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ABSTRACT

Short-term changes in atmospheric transmissivity caused by
clouds can engender more severe fluctuations in photovolta-
ic (PV) outputs than those from traditional power plants.
As PV energy continues to penetrate the U.S. National En-
ergy Grid, such volatility increasingly lowers its reliability,
efficiency, and value-added contribution. Therefore a mod-
el that can accurately predict the cloud motion and its af-
fect on PV system’s production is in a pressing demands.
It can be used to mitigate the undesired behavior before-
hand. In this paper we explore the use of Total Sky Images
and the cloud estimation techniques based on such images.
To further improve estimation quality of motion vector, we
propose a novel hybrid algorithm taking the advantages of
both correlation based and local feature based approach-
es. Our proposed hybrid approach significantly reduces the
cloud motion prediction error rate by 25% on average, which
can help to predict short term solar energy frustration in our
later work.

1. INTRODUCTION

The rising cost of producing fossil fuel, its severe impact to
environment, and contributions to green-house gas prompt
continuous efforts globally to invest alternative solutions to
the world energy demands. Among them, nuclear energy
was a promising source of energy until a recent nuclear acci-
dent from Japan raises a concern and suspicion regarding its
viability and sustainability. Other alternative or renewable
energy solutions have attracted more attentions recently, in-
cluding photovoltaic also known as solar energy, wind, tides,
and so on. Solar energy is one of the most promising energy
solution due to these facts: 1) It can deployed in residential
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and industry areas and virtually has no restriction on instal-
lation locations, 2) it is silent, 3) it requires less maintenance,
and has a longer lifetime because of no moving parts, and 4)
it is economical because of the decreasing solar panel price.

However, variability is the biggest challenge to integrate
solar energy into the National Grid. Its intermittency, if left
untreated, can seriously interfere with other power sources
sharing the same grid [1] and normal services to grid users.
Grid operators need to take actions (activating reserve power
or scheduling power from remote sources) prior to solar pow-
er change, which requires accurate prediction of solar power
output. Although Department of Energy (DOE) investigat-
ed SEGIS (Solar Energy Grid Integration Systems) [2], an
accurate, robust estimation of renewable energy production
is still unavailable.Cloud motion and subsequent change in
shading on panels have been the primary reason contribut-
ing to the volatility in solar power production. Therefore,
accurate power prediction essentially involves cloud motion
vector detection and subsequent cloud location prediction.
To our best knowledge, this type of variability prediction in
a short term prediction (from 30 seconds to 10 minutes) has
not been studied thoroughly. The prediction information
within this time range is critical in smart grid integration
because it allows the grid operator to anticipate and com-
pensate for fluctuations in PV output either manually or
automatically via smart grid software control.

Wind Forecasting Improvement Project has already showed
preliminary benefits of about $1 million in electricity pro-
duction cost savings for one month in power market simu-
lation studies, which analyzed the implications of improved
accuracy in wind forecasting in the Texas (ERCOT) pow-
er market. These savings were realized for an improvement
of about 2% in the Mean Absolute Error (MAE) for the 6
hour-ahead wind forecast. Using the result from this cloud
estimation project we are targeting to predict short term
solar energy output with similar preliminary benefits.

We address this variability problem of solar energy by de-
tecting cloud motion vectors using Total Sky Imager (TSI)
which takes hemispheric images of the whole sky. The mo-
tion vector can be subsequently used to estimate sun radia-
tion level and actual panel power output. The motion vec-
tor detection from a series of consecutive images has been
widely adopted from particle image velocimetry [3, 4], to
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Figure 1: Image Undistortion

cloud coverage prediction from satellite cloud images [5].We
present two most popular motion vector detection approach-
es (cross-correlation and phase correlation) and then cus-
tomize these algorithms for TSI image processing. There
are some limitations and challenges of these two approach-
es when they are adapted to TSI image processing. In this
paper, we will address these challenges including 1) the dis-
tortion of the spherical cloud images are not evenly uniform
between the center and borders of the image, 2) the shape
of cloud changes during its motion, and 3) the resolution of
TSI images is low around boundaries. To further improve
estimation quality of motion vector, we propose a novel hy-
brid approach combining the advantages of both convention-
al area-based approaches and local feature based approach-
es. Our proposed hybrid approach significantly reduces the
cloud coverage prediction error rate by 25% on average.

