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Abstract

This paper tackles the matching problem of partial
deformable shapes with changing boundary and vary-
ing topology. We compute high-order graph matching
directly on manifolds, without global/local surface pa-
rameterization. In particular, we articulate the heat
kernel tensor (HKT), which is a high-order potential
of geometric compatibility between feature tuples mea-
sured by heat kernels within bounded time. Inherited
from the heat kernel, the HKT is multi-scale, invariant
to isometric deformation, resilient to noise, and robust
to topology changes. We also build up a two-level hi-
erarchy via feature clustering, by which the searching
space of HKT is greatly reduced. To evaluate the pro-
posed method, we conduct experiments in various as-
pects, including scale, noise, deformation, comparison,
and semantic matching.

1. Introduction and related work

Matching 3D deformable shapes remains a challeng-
ing problem with growing interest in computer vision,
which affords the enabling technique for shape com-
parison, retrieval, and recognition. The analysis of
dynamic shapes relies on correct correspondences be-
tween them, where shape matching is a fundamental
and important tool. To reduce the complexity and over-
come the ambiguity, we refer shape matching to finding
sparse correspondences of representative points (i.e.,
features) on shapes in this paper.

One challenge of shape matching is the nonrigid
deformation. Dynamic shapes acquired from natu-
ral objects such as face, human body, and animal,
may undergo large deformation. Existing methods
tackle this problem by various geometric tools, includ-
ing geodesics, conformal geometry, shape spectrum,
and spectral embedding. In this paper, we turn our
foci to some other technical challenges that have been
under-explored by previous work. First, dynamic scans

are oftentimes partial shapes with possible boundary
changes. Some techniques based on global geometry,
such as shape-DNA [5], global point signature [7], and
surface parameterization [10], are therefore not suitable
for this case. Second, the outlier problem is a well-
known challenge for feature matching, which is un-
avoidable for partial shapes. Outliers are points that do
not have proper matches on the other shape, resulting
from missing information or incomplete feature detec-
tion. Consequently, the matching task cannot be ful-
filled by simply finding the most similar feature-pair
(i.e. the nearest-neighbor search [2, 3]). Finally, com-
putational efficiency is required throughout the entire
pipeline of feature detection and matching. Massive
data analysis demands faster algorithms that are able to
process dynamic shapes efficiently.

Our idea to tackle the aforementioned challenges is
motivated by two promising and powerful tools: dif-
fusion geometry and high-order graph matching. A
3D shape without self-intersection is a 2-manifold em-
bedded in R3. In diffusion geometry, eigenvalues
and eigenfunctions of the Laplace-Beltrami operator on
manifolds have been widely applied to shape match-
ing [5, 6, 7, 8]. As discussed above, they are global
characteristics, subject to boundary changes. Heat ker-
nel, also resulting from the eigen-system, has demon-
strated its utility in shape matching [3]. It has many at-
tractive properties, including multi-scale, isometric in-
variance, and robustness to noise. Most importantly,
it is localized on manifolds. With bounded time, it is
mostly determined by the local geometry, which affords
its applications in partial shape matching.

High-order graph matching [1, 9], has demonstrated
its superior performance of combating outliers and
mismatches. It considers geometric compatibility be-
tween feature tuples, and matches them collectively as
a graph. However, to apply graph matching on de-
formable shapes is not trivial. The previous idea is
to compulsorily flatten the shape to a 2D “image” via
surface parameterization [10], which has encountered
many difficulties in handling flexible boundary, topo-
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logical change, large distortion, bad triangulation, and
model cutting. It is highly desirable and necessary to
explore the graph matching directly on manifolds, with
resilience to both boundary and topology changes.

In this paper, we develop a diffusion-driven method
for matching partial deformable shapes with possible
boundary and topology changes, by conducting high-
order graph matching directly on manifolds. We pro-
pose the heat kernel tensor (HKT), which is a high-
order potential of geometric compatibility of feature tu-
ples on manifolds. To facilitate the matching process,
we further build up a two-level hierarchy via feature
clustering. This simple hierarchy greatly reduces the
search space of HKT, and therefore the computation
time. Through various experiments, we demonstrate
this method can match partial shapes of deforming ob-
jects, as well as similar shapes from different objects by
producing semantic correspondences.

