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Image deblurring is a very challenging problem in recent decades. In this
paper, we propose a high-quality image deblurring method with a novel im-
age prior based on a new imaging system. The imaging system has a newly
designed sensor pattern by adding panchromatic (pan) pixels to the conven-
tional Bayer pattern. Since these pan pixels are sensitive to all wavelengths
of visible light, they collect a significantly higher proportion of the light
striking the sensor. A new demosaicing algorithm is also proposed to re-
store full-resolution images from pixels on the sensor. The shutter speed of
pan pixels is controllable to users. Therefore, we can have multiple images
with different exposures. When long exposure is needed under dim light, we
read pan pixels twice in one shot: one with short exposure and the other with
long exposure. The long-exposure image is often blurred, while the short-
exposure image can be sharp and noisy. The short-exposure image plays
an important role in deblurring, since it is sharp and there is no alignment
problem for the one-shot image pair. For the algorithmic aspect, our method
runs in a two-step Maximum-a-Posteriori (MAP) fashion under a joint min-
imization of the blur kernel and the deblurred image. The algorithm exploits
a combined image prior including a statistical part and a spatial part, which
is powerful in ringing controls. Extensive experiments under various con-
ditions and settings are conducted to demonstrate the performance of our
method.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Digitizing and scanning; I.4.3 [Computer
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1. INTRODUCTION

Image deblurring has been studied for decades with impressive
progress accomplished recently, yet it still remains active and chal-
lenging in terms of high-quality and generality. In essence, it is an
inverse problem with more unknown variables than the number of
equations. The inference of latent sharp images with inadequate in-
formation can easily leads to unwanted solutions. Recent research
reveals an effective strategy to address this challenge, which is to
solve the small-sized blur kernel first, and then estimate the latent
image [Levin et al. 2009]. Following this paradigm, techniques and
tools were invented, including image priors for regularization and
specially-designed camera systems that can acquire more informa-
tion. This accomplishment inspires us to design a new imaging sys-
tem and a novel image prior.

Many approaches were proposed for recovering the sharp la-
tent image from a single blurred image. The recent work [Fergus
et al. 2006; Shan et al. 2008] usually addressed this problem us-
ing regularization based on the natural image prior. It refers to the
heavy-tailed distribution of gradient magnitudes for natural images.
This prior favors solutions with fewer large gradients, and there-
fore, reduces ringing artifacts. However, these methods may cause
the maximum-a-posteriori (MAP) failure [Levin et al. 2009]. That
is, the inference may get stuck at the starting place, since the delta
kernel is also favored by the natural image prior. The methods often
carry out estimations of the blur kernel and the latent image itera-
tively. Without further information in regularization, it is possible
to produce severe ringing artifacts by small errors from the iterative
procedure.

New imaging system design plays a fundamental and critical
role in high-quality deblurring, which can afford more information
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rather than blurry scenes. Image sensors with rapid responses to
light can instantly reduce motion blurs. However, consumer sensors
still need long-time exposure for photon collection under circum-
stances such as dim light, where the captured photos are blurred.
Researchers endeavor to design image deblurring systems with spe-
cial cameras that can provide multiple images with different shutter
speeds [Ben-Ezra and Nayar 2003; Raskar et al. 2006; Lim and Sil-
verstein 2006; Yuan et al. 2007]. Images with slow shutter speeds
are often blurred, while the ones with fast shutter speeds could be
sharp and noisy. There are some characteristics about the imaging
systems that may affect the quality of deblurring:

(1) Alignment. The spatial and temporal displacements caused by
multiple lenses and multiple shots are very common in a multi-
image system. However, the alignment of blurry images is hard
to carried out due to the ambiguity between blurs and displace-
ments. Therefore, from the alignment’s point of view, one shot
is better than multiple shots in principle.

(2) Shutter speed. A fast shutter speed can produce a sharp image
if enough photons are collected. However, images with too fast
shutter speed will have a lot of noise. So the bottleneck is the
response time of image sensors, which depends on their light-
sensitivities.

(3) ISO setting. ISO is the film speed indicating the sensitivity of
an image sensor to light. However, for the same image sensor, a
high ISO setting will involve a high level of noise. For different
image sensors, high light-sensitivity means less light needed to
make an exposure. Within the same ISO setting, image sensors
with higher light-sensitivity can produce higher-quality images
with lower noise than the ones with lower light-sensitivity.