2. BACKGROUND AND RELATED WORK

The total sky imager (TSI) (Figure 1), which is manufac-
tured by Yankee Environmental Systems (YES) Inc., pro-
vides time series of hemispheric full-color sky images. The
sky images allow us to accurately compute and predict frac-
tional cloud coverage and solar radiation levels.

When we process TSI images, we need to consider the
following effects: First, due to hemispheric reflective lens,
the whole sky image can be taken but the sky image is dis-
torted, which requires image recovery from the distortion
(Figure 1). Second, the recovered image resolution is not
uniform. The resolution of the edge of image is much lower
than that of the center. Third, sunlight shadow band and
a camera-holding arm block sky image, which may affect
cloud motion detection. Fourth, the boundary of image is
not rectangle, which does not align well with the standard
block-wise computation. To detect cloud motion, we also
need to pay special attention to the following cloud image
properties: 1) The cloud image may contain arrays of similar
partial clouds such as Alto Cumulus. 2) The shape of cloud
may continuously change over time. 3) The cloud bound-
ary is not clear frequently. 4) The cloud near Sun tends to
show high level of brightness. Many techniques have been
developed to detect object motion vectors but due to the
unique properties of cloud image properties, a few of them
are actually appropriate for cloud motion detection. Arrays
of similar partial cloud can generate multiple narrow ex-
trema in the correlation surface, which could mislead SSDA
(sequential similarity detection algorithm [14]), for instance.
Since cloud does not have a clear boundary, active contour
models such as Snakes [15] are difficult to be used. Wavelets
and other multi-resolution schemes [16], to some extent, are

not suitable to TSI image because of the low resolution es-
pecially near the boundary, where ideal features are usually
unavailable.

One most recent work which carries similar purpose with
our research is [21]. The major drawback of this work is
that it only used cross correlation method. Cross correla-
tion method is one of the most popular techniques for rigid
movement detection, and it even works on cloud motion de-
tection to certain content. However it may fail on cloud
motion detection due to the following reasons 1) it is unable
to detect accurate vector when the cloud shape changes, 2)
It is quite sensitive to the intensity changes or multi-layer
clouds, and 3) it suffers from low resolution around bound-
ary area [18]. Similar problems happen in phase correlation
as well.

Many research have been focus on motion capturing based
on high-resolution features [24]. These include image regis-
tration techniques, which have been used widely in multi-
modal medical or photo registration problems [23] [25], and
some hierarchical methods [22] that align images based on
minimizing differences in intensity. Neither includes an ap-
plicable way for sky images. Moreover, significant challenges
must be overcome in adapting these measures to the shape-
changing moving object such as cloud. For example, popular
image registration techniques are susceptible to local mini-
ma and tend to produce incorrect alignment on the object
with obscure shape [23]. Direct methods cannot handle sub-
stantial scale and orientation differences between images.

In this paper we introduces a novel hybrid framework to
approach the solutions specifically for the above problems,
whose idea is in high-level similar to [22] with hierarchical
model, but totally different on the chosen techniques and
their combination. Our goal is to capture the cloud motion
which is non-rigid and with obscure boundary usually.

3. CORRELATION-BASED CLOUD MOTION

ESTIMATION

We investigate two most popular motion vector detection
approaches: Phase Correlation (PC) and Cross Correlation
(CC). Then we discuss how to further improve these ap-
proaches. With the detected motion vectors, we explain
how to predict upcoming TSI images.

