONCLUSION AND FUTURE WORK

In this paper, we have detailed a comprehensive heteroge-
neous feature extraction and classification method for volu-
metric medical images. The technical novelty is centered on
Hessian eigen-system based DT, DT assisted multi-scale anal-
ysis, DT governed curve propagation, and CUDA-accelerated
parallel computation. Extensive experiments and time testing
state that our method has superior performance in time effi-

ciency, robustness, and functional integration. d = 1
k

k∑
i=1

di

Our ongoing efforts are geared towards applying this ap-
proach to volumetric image vectorization, material-sensitive
finite element meshing, and feature-driven illustrative visual-
ization. Moreover, extending the key idea to handle diverse
data types, such as volumetric medical vector/tensor images,
point clouds, and higher dimensional manifolds in scientific
disciplines also deserves further investigation.
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