Taking high-quality photos using hand-held devices under dim
light, especially under extreme illumination conditions, is even
more challenging. This has been a problem for users of consumer
cameras for many years. In this paper, we design a new imaging
framework for hand-held devices to handle this challenge, while
no other hand-held image capture devices with equivalent capa-
bilities have been demonstrated. We also propose a blind deblur-
ring method with a novel image prior based on this new imaging
system. The imaging system has a new sensor pattern by adding
panchromatic (pan), or “clear” pixels without any color filters, to
the conventional Bayer pattern. Since the pan pixels are sensitive to
all wavelengths of visible light, they collect a significantly higher
proportion of light striking the image sensor. Therefore, to cap-
ture high-quality images, they have a much shorter response time
than current commercial image sensors. The remaining red, green,
and blue pixels are then used to record color information of the
scene. A new demosaicing algorithm is also proposed to restore
full-resolution images from pixels on the sensor. The shutter speed
of pan pixels is controllable to users, so we can have multiple im-
ages with different shutter speeds. We design two shutters for pan
pixels in one shot: the first with a fast shutter speed and the second
with a slow shutter speed, resulting in a sharp grayscale image and
a blurred color image. Our imaging system is similar with the pre-
vious one using a blurred/noisy image pair [Yuan et al. 2007], but
has superior features in alignment, shutter speed, and ISO setting.

Our deblurring algorithm works in a two-step MAP fashion to
estimate blur kernels and deblurred images under a joint minimiza-
tion. Since pan images conserve most of the clear gradients in the
scene, it can significantly improve the kernel estimation by pro-
viding latent information. The deblurring is regularized by a com-
bined image prior, including a statistical part that favors sharpness,
and a novel spatial part that is powerful in ringing control. Ex-

periments under various conditions are conducted to demonstrate
the performance of our method, and comprehensive evaluations are
also carried out to compare with previous approaches. Our method
provides a complete and well-concerted solution to camera shake,
integrating the most advanced imaging system and the state-of-the-
art deblurring method elegantly.

2. PREVIOUS WORK

Researchers have been endeavoring to improve the light sensitivity
of electronic image sensors. Muramatsu [1989] developed an elec-
tronic imaging system that includes two sensors, wherein one has
no color filters, and the other contains a pattern of color filters with
an optical beam splitter. While this system improves the light sensi-
tivity over a single conventional image sensor, the overall complex-
ity, size, and cost are much higher. Furthermore, the beam splitter
directs only half the light from the image to each sensor, limit-
ing the improvement in photographic speed. The imaging system
introduced by [Compton and Hamilton 2007] captures photos un-
der varying lighting with one sensor, where some pixels have color
filters, and the others do not. Since this system only uses a sim-
ple interpolation algorithm for image reconstruction, it may have
imaging problems under dim light. Nayar and Narasimhan [2002]
developed a multi-sampled imaging technique with a structural in-
terpolation algorithm on assorted pixels. It can capture multiple di-
mensions of imaging such as spectrum, brightness, and polariza-
tion. The systems of [Susanu et al. 2009; Border et al. 2009] used
a new sensor with light-sensitive pixels to capture high-quality im-
ages with a compensation processing step that can remove motion
blurs caused by low lighting.

The image deblurring can be roughly classified into two cate-
gories: “blind” deblurring and “non-blind” deblurring. If the blur
kernel is unknown, the problem is “blind”, and vice versa. For non-
blind deconvolution, a conventional technique is the Richardson-
Lucy (R-L) deconvolution [1974], which computes the latent image
with the assumption that its pixel intensities conform to a Poisson
distribution. Recently, Levin et al. [2007] used a sparse prior for
non-blind deconvolution, which was also referred to as the hyper-
Laplacian prior by [Krishnan and Fergus 2009]. Their methods
impressively improve the deblurring result by reducing ringing arti-
facts. In [Yuan et al. 2008], a progressive inter-scale and intra-scale
approach was proposed, which is also featured in ringing control.
Joshi et al. [2009] exploited color priors in non-blind image decon-
volution, and applied them to deblurring and denoising.