3.1 Phase Correlation (PC)

The first candidate is phase correlation because of its pop-
ularity and the estimation speed [3]. Basically, it checks the
correlation between two images with the same size and lo-
cation and compute motion vectors. We divide f and g into
overlapped N x N sub-frame respectively where f is prior
frame to g. The following procedure is phase correlation
calculation:

1. Compute discrete 2D Fourier transform FFT, F =
FFT(f) and G = FFT(g).

2. Calculate the cross-power spectrum matrix R = G x F™*
where F* is the complex conjugate of F'.

3. Compute the phase correlation matrix C = FFT™*(R)
by performing the inverse F'F'T of R.

4. Locate the highest correlation point of C, which is
our desired motion vector from the center of subframe
(Figure 2).
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Figure 2: Motion vector detection using phase cor-
relation
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Figure 3: Motion vector detection using cross cor-
relation

However, phase correlation is particularly weak to the
noise due to the Fourier transformation. To avoid this, we
need to consider bigger block size, N. The second limitation
is that it can capture up to half of block size, N/2, but this
half size is not realistic because the signal-to-noise ratio of
correlation will be decreased with big motion vectors [3]. It
is also worthy to mention that the Phase correlation assumes
no cloud shape changes, which could be unrealistic.

3.2 Cross Correlation

The other popular but more robust approach for motion
vector detection is directly computing Pearson Correlation
Coefficient between two subframes. Given a prior N x N
sub-frame f, we look for the most correlated current sub-
frame g of the same block size from candidate search space
M x M where M > N. Specifically we apply the following
procedures:

1. Calculate the mean f and the standard deviation oy
of each block f.

2. For each search space (i,5) of M x M, calculate the
cross correlation C(%, j), which is

(f-Hlg-9
1
=Nz Ly Y=nlzg) p—— (1)
3. Locate the highest correlation point of C, which is our

desired motion vector (Figure 3).

Although cross correlation is simple and robust to noise
compared to phase correlation, it requires searching motion
vectors on M X M search space, which make it slower. It
cannot handle cloud shape changes either.

3.3 Improvements on PC/CC for TSI Images

We apply three additional approaches to improve the above
two candidate approaches. The first one is using two differ-
ent block sizes, bigger block size for the center of images and
smaller block size for boundary areas. Although the bigger
block size ensures robust motion vector detection, it could
not find enough motion vectors and suffers from the bound-
ary effect in that the correlation matrix usually finds its
peak along the edge of the circle or the shadowband. With
the proposed two block sizes, we could 1) find more motion
vectors near edges and 2) relieve the boundary effects.

The second approach to avoid the boundary effect is to fill
local mean values into the boundary area, shadowband and
camera-holding arm area. It significantly removes spurious
motion vector near the holding arm and shadow band.

Third, we also used the algorithm proposed in [4] to re-
move the spurious motion vector ( the vector that is signif-
icantly different from the vectors around it). This method
was good for cloud shape change but it can not remove mul-
tiple spurious motion vectors. Therefore, we have to use all
three approaches together.

3.4 Cloud Motion Estimation Using PC/CC

Our core idea of estimating new image frame is that we
use the motion vector detected from previous two (I*”! and
I*) frames and project the frame I* into the new frame I***.
Our basic assumption is that the cloud shape will not change
too much and the cloud maintains the same velocity in a
short time scale [13].

As we use image sub-blocks to detect motion vectors, the
cloud motion estimation is simplified to block-wise move-
ment where each block starting at (i,7) on time ¢ with
block size m X m (I(; jy(itm,j+m)) has one motion vector
17(2’].) = (u,v) where I" is the image frame at time ¢. Given
frame I'™', I' and the frame I'*' which we are going to
estimate, we have the following equation:

t t—1
I(iyj)(i+mvj+m) ~ I(i—uyj—v)(i—iﬁ-myj—v‘”n) (2)

which means that the texture in Ifl ) (i+m,j+m) 1S approxi-
mately the same as the texture in I (i—u
J—v)(i—ut+m,j—v+m)"

Based on the assumption of constant cloud speed in a short
time [13], we can estimate the texture in frame I**':

It+1

(i+u,j+v)(i+ut+m,j+v+m) — I(l 7)(i+m,j+m) (3)

To avoid the mosaic effect in the estimated new frame
brought by block-wise movement, three operations are ap-
plied. First, we enlarge the moving block size by adding a
border around it. Second, for those block-areas in second
frame which have the same target area (or overlapping part-
ly) on the new frame, we calculate the mean value of them
as the final texture for the overlapped target area. It helps
us to smooth the boundary effect of block and get better
estimated image. Third, if the moving block contains image
boundary (e.g. shadowband, arm), we just move the oth-
er area inside the block except boundary area. Finally for
those empty area in the estimated third frame, we fill it with
the texture in the same area in second frame.