2. Heat kernel tensor

Geometric relations among features are extremely
important on deformable shapes, and collectively they
are much more reliable than single feature point in
shape matching. Therefore, we adopt the advanced ten-
sor matching [1], and transplant it to manifolds via a
diffusion-driven relation measure, given by

dt(x, y) =
1

4
(−t log ht(x, y))1/2. (1)

Here, ht(x, y) denotes the heat kernel from point x to y
at time t

ht(x, y) =

∞∑
0

e−λltφl(x)φl(y), (2)

where λl and φl are the l-th eigenvalue and eigen-
function of the Laplace-Beltrami operator. When t →
0, dt(x, y) is indeed a metric and converges to the
geodesic between x and y.

We consider two partial shapes M1 and M2 with
overlaps and boundary changes. Let N1 be the num-
ber of features extracted on M1, and N2 be the one on
M2. A pair i = (i1, i2) denotes a candidate match with
a point i1 from M1 and i2 from M2. The problem of
matching point sets is equivalent to finding an assign-
ment matrix XN1×N2

, such that

Xi1,i2 =

{
1 i1 matches i2
0 otherwise

, with
∑
i2

Xi1,i2 ≤ 1.

(3)
Note that there may be outliers in the feature set. As
shown in Fig. 1, some outliers are circled. For an out-
lier i1, there is no match in the second feature set, i.e.,

Outliers Outlier

Figure 1. HKT for shape matching. Three
candidate matches (i, j, k) form two “trian-
gles”. Some outlier features are circled.

∑
i2
Xi1,i2 = 0. We adopt the tensor formulation [1]

for high-order graph matching on manifold. Specifi-
cally, we consider a tuple of three candidate matches
(i, j, k) without conflicts, i.e., i1 6= j1 6= k1 and
i2 6= j2 6= k2. They may form two “triangles” by con-
necting them with dt, as shown in Fig. 1. Since small
heat kernels are error-prone, we select large heat ker-
nels with a threshold εh(t) = 10−6. In the case when
the three points do not form a triangle, we simply drop
this tuple.

The tuple of candidate matches is then embedded
into a 3D space by three angles of this triangle. The
distance in the embedded space is given by

dθ(i, j, k) = ‖θi1,j1,k1 − θi2,j2,k2‖2, (4)

where θi1,j1,k1 is a vector comprising three angles of the
triangle formed by points i1, j1, k1, and ‖.‖2 denotes
the l2-norm. The affinity of the tuple (i, j, k) without
conflicts is defined as

τi,j,k = e−dθ(i,j,k)
2/σ, (5)

where σ is a parameter, which can be set as σ =
mean(dθ). For tuples with conflicts, we let their affini-
ties equal to zero. The high-order score of assignment
X is defined as

score(X) =
∑
i,j,k

τi,j,kXi1,i2Xj1,j2Xk1,k2 . (6)

We rewrite the score using tensor notation, given by

score(X) = T ⊗1 X ⊗2 X ⊗3 X, (7)

where ⊗d denotes the tensor product in d dimension.
We call T the heat kernel tensor, as it utilizes heat ker-
nels to form the tensor. The HKT can be fused with dif-
ferent order of potentials. Here, the HKT is a 3rd-order
tensor with entries τi,j,k defined in Eq. (5). The final
results are obtained according to their matching scores
subject to conflict constraints in Eq. (3).
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Figure 2. Matching hierarchy. Extracted
features are clustered into sub-graphs.

3. Matching hierarchy

For articulated shapes, we design a two-level hi-
erarchy to improve the time performance by reduc-
ing the searching space. Articulated shapes with long
branches can be easily segmented using some low fre-
quency eigenfunctions of the Laplace-Beltrami opera-
tor [4]. In the upper level, we find centers of clusters as
the local extrema of the first two non-trivial Laplace-
Beltrami eigenfunctions, and remove redundant ones
that are very close to selected centers. In the lower
level, extracted shape features are then clustered into
sub-graphs based on their heat kernels to the cluster
centers. The goal of the upper-level matching is to re-
duce the searching space, and it can be skipped when-
ever necessary.