Blind deblurring is an ill-posed problem. Recent work often gets
aid from image priors. Fergus et al. [2006] showed that blur ker-
nels are often complex and sharp. They adopted ensemble learning
to recover a blur kernel while assuming a certain statistical distri-
bution for natural image gradients as a prior. Shan et al. [2008]
proposed a concatenation of two piece-wise continuous linear and
quadratic functions to model image prior. Cai et al. [2009a] ex-
ploited the curvelet system for kernels and the framelet system for
images to reduce the ill-posed problem to a joint optimization that
maximizes the sparsity of the kernel and the sharp image. In [Cho
and Lee 2009], a fast deblurring method was proposed by introduc-
ing a prediction step. The graphics processing unit (GPU) imple-
mentation accelerates the running speed of their algorithm. Levin
et al. [2009] analyzed MAP failures in blind deconvolution, and
evaluated single-image deconvolution algorithms using collected
blur data with ground truth. Multiple blurred images can provide
more information of the scene, which can reduce ambiguities of
blind deblurring. Chen et al. [2008] developed an algorithm to de-
blur two consecutively-captured blurred photos from camera shake.
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However, it requires accurate image alignment that is difficult to
achieve for blurred images. Multiple images have more informa-
tion than single images, but may also generate divergence of esti-
mating. Cai et al. [2009b] relaxed this requirement by extremely
sparse representation in the redundant curvelet system. It, however,
still requires manual alignment of the images. For non-uniform de-
blurring, Whyte et al. [2010] proposed a parametrized geometric
model in terms of the rotational velocity of the camera, and applied
it to blind and non-blind deblurring.

We notice a new type of deblurring arising, which utilizes ad-
ditional information captured by special camera systems to im-
prove the deblurring. We call this type of deblurring as “Quasi-
blind” deblurring. In [Ben-Ezra and Nayar 2003], a hybrid camera
simultaneously captures a high-resolution image together with a se-
quence of low-resolution images that are temporally synchronized.
Optical flow is derived from the low-resolution images to com-
pute the global motion blur of the high-resolution image. Raskar
et al. [2006] proposed a “fluttered shutter” camera with coded ex-
posure, which opens and closes the shutter during a normal ex-
posure time with a pseudo-random sequence. The moving object
in their method was assumed to have constant velocity, and hence
different exposure times lead to different sizes of blurring. This
idea was extended to video that has frames with different expo-
sure time by [Agrawal et al. 2009]. Yuan et al. [2007] proposed
a method of deblurring with blurred/noisy image pairs. An image
pair is captured in separated shots, including a blurred image un-
der a long exposure, and a noisy image by a fast shutter. Due to
short exposures under dim light, the noise may be severe, and thus
the deblurring results are compounded with the performance of de-
noising. In [Levin et al. 2007], a coded aperture was placed on a
conventional camera to obtain a rough shape of defocus blur. Zhou
and Nayar [2009] evaluated aperture patterns based on the quality
of deblurring. In [2008], Levin et al. built a prototype camera that
translates within its exposure following a parabolic displacement
rule. Hence, blurs can be removed by deconvolving the entire im-
age with an identical, known kernel. Joshi et al. [2010] attached
gyroscopes and accelerometers to the camera, which can directly
obtain the camera movement during exposure.

Our system in spirit belongs to this category, and it is similar
to [Yuan et al. 2007] but fundamentally different on both imaging
system and deconvolution method. The system in [Yuan et al. 2007]
built on conventional cameras, has limitations in alignment, shutter
speed, and ISO setting.

3. IMAGING SYSTEM

We now introduce our new image sensor and imaging system.

3.1 Image Sensor

A digital imaging system uses an electronic sensor to create an elec-
tric representation of a visual image. Examples of such electronic
image sensors include the charge-coupled device (CCD) sensor,
and the active pixel sensor devices. The latter are often referred as
Complementary Metal Oxide Semiconductor (CMOS) sensors be-
cause of the ability to fabricate them in a CMOS process. Typically,
these image sensors include a number of light-sensitive pixels, of-
ten arranged in a regular pattern of rows and columns. For captur-
ing color images, a pattern of filters is typically fabricated on the
pattern of pixels with different filter materials, which make individ-
ual pixels sensitive to only a portion of the visible light spectrum
such as Red, Green, and Blue, as shown in Fig. 1 (a). The color fil-
ters necessarily reduce the amount of light reaching each pixel, and

(a) Bayer pattern (b) New pixel pattern

(c) Our image sensor (d) Our image capture module

Fig. 1. A new image sensor and pixel pattern. R, G, B, and P stand for
Red, Green, Blue, and Panchromatic pixels, respectively.

thereby reduce the light sensitivity of each pixel. A need persists
for improving the light sensitivity of electronic color image sensors
to permit images to be captured at lower light levels.