4. LOCAL FEATURE(LF)-BASED CLOUD
MOTION ESTIMATION



Cross-correlation and phase correlation mentioned above
can be classified as area-based approaches since they com-
pare and match the intensity patterns of block-wise area.
However, these methods have three severe drawbacks in mo-
tion vector detection on TSI images: 1) Both approaches
is unable to detect accurate vector when the cloud shape
changes, 2) They are quite sensitive to the intensity changes
or multi-layer clouds, and 3) they suffer from low resolu-
tion around boundary area [18]. All of these common phe-
nomenon will trigger failure of the current existing approach
[21].

On the other hand, local feature can outperform corre-
lation methods on the aspects above because of their ro-
bustness about change of cloud shape and illumination. In
computer vision, the need for a stable local descriptor that
is robust to geometric variations (such as viewpoint, scal-
ing, and affine transformation) and photometric invariance
(such as brightness and exposure) has captured the atten-
tion of researchers for years. The points with these proper-
ties are usually called local features. Through our research
in this paper, local features can be used to extract cloud mo-
tion vectors based on the point correspondence between two
frames with a more stable and robust performance than cor-
relation methods. However, recordings of TSI images show
that local features are typically not uniformly distributed,
but biased in spatial location and certain sky image tex-
ture. Nevertheless, local features can still be a reasonable
complementation of correlation methods for cloud motion
detection. Then, in this paper, we propose to adopt a local
feature based approach, Partially Intensity Invariant Feature
Descriptor (PIIFD) [7], to adjust motion vectors detected by
correlation methods.

We specifically apply PIIFD on motion vector detection
due to its good performance on pattern matching with poor
quality textures (especially with the appearance of obscure
texture). Generally the process consists of three steps. First,
candidate feature points, as sufficient and uniformly dis-
tributed as possible, are selected using certain techniques
[19][6]. Second, we calculated PIIFD features from the can-
didate points. Finally, we match PIIFD features between
frames, remove the wrong matches and refine those existing
matches (image registration).

4.1 Harris Corner Points Detection
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Figure 4: An example of R threshold setting for Har-
ris corner detection [6]. R is a function of first two
eigenvalues el and e2 of M. Area with shadow has
high enough value of R therefore is corner region.
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Figure 5: (a) Gradients. (b) Average squared gra-
dients. [12]

To obtain enough corresponding candidate feature pairs
among images, we need sufficient and uniform distributed
points as feature candidates. For distinctiveness, it is use-
ful to ensure that the neighborhoods of each point have
sufficiently rich image texture. However the TSI images
boundary area has low resolution and thus it does not pro-
vide enough local details there. Many researches on ob-
scure/blurry image registration use corner points to get suf-
ficient quantity of feature candidates, which can be viewed
as junctions of contours with large variation in the neigh-
borhood of the point in all direction.