The cluster centers comprise a hyper-graph in the
upper level of the hierarchy, as shown in Fig. 2. In
the hyper-graphs with hyper-nodes (cluster centers),
we compute their HKT. We release conflicting con-
straints by allowing candidate matches that have match-
ing scores greater than 80% of the maximal one. This
will prune diverse sub-graphs, and reduce the search
space of HKT. At the lower level, we run HKT in each
cluster. For the high-order optimization in Eq. (7),
we use the tensor power iteration with l1-norms of
columns. The complexity of one power iteration is
O(m), where m is the number of non-zero elements in
the tensor. We restrict the number of triangles (i.e., non-
zero elements) to 64N1 by randomly selecting tuples.
As a result, the computation of HKT is very efficient.

4. Experimental results

To evaluate the proposed method, we conduct var-
ious experiments, including scale change (Fig. 3),
noise/topology change (Fig. 4)), large deformation
(Fig. 5), and semantic matching (Fig. 6). The only pa-

Figure 3. Experiment of deforming shapes
with scale changes by our method.

Figure 4. Matching with noise (Left) and
topology changes (Right).

rameter of our method needed to be tuned is time t in
HKT. We set t = 20 for two-level matching and t = 60
for one-level matching.

In Fig. 4, we add Gaussian noise (σ = 10% of av-
erage edge length) to vertex coordinates, and also in-
troduce topology noise by punching holes on models.
For large deformation, we test our method through a se-
quence of deforming shapes of a dancing woman, with
selected frames shown in Fig. 5. The matching results
are stable under large deformations across these frames.
Our method can also be applied to match partial shapes
from similar objects, resulting in semantic correspon-
dences shown in Fig. 6. We skip the upper-level match-
ing, since we may need geometric constraints from far-
away points. The fists of a man are matched to the
wrists of a woman. This is because the woman’s arms
are thinner than the man’s arms, thus, the heat diffuses
faster on the woman’s arms. And the first hand is a
closed surface, while the second one is open.

For quantitative evaluation, we compute differences
of geodesics between matched pairs. For a match pair
i = (i1, i2) in the correspondence set S, we find j =
minj(dµ(i1, j1)) with geodesic dµ, and compute

error(i) =
|dµ(i1, j1)− dµ(i2, j2)|

ē
, (8)

where ē denotes the average edge length. The mean er-
rors of all correspondences are documented in Tab. 1.
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Figure 5. Selected frames of matching largely deforming objects.

Figure 6. Matching similar objects.

Data #V1, #V2
Time (sec) Mean errorHKS HKT

man1 10.0k, 5.7k 4.99 1.30 0.788∗

man2 10.0k, 5.9k 3.14 0.5 0.703∗

woman 10.0k, 5.8k 5.59 0.81 0.822
hand 10.0k, 9.0k 1.45 0.16 N/A

∗ evaluated before scaling or noise

Table 1. Time performance and quantita-
tive evaluation of our method.

We also detail the time performance running on a lap-
top. We adopt the HKS for feature detection, which
shares the computation of eigen-decomposition with the
HKT. It may be noted that, the computation of eigen-
decomposition is not listed in Tab. 1. It costs about 45
seconds for a pair of meshes by our implementation.

5 Conclusion

We have detailed a new method for matching partial
deformable shapes equipped with diffusion geometry
and high-order graph matching. The technical core is
found upon the HKT, which is a diffusion-driven repre-
sentation of high-order geometric compatibility. With-
out the need of any surface flattening or metric mod-
ification via surface parameterization, our method di-
rectly computes the high-order graph matching on man-

ifolds. All the merits and versatile applications us-
ing our method are demonstrated through our extensive
experiments, and validated in various aspects. Upon
correct matching of partial deformable shapes, our on-
going and near-future research efforts are geared to-
wards dense registration of partial non-rigid shapes, and
space-time data completion from incomplete data input.
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