We use a new color image sensor with panchromatic pixels that
have high light sensitivity, as shown in Fig. 1 (b). It includes four
pixel arrays with color filters applied to three of the arrays to make
each array sensitive to red, green, or blue, and with no color filter
array applied to the fourth array (pan pixels). When an image is
captured using this sensor, it is represented as a high-resolution,
high-light-sensitivity monochrome image along with three low-
resolution images corresponding to red, green, and blue, which
have lower light-sensitivity. Because the pan pixels are added into
the sensor, the charge leakage around each pixel is larger relative to
the conventional Bayer pattern. During the design of the color filter
array (CFA) of our new sensor, we also try to reduce the charge
leakage problem to capture sharper and clearer images. Our new
imaging sensor in Fig. 1 (b) is a CMOS sensor with 5M Pixels.
In experiments, we use a hand-held camera system with this new
image sensor.

3.2 Image Demosaicing

A new demosaicing algorithm is designed to recover color images
with full resolution from our image sensor. There is a large lit-
erature on demosaicing with Bayer patterns [Bayer 1976]. To re-
duce visual artifacts, the color differences between green/red and
green/blue are interpolated in Bayer pattern demosaicing. By ana-
lyzing human visual perception, we use color difference interpola-
tion between panchromatic pixels and RGB pixels to reduce visual
artifacts. The procedure of our demosaicing algorithm is shown as
follows:

(1) Noise removal. We apply the sigma filter and the median filter
to raw image-sensor data to remove the high frequency and im-
pulse noise, as shown in Fig. 2 (a). For chromatic noise reduc-
tion, we let the average gradients of R, G, and B images equal
to the average gradients of pan image to remove low-frequency
chroma noise.
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(a) Original CFA pattern (b) Interpolated
panchromatic image

(c) Color difference
computing

(d) Upsampled color
difference

(e) Demosaiced image

Fig. 2. Full-color image demosaicing with panchromatic pixels: (a) is the original CFA pattern from the new image sensor; (b) is the interpolated high
resolution panchromatic image; (c) is the computing process of low-resolution color difference; (d) is upsampled high-resolution color difference; (e) is the
high-resolution demosaiced image. In (c), there are the low-resolution panchromatic image in top-left, low-resolution Bayer pattern (Red, Green, and Blue)
in top-right, color difference pattern between Bayer pattern and panchromatic image in bottom-left, and demosaicing color difference image in bottom-right.
Zoom-in allows to see details of the CFA pattern.

(2) Pan image reconstruction. We interpolate the monochrome
image captured by pan pixels to get high-resolution grayscale
image P , as shown in Fig. 2 (b).

(3) Bayer pattern interpolation. We apply Bayer pattern
CFA [Bayer 1976] to three single-channel RGB images to in-
terpolate a color image in three channels in the low resolution.

(4) Color difference image computing. We downsample pan pix-
els to get a low-resolution pan image, and extract R, G, and
B from raw image-sensor data to get a low-resolution Bayer
pattern. Then, we compute the color difference pattern by sub-
tracting Bayer pattern from the pan image in each pixel. Fi-
nally, we apply a Bayer pattern demosaicing method to the
color differences to get a full color difference image that has
three channels (R-P, G-P, and B-P) in each pixel, as shown in
Fig. 2 (c).

(5) Color difference image upsampling. The high-resolution
color difference image is then computed by upsampling as
shown in Fig. 2 (d).

(6) Image demosaicing. We combine the high-resolution pan im-
age computed in Step (2) and upsampled color difference im-
age computed in Step (5) to get the full-resolution color image
as shown in Fig. 2 (e).

Using the new sensor and the demosaicing algorithm, we can
simultaneously capture a full-resolution color image and a full-
resolution grayscale image from pan pixels with high light-
sensitivity, as shown in Fig. 2.

In the Bayer CFA pattern, the green pixels are usually used
to provide the luminance information for the demosaiced image,
while the red and blue pixels are used to provide the chrominance
information. In our new pattern, the panchromatic pixels are used
to provide the luminance information for the demosaiced image,
and the red, green, and blue pixels are used to provide the chromi-
nance information. The perception of image structure is largely de-
termined by the response of the luminance channel of human visual
system (HVS) [Alleysson et al. 2005]. In our pattern, there are half
the number of red, green, and blue pixels as in the Bayer CFA pat-
tern. However, they are used solely for chrominance demosaicing.
The chrominance information is mostly low frequency from HVS
perspective, so there is little to no “visual penalty” for subsampling
the chrominance channels by a factor of two. It may be noticed
that, the Foven X3 sensor has three photosites for each pixel that

respond to different wavelengths of light. It has a higher color res-
olution than the Bayer pattern sensor and our sensor, if the same
number of pixels is used. However, our pan pixels have faster re-
sponding time. This feature is significant to our deblurring system.