Harris corner point [19] [6] is one of the most popular
choices among similar methods. Its basic concept is to mea-
sure the changes in all directions by using image gradients.
For an image I, the traditional image gradients can be de-
picted using partial differential along row and column:

[Gm} - {8[/(%] W
Gy| — |01/0y|"

With gradient, we can recognize the Harris corner point by
looking at intensity value within a small window h. Shifting
the window around corner point in any direction should yield
a large change in appearance. The value of change, R, is a
function of the first two eigenvalues el and e2 (Figure 4)
alone. On grounds of rotational invariance. It is attractive

to avoid the explicit eigenvalue decomposition of M [6], thus
R can be also mathematically expressed as

R =det(M) — k x tr* (M), (5)
where M is matrix resulted from a convolution as follows:

G: GG
& Yy

In the above formula, h is a Gaussian window with the
window size 8 and k is a relative weight tuning parameter
(usually k € [0.04,0.06] [19][6]), and det and t¢r are the
determinant and the trace of the matrix M. In one image,
only those points with high value of R are assigned as corner
points (see Figure 4). Extremal points inside the gaussian
window that do not have sufficiently large R are therefore
culled. The threshold for R usually depends on the image
and the number of corner points needed. In our application,
we set it as 0.1 to obtain sufficient local feature candidates.

|

4.2 Main Orientation Computation

The task of a local feature descriptor is to describe lo-
cal feature in such a way that it can be distinguished from
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Figure 6: Main Orientation Assignment [7]. (a)
Neighborhood of each corner point is related to the
main orientation. (b) Orientation histogram of the
rightmost square in (a)

the other local features and also matched effectively with
those that are similar enough. Such distinction is intimately
related to the main orientation of each feature. The main
orientation is the maximum peak of the gradient histogram
in the neighborhood of each feature candidate. To get a
rotation invariant feature descriptor, the main orientation
according to the local gradient should be assigned to each
harris corner point before extracting the feature descriptor.
Firstly the image gradient is accumulated across an image
window. In order to make those opposite gradient enforcing
instead of canceling each other, average square gradient [8]
is used before averaging. Moreover, the scale-space theory
tells that averaging with a gaussian window minimizes the
amount of artifacts that are introduced by subsampling [9],
which leads to the reduction of the number of false local
feature points.

The average squared gradient [G ., Gs,,]7 (see Figure 5(b))
around the neighborhood of a candidate point specified by
a Gaussian window W (matrix-wise) can be calculated by:

Gs,z _ EWGS,Z
Gs’y o Z‘/VGs,y

_ [zwag - Gf,} _ {Gm - ny]
2Gay |

(7)

Sw2G.Gy
where
Goo = SwG,
Gyy = SwGo, (8)

Gay = SwGaGy.

Gza, Gyy and G5y are estimates for the variance and cross
covariance of G, and Gy.

For each candidate neighborhood, its main orientation ¢
is given by

tan ' (Gey/Gez)+m, Geoz >0
¢ = 5 tan 1 (Gs,y/Gse) +2m, Gex <0NGsy >0
tcm*l(Gs,y/Gs,m)7 Gsz <0NGs,y <0
9)

4.3 Feature Descriptor Extraction

Given the main orientation (arrow in Figure 6(a)) of each
feature point candidate, the advantages of achieving partial

(b) Motion vector from local feature pair

Figure 7: Motion vector detection using local fea-
tures

intensity invariance root from the ability to extract image
outlines [10], which is a line marking the multiple contours
or boundaries of an object. In PIIFD, image outline is rep-
resented by the constrained image gradients, whose orien-
tations are rotated relative to the main orientation ¢. PI-
IFD achieve partial intensity invariance by normalizing the
gradient magnitudes in order to reduce the adversary effec-
t of gradient magnitude changes. By this way, PIIFD will
remain stable even with the intensity of the local neighbor-
hood change dramatically.

4.4 Feature Matching and Refinement

The purpose of this step is to build accurate correspon-
dence between the two TSI images. Best-bin-first (BBF)
[11] is the key part in this step. It can identify the approx-
imate closest neighbors of high-dimensional points in terms
of dot product. Different from [7], we keep all the pair corre-
spondence with similarity (probability) larger than 0.8. The
reason is that we want to keep as many candidate pairs as
possible but TSI images have lower resolution, so that we
have fewer correspondence candidates than other applica-
tion domain. Since BBF is unilateral instead of bilateral,
geometric distribution among candidates is also used to re-
move incorrect matches. Chen at.el [7] computed a ratio of
Euclidean distances between two matches and remove those
matches out of range (far away from 1). In our application,
we allowed a slightly larger range since some distances may
be far away from the other due to the appearance of multi-
layer cloud with the different motion direction and velocity
(Figure 7(a)).