4. DEBLURRING WITH PAN PIXELS

This section details a method to capture high-quality images under
dim light, using a hand-held device with our new image sensor.

4.1 Problem Formulation

The image blurring is usually formulated as the convolution of the
latent sharp image L and a blur kernel K with corresponding noise
N , given by:

B = L⊗K +N, (1)

where B is the blurred image, and ⊗ is the convolution operator.
The goal of deblurring is to recover the latent image L from the
blurred image B.

To achieve this goal, we devise two shutters in our imaging sys-
tem, producing two images in one shot for dim light: one with
shorter exposure and the other with longer exposure. The expo-
sures can be set by users, and there is no gap between the two im-
ages. The image-pair mechanism has been adopted for deblurring
as a concise and effective method in previous work. Fig. 3 com-
pares some image-pair methods [Lim and Silverstein 2006; Yuan
et al. 2007]. The integration time of red, green, and blue pixels is
the total exposure time t = t2 with a slow shutter speed and a low
ISO setting. The typical shutter speed of a blurred image in dim
lighting is longer than 1 second. The panchromatic pixels are read
out twice with different ISO settings and integration time during the
entire exposure. At time t1, the grayscale image P1 is read out by
interpolating pan pixels with high ISO setting. We set t1 as a safe
exposure time of pan pixels to make P1 sharp without blur. It may
be noticed that, P1 has much lower noise and faster imaging speed
(t1 < (t4− t3)) than the noisy image in [Lim and Silverstein 2006;
Yuan et al. 2007], because of the high light-sensitivity of the pan
pixels. After time t1, pan pixels are reset with low ISO and start to
expose again. At time t2, all pixels including red, green, blue, and
pan pixels are read out. Using the image reconstoration algorithm
described in Section 3.2, we can get a blurred grayscale image P2

and a blurred color image B at time t2. Because the reset time of
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(a) (b) (c) (d)

Fig. 3. Comparison between our imaging system and the image-pair sys-
tems introduced by [Lim and Silverstein 2006; Yuan et al. 2007]: (a) is a
sharp grayscale image P1 with short exposure; (b) is a blurred grayscale
image P2 with long exposure; (c) is a blurred color image B; (d) is a noisy
image used for the image pair system. The comparison between these two
capture strategies in terms of timeline is shown in the bottom row. In our
imaging system, the gray bar is the exposure of panchromatic pixels and the
yellow bar is color pixels (red, green, and blue). In the image-pair systems,
the blue bar is the exposure of pixels in the image sensor with two separate
shots.

pan pixels is very short (usually 2-5 milliseconds), our method can
capture a noisy sharp grayscale image P1, a blurred color image
B, and a grayscale image P2 with no alignment needed. In a sharp
contrast, the methods using image pairs [Lim and Silverstein 2006;
Yuan et al. 2007] need to sequentially capture a blurred image and
a noisy image, with an extra work of alignment required.

4.2 Bayesian Deconvolution

Recent work [Fergus et al. 2006; Levin et al. 2007; Shan et al. 2008]
has demonstrated that the probabilistic model is an effective tool for
image deconvolution. In this model, the posteriori is proportional to
the product of conditional probability and prior probability, given
by the Bayes’ rule,

p(L,K|B) ∝ p(B|L,K)p(L)p(K). (2)

Likelihood. As a commonly-accepted assumption, the noise N
is subject to the Gaussian distribution with zero-mean. While noise
generation is much more complicated during image capture, we
usually simplify it to be Gaussian. Therefore, we define the likeli-
hood as a Gaussian-type function, given by

p(B|L,K) = e−(L⊗K−B)2 . (3)

Image prior. The image prior expresses how we favor the decon-
volved image after deconvolution. Conventional image priors usu-
ally consider the statistical distribution of intensities (mixture-of-
Gaussian) or gradient magnitudes (heavy-tailed distribution). We
propose a novel spatial distribution term, and design new our im-
age prior as:

p(L) = pt(L)pp(L), (4)

where pt(L) denotes the statistical prior that presents the statistical
distribution of gradient magnitudes of an image, and pp(L) is the
spatial prior that describes the spatial distribution of image gradi-
ents.

(a) (b) (c)

(d) (e) (f)

Fig. 4. The de-ringing effect of our spatial prior: (a) is a blurred image
with the ground truth kernel (shown in the red box), and a noisy kernel
(shown in the blue box) used for all three methods; (b) is our P image;
(c) is x-derivative map of pan image P ; (d) is the deblurring result with
the local prior in [Shan et al. 2008]; (e) is the result with the sparse prior
in [Levin et al. 2007]; (f) is the result by our spatial prior only.

We adopt the sparse prior [Levin et al. 2007] as the representa-
tion of the statistic prior, given by

pt(L) = e
−λ1

∑
i
|∂xLi |α+|∂yLi|α , (5)

where λ1 is a coefficient, i denotes pixel index, and α is a positive
exponent value set in the range of [0.5, 0.8] as suggested by [Levin
et al. 2007; Krishnan and Fergus 2009].

Although the distributions of different images in the gradient
magnitude domain are similar, we notice that they vary significantly
in the spatial domain, and this is critical for the quality of deblur-
ring. Therefore, we propose a new spatial prior that depicts how the
deblurred image is favored spatially. The pan image P in our sys-
tem conserves most of the clear gradients in the scene, from which
we can estimate the spatial distribution of image gradients. Thus,
we design our new spatial prior as

pp(L) = e
−λ2

∑
i
(∂xLi−∂xPi)

2+(∂yLi−∂yPi)
2

, (6)

with coefficient λ2. Since the P image is usually dim and noisy, we
apply denoising and enhancement to it in a pre-processing stage.

This derivative-based spatial prior has a strong effect on de-
ringing. Fig. 4 shows the de-ringing effect of our spatial prior com-
pared with other de-ringing priors. We use a noisy kernel (shown
in the blur box in Fig. 4 (a)) for deconvolution, which causes many
ringing artifacts in (d) and (e). The spatial prior substantially re-
duces ringing artifacts.

Kernel prior. The kernel prior p(K) is commonly recognized as
a sparsity prior with most values close to zero and all entries being
positive. Therefore, we define our kernel prior served as regulariza-
tion as a 1-norm of K:

p(K) = e−λ3∥K∥1 , with
∑
j

kj = 1, kj ≥ 0, (7)

where λ3 is a coefficient, ∥·∥l denotes the l-norm operator, and kj
denotes the entry of K with index j.
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4.3 Estimation

A straightforward approach to solve the Bayesian inference is to
find the MAP solution, which is equivalent to solving a regular-
ized minimization problem. A primary concern of this approach
is the local minimum that may trap the optimization. As analyzed
in [Levin et al. 2009], even the global optimum of the MAP can
not guarantee to find a desired sharp latent image with less ringing.
Therefore, the key of using MAP is to get a good initial value. In
this section, we will introduce how our system works on obtaining
initial value and reaches high-quality estimation.

Objective function. By taking the negative logarithm of Eq. (2),
the MAP problem transforms to a minimization problem, with the
objective function defined as

J(L,K) = (L⊗K −B)2 + λ1

∑
i
(|∂xLi|α + |∂yLi|α) +

λ2

∑
i

(
(∂xLi − ∂xPi)

2 + (∂yLi − ∂yPi)
2
)
+ λ3 ∥K∥1 . (8)

We solve this joint minimization problem by a two-step estimation,
i.e., to estimate the kernel first and then to estimate the latent image.

Kernel estimation. In our deconvolution system, we use the two
grayscale images: P1 with short exposure and P2 long exposure to
estimate the kernel. These two images are interpolated using the
same algorithm, and P2 approximately has the same blur kernel
with the interpolated full-color image. Therefore, we will use P1

and P2 to replace L and B in the kernel estimation. Since P1 is
dim and noisy, we pre-process it by a bilateral filter [Tomasi and
Manduchi 1998] and an inverse gamma correction.

For high-resolution images, a user-selected patch [Fergus et al.
2006] is adopted to speed up the computation. In our observation,
the effects to estimate the kernel differ across regions. Smooth re-
gions are more sensitive to noise, and rough regions with high de-
viation of intensity are more robust. Therefore, we select a region
Ω of pixels with large deviations of intensity for the estimation of
the blur kernel. By fixing L and using P1 and P2, this energy can
be further simplified to

J(K) = (P1Ω ⊗K − P2Ω)
2 + λ3 ∥K∥1 . (9)

In our method, we simply apply the Laplace operator on blurry pan
image P2, and select the region Ω as pixels with great values. This
will make the estimation much more efficient than using the entire
image.

A multi-scale approach is used for large kernels to avoid local
minima during the optimization. At the coarsest scale, the estima-
tion of K is initialized as a diagonal matrix. In other scales, pre-
vious estimation from the last scale is up-sampled to initialize K
in the current scale. For most natural images with small blur, only
one scale is sufficient to recover the accurate kernel. For a challeng-
ing case with large blur, 3-4 scales may be used. Between scales,
we also eliminate small elements (e.g., less than 0.1 of the total
energy) to reduce the noise of estimation.