4.5 Cloud Motion Estimation Using Local Fea-
ture Correspondence

After investigating how to get stable local features on T-
SI images, it sets a stage for us to introduce the motion
estimation using local features. Here we use the similar
strategy as cloud estimation on correlation methods: de-



tect the motion vector first and move texture to estimated
frame. We get motion vectors by checking the displacement
for each corresponding feature pairs (Figure 7(b)). Denote
a local feature point as p with coordinates (p;, p;). Suppose
p'~! and p' are a corresponding LF pair from frame at time

t — 1 and t respectively, the motion vector 17;71 for pt~1t is

(pt —pi™t, p§- — pz-_l). With assumption for constant cloud

velocity in short term [13], the motion vector @, for p; from
time t to t+1 is the same as 17;_1. Once we get all the motion
vectors from LF pairs, motion estimation is the next step.
For each feature, there is a surrounding block. With these
feature-centered blocks, the rest part of motion estimation
is quite similar to what we described on section 3.4.

Algorithm 1: MoEst-CC-LF(I*™!, I*, V., P*, V}, a)

Input: I_ffl and I' are the frame at time ¢ — 1 and ¢;
Vee are the block-wise motion vector matrix
from cross correlation motion detection, with
each element ¥.. inside depict the motion
vector on that block from time ¢t — 1 to ¢; P?
are the local feature array in frame ¢, and Vp
are the corresponding motion vector array come
from local feature pairs of I*™* and I%; o is a
area smoothing parameter

Output: Estimated third frame, I**!

1 foreach block(i, j) in I* do

2 Add boundary with o width (pixel) around it, the
area of the new block Ififa’j,a)<i+m+a’j+m+a> is
denoted as B? ;

3 Dee is the motion vector of B from V.. ;
4 Denote our adjusted motion vector as ¥c—;y for B* ;
5 Ecc—lf = 1700 3
6 count =1 ;
7 foreach local feature point p* in B* do
8 ¥, is the motion vector of p* from Vp ;
9 Vecif = Vee—lf + Up ;
10 count = count + 1 ;
11 end
12 Get the average motion vector Ucc—i¢ by

Vee—tf = Zﬂvccflf/count = (u,v) ;

13 | Weget B as IG7, ooy hmtatuemtato) |

14 Copy texture of Bt in I* to B**! in I**1 ;

15 end

16 For the overlapping-copied area, we use the average
texture as the final texture ;

17 Finally, we fill the empty area in

area in I* ;

It™! with the same

Compared to PC and CC, the size of local feature blocks
is directly related to the Gaussian window W. As we dis-
cussed earlier, in order to represent local gradient, W should
not be too large. So the moving block size is usually much
smaller than those in correlation methods. The main ad-
vantage of motion estimation using local feature (LF) lies
in its robustness with respect to non-significant cloud defor-
mation (e.g. change of cloud shape or illuminance) where
correlation methods such as [21] will easily fail. However,
compared to correlation methods, its disadvantages are al-
so obvious: the insufficiency and nonuniform distribution of
motion vectors. These problems will result in much more

empty area in the estimated frame, making the result worse
than correlation methods overall.

5. CLOUD MOTION ESTIMATION (CC AND
LF)

To overcome the problems of both CC and LF, we intro-
duce a novel motion estimation algorithm using the motion
detection result from both of them. We first get the mo-
tion vectors by combination of motion vectors from CC and
those from LF. Depends on the image quality and extent of
cloud shape change, we can assign different weights on mo-
tion vectors from CC and LF. Here in our implementation,
we simple assign the same weight (as 1) to all the related
motion vectors and compute the average motion vector. Let
V.. be a n x m x 2 matrix (z and y direction) of motion
vector from CC, and p® be the LF in frame ¢ with corre-
sponding motion vector 17’;. The combined motion vectors
from CC and LF are denoted as ¥sc—ir. The new algorithm
is detailed in Algorithm 1.