Estimation of the latent image. By fixing K from Eq. (8), the
objective function is reduced to

J(L) = (L⊗K −B)2 + λ1

∑
i
(|∂xLi|α + |∂yLi|α) +

λ2

∑
i

(
(∂xLi − ∂xP2i)

2 + (∂yLi − ∂yP2i)
2
)
, (10)

which is not convex. This problem can be solved by the iterative
re-weighted least square (IRLS) method [Levin et al. 2007], or by
the fast deconvolution method [Krishnan and Fergus 2009].

Table I. Shutter-speed and ISO settings in Fig. 5-8.
Blurred image Panchromatic image

Book (Fig. 5) 1.0s, ISO 100 1/100s, ISO 800
Toy (Fig. 6) 1.0s, ISO 100 1/80s, ISO 800
Hotel (Fig. 7) 1.3s, ISO 100 1/250s, ISO 1600
Fruit (Fig. 7) 1.6s, ISO 100 1/125s, ISO 1600
Family (Fig. 8) 2.0s, ISO 100 1/100s, ISO 1600
Berry (Fig. 8) 2.0s, ISO 100 1/100s, ISO 1600

Table II. Software parameters in experiments.
Scales w σd σr λ1 λ2 λ3

Book (Fig. 5) 1 5 3 0.1 0.01 0.6 0.1
Toy (Fig. 6) 1 5 3 0.1 0.01 0.8 0.1
Hotel (Fig. 7) 3 5 3 0.1 0.01 0.8 0.1
Fruit (Fig. 7) 3 5 3 0.1 0.01 0.4 0.1
Family (Fig. 8) 1 5 3 0.1 0.01 0.6 0.1
Berry (Fig. 8) 1 5 3 0.1 0.01 0.6 0.1

5. EXPERIMENTAL RESULTS

To demonstrate the performance of our system, we utilize a variety
of images captured under low lighting environment using the new
image sensor (CMOS, 5M Pixels). In experiments, we manually
set all the camera parameters such as exposure time, aperture, focal
length, and ISO. We set a safe exposure time for the first image (a
noisy image) to make it sharp without blur. For the second image
(a blur image), we also carefully set exposure time to make sure
that it has no saturation. Table I documents shutter speeds and ISO
settings used in experiments: Fig. 5-8. Table II details the software
parameters in all experiments, including the number of scales in
kernel estimation, window size (w) of bilateral filter, space (σd)
and range (σr) standard deviations in the bilateral filter, and λ1 to
λ3 in Eq. (8). Previous methods [Lucy 1974; Fergus et al. 2006;
Levin et al. 2007; Yuan et al. 2007; Shan et al. 2008; Cho and Lee
2009; Xu and Jia 2010] are used for comparison. Blurred and pan
images used in Fig. 6-8 are shown in Fig. 9.

Comparison with non-blind methods. We first compare our
method with three non-blind deconvolution methods, as shown in
Fig. 5. To fairly and consistently compare all the methods, we apply
our estimated kernel (shown in a red frame) to all other methods.
The kernel sizes is 25×25. With the new spatial image prior, our
deblurring result exhibits richer and clearer texture details with less
ringing than other non-blind deconvolution methods.

Comparison with blind methods. We also compare our method
with four recent blind deblurring methods, as shown in Fig. 6.
From the results, we can see that [Fergus et al. 2006] and [Cho
and Lee 2009] can not remove the blurs completely. [Shan et al.
2008] drives the results to excessive sharpness, accompanied by
severe ringing artifacts. Both [Xu and Jia 2010] and our method
produce nice deblurring results with no smear around the mark-
ers. As a trade-off for powerful suppression of ringing artifacts, our
result looks a little smooth in the close-up. Our method also com-
puted a very accurate blur kernel (31×31), comparing to the smears
of markers in the blurred image given in Fig. 9.

Large kernel. To further examine the performance of our deblur-
ring method together with our imaging system in more challenging
cases, we conducted experiments on blur images with large blur
and noise under extreme lightings. The primary challenge of large
kernels is that they have much more dimensions than small ker-
nels. We compare our result with other three methods, as shown in
Fig. 7. For [Yuan et al. 2007], we make another shot with a fast
shutter speed and high ISO settings on all pixels to obtain noisy
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Fig. 5. Comparison of non-blind methods. From Left to Right: blurred/pan images, [Lucy 1974], [Shan et al. 2008], [Levin et al. 2007], and our method. We
apply our estimated kernel to all other methods.

Fig. 6. Comparison with four blind methods. From Left to Right: [Fergus et al. 2006], [Shan et al. 2008], [Cho and Lee 2009], [Xu and Jia 2010], and our
method. The blur kernel indicated by the smears of four black markers, is accurately estimated by our method.

color images. The low quality of noisy images and large blur ker-
nels severely influence the deblurring of [Yuan et al. 2007]. Ringing
and blurring artifacts can be found in the results of [Cho and Lee
2009] and [Xu and Jia 2010]. Our results are more clear, and have
less ringing. The sizes of estimated kernels are 83×83 and 75×75,
with the image resolution 1200×1600.

Large noise. Finally, we conduct experiments on blurred images
with high ISO settings (therefore, large noise) under very low light-
ings, as shown in Fig. 8. The kernel sizes are 25×25 and 21×21 for
the two examples. Because of very dim lightings, the noisy images
captured for [Yuan et al. 2007] are dark, and severely corrupted
by noise, causing ringing artifacts and noise in their results. The
panchromatic images, however, have higher quality, which greatly
improves the deblurring results. Moreover, the residual deconvo-
lution method used in Yuan’s method involves noise by directly
adding the detailed layer from the noisy image to the final result.
It aggravates noise in the deblurring results. Our image prior has
a smoothing effect, which produces less noise than [Cho and Lee
2009] and [Xu and Jia 2010].

6. DISCUSSION

The proposed deblurring method is built upon a new imaging
system and a novel image prior. Despite the advantage of rapid-
response pan pixels, our method has superiority at the algorithmic

front compared with previous image-pair method (i.e. [Yuan et al.
2007]). To examine this, we show an example of the two methods
in Fig. 10. We adopt a blurred image and a pan image as a pair
for the two methods. The blurred image is synthesized by a ground
truth kernel shown in the corner, which eliminates the ambiguity of
alignment. The estimated kernels by the two methods are very close
to the ground truth, while our deblurring result has higher quality
with less noise and ringing.

In this paper, we assume blurs are caused by in-plane camera
shake, which is a limitation of our method. However, as shown by
[Levin et al. 2009], the in-plane transition is often compounded
with rotations in the third dimension, leading to spatially variant
kernels. For a visual impression of this limitation, we show two
examples of non-uniform blurs in Fig. 11. Each blurred image is
synthesized by a ground truth kernel rotating in the third dimension,
from 0 ◦ at the top to d ◦ at the bottom of a sharp image. Our method
still works well at a small rotation that does not change the blur
kernel much. For a large rotation, there is no uniform representation
of the kernel, and therefore, the deblurring result has a lot of ringing
artifacts.

Another limitation is that our image prior, though is power-
ful in ringing control, may introduce noise from pan images to
deblurring results, as the result shown in Fig. 5. Therefore, pre-
processing of denoising on pan images is unavoidable. Fortunately,
this can hardly affect the kernel estimation, since the majority of
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Fig. 7. Experiments on large kernels. From Left to Right: noisy images, [Yuan et al. 2007], [Cho and Lee 2009], [Xu and Jia 2010], and our method.

Fig. 8. Experiments on large noise. From Left to Right: noisy images, [Yuan et al. 2007], [Cho and Lee 2009], [Xu and Jia 2010], and our method.
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Fig. 9. Blurred and pan images used in experiments of Fig. 6-8.

(a) Blurred image (b) Pan image

(c) [Yuan et al. 2007] (d) Our method

Fig. 10. Comparison with [Yuan et al. 2007] on the same data. The ground
truth kernel and estimated kernels are respectively shown in the corners.

large derivatives are preserved after denoising. Moreover, our de-
blurring results have less noise than previous methods, as shown in
Fig. 8.

7. CONCLUSION

We have articulated a high-quality image deblurring method built
upon a new imaging system. High-light-sensitive pan pixels are
fabricated to the image sensor, which have a fast response to im-
age capture. Relative hardware and software are developed to assist
the new sensor for image processing, such as charge leakage reduc-
ing, controllable shutter speed, image demosaicing with pan pixels,
etc. At the algorithmic front, we design a novel image prior for
suppressing ringing artifacts. The entire deblurring system has su-
perior performance demonstrated in various experiments and com-
parisons. In the near future, we plan to extend the functionalities
of our image deblurring system to overcome the limitations dis-
cussed above. We are also interested in employing our method in
other closely-related applications such as video deblurring and out-
of-focus deblurring.
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