6. EXPERIMENTS
6.1 Experiments Setting

Methods and Evaluation We evaluated four motion
vector detection algorithms: phase-correlation (PC), cross
correlation (CC), local feature (LF), and the combination of
cross correlation and local features (CCLF') on four represen-
tative sky conditions. Among these algorithms, CC is still
being used by current similar researches [21]. Here we use
previous image frame as our baseline approach (Baseline),
and “Mean Absolute Error” (MAE) between the estimated
image and the true image as our evaluation metric.

Data Selection and Preprocessing The data comes
from Manus Island, Papua New Guinea, Tropical Western
Pacific, 2010 collected by ARM [20]. Condition 1 shows
multi-layer cloud with small sky coverage; Condition 2 shows
multi-layer cloud with large sky coverage; Condition 3 shows
thick and dark cloud; and Condition 4 shows slow moving
cloud. For each condition, we choose four cases. Such di-
verse data choice is intended to study the robustness of mo-
tion vector detection and estimation but we presented only
four representative sky conditions due to space limitation.
Four preprocessing steps are applied before motion vector
detection and estimation: 1) convert the input image for-
mat to grayscale; 2) scale the intensities of the input image
to the full 8-bit intensity range [0, 255]; 3) undistort the
image to a normal format (Figure 1); and 4) remove the
shadowband and camera holding arm of TSI image (in our
methods we use algorithm in [17] to detect the sun position
and set such area as totally black).

Parameter Setting One of the main difficulties of ap-
plying motion vector algorithms to TSI images is decid-
ing appropriate parameters. The accuracy of the estimat-
ed image depends on how the parameters are chosen. For
correlation-based methods, there are three parameters: 1)
block size, 2) overlapped area size and 3) search window
size. In theory, the block size for both cross-correlation and
phase-correlation should be kept large enough to ensure sta-
ble results but it should not be too big to make the number
of motion vectors large enough. The size of the search win-
dow in cross-correlation must be sufficiently larger than the
expected displacement but too large search window increas-



- =
—— — — -
e eme— -
»*e&é - -

(e) CC - Sky Condition 1 (O) (f) CC - Sky Condition 1 (I)

Figure 8: Cross Correlation (CC) and Phase Correlation (PC) Results. (O) stands

(c) PC - Sky Condition 2 (I)

(g) CC - Sky Condition 2 (I)
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for the original results

without our proposed improvements and (I) is the improved results.

es the chance to capture spurious motion vector. In case of
phase correlation, up to half of block size can be captured,
but which is not realistic because the signal-to-noise ratio
of correlation will be decreased with bigger motion vectors,
resulted in decreasing the number of particle image pairings
[3]. There are two parameters to tune for the local fea-
ture: 1) 8 for harris corner point detection and 2) o for the
Gaussian window size of the main orientation computation.
For the first parameter (3, the purpose is to get as many
candidate as possible, and at the same time decrease the
possibility of singular features. Determining the Gaussian
window size o of W is also not a trivial job. In accordance
with the scale-space theory [9], o cannot be either too big
or too small. For small o, the average orientation would be
very erratic due to the noise or insufficiency of resolution. If
o is too big, it will fail to show the local orientation.

We did leave-one-out cross-validation (LOO-CV) to tune
the parameters and evaluate the performances. In cross cor-
relation, the range we used for block size is [20, 30, 40, 50, 60],
and search window size is among [80, 100, 120, 140, 160]. In
phase correlation, the inner-block size is tested in [5, 10, 15, 20]
and outer-block size in [20,40, 60, 80]. For local feature, we
chose the best 8 from [1,1.5,2,2.5], and o from [3,4,5, 6].
In our combination algorithm we select the best parameters
for cross correlation and local feature separately.

6.2 Experimental Result Analysis

Motion Detection Using Correlation Methods.

From Figure 8, we can see that both phase correlation
and cross-correlation can extract most of cloud motion vec-
tors, but with differences in certain part. In Figure 8(a)
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Figure 10: Error rate reduction over baseline

and 8(e), the area of green dash circle and red solid circle
has multi-layer cloud, whose moving direction is different
from its neighborhood. In Figure 8(a) we can see that phase
correlation either ignore the motion or just mark the motion
similar to its neighborhood. In other word, phase correlation
has inability to discriminate such multi-layer cloud present-
ed in the same block. The reason is Fourier transform only
choose the first p highest frequency. So the multi-layer cloud
is considered as p-dimensional projections, which could be
not enough to extract the right motion vectors. On the
other hand, cross-correlation is much stronger on detecting
multi-layer cloud motion by searching the blocks from lu-
minance matches. Similar observation can be found inside
the red solid circle and brown dash circle in Figure 8(c) and
Figure 8(g). Another major weakness of phase correlation
is in their inability to track motion of dark cloud (see the
area inside green dash circle in Figure 8(d) and Figure 8(h)).
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Figure 9: Absolute Image Difference visualization of cloud condition 1 (multi-layer and scattered clouds)

The reason is that Fourier transform represent the area with
high frequency signal. But the value of these signal is too
small when the area gray scale is low enough, which pre-
cludes the program to find the right displacement between
blocks. However, the complexity of phase correlation is on-
ly O(N?logN), which is much less than cross-correlation
O(M?N?) where N is block size and M is search window
size. We use the two extra techniques to improve our result.
By using mean-filling, we recover the motion vectors near
boundary (see comparison between the rectangular area in
Figure 8(e) and 8(f)). We also remove those spurious vectors
shown in Figure 8(a) compared with Figure 8(b).

Table 1: Mean Absolute Error Results

Methods C1 C2 C3 C4
1 | Baseline 9.68 | 10.59 | 8.78 1.30
2| PC 7.80 8.44 | 7.05 1.29
3| CC 7.04 7.30 | 5.75 | 1.34
4 | LF 9.20 9.32 7.80 1.33
5| CC+LF | 6.69 | 6.96 | 5.51 | 1.28

Motion Estimation Result Analysis.

Overall, PC(phase-correlation) can get 14.4% improve-
ment, local feature 6% and cross-correlation can reach up to
21.8%. The combination of cross-correlation and local fea-
ture has the highest average score 25.3% (Figure 10). From
Table 1, we can see local feature can slightly decrease the
MAE compared to just using previous frame as estimation.
Phase correlation and cross correlation can get a much better
estimation result. It is because local feature has insufficient
area matching information due to the small local area sur-
rounding each feature point. In other word, more uniformly
distributed features are required, which could be non-trivial.
Cross correlation outperform phase correlation, which con-
firms our motion vector detection analysis. Cross-correlation
is much stronger in detecting multi-layer and dark cloud mo-
tion by searching the blocks using luminance pattern match-
es. The one case cross-correlation fail is in slow moving

cloud condition. On the other hand, local feature can al-
ways detect such motion regardless of non-dramatical cloud
velocity. Figure 9 shows an example Absolute Error plot of
cloud condition 1. Baseline shows the biggest error mass and
phase correlation and cross correlation significantly reduced
it. One interesting point is that local feature error point
distribution is different from cross correlation error point
distribution. Therefore, when we combined both approach-
es, we could further reduce cross correlation error rates.

7. CONCLUSION

To provide an accurate prediction of solar radiation, we
proposed to predict cloud movements using motion vector
detection and estimation of TSI images. We implement-
ed and improved two popular motion vector detection ap-
proaches, phase correlation and cross correlation. Due to
inherent limitation of area-based approaches, we propose to
consider a hybrid approach taking advantages of both corre-
lation based approaches and local feature based approaches.
The hybrid approach is robust to intensity and multi-layer
clouds, to certain degree of cloud shape changes, and good
for low resolution images compared with current similar re-
search [21]. Our systematic experimental results revealed
that our proposed novel approach significantly reduced er-
ror rate in predicting new cloud motion frames by 25% on
average.
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