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Abstract. This paper advocates a novel material-aware feature descrip-
tor for volumetric image registration. We rigorously formulate a novel
probability density function (PDF) based distance metric to devise a
compact local feature descriptor supporting invariance of full 3D orienta-
tion and isometric deformation. The central idea is to employ anisotropic
heat diffusion to characterize the detected local volumetric features. It
is achieved by the elegant unification of diffusion tensor (DT) space con-
struction based on local Hessian eigen-system, multi-scale feature extrac-
tion based on DT-weighted dyadic wavelet transform, and local distance
definition based on PDF formulated in DT space. The diffusion, intrin-
sic structure-aware nature makes our volumetric feature descriptor more
robust to noise. With volumetric images registration as verifiable appli-
cation, various experiments on different volumetric images demonstrate
the superiority of our descriptor.

1 Introduction and Motivation

With the rapid advancement of various volumetric imaging modalities, we have
been witnessing the urgent need for automatic feature detection and the discrim-
inative feature description of complex volumetric dataset in image registration,
object recognition, video event detection, image retrieval, etc. To achieve this,
some recent works have tried to extend 2D SIFT-like methods to 3D versions,
for example, Scovanner et al. [1] created a 3D SIFT descriptor for video action
recognition, Flitton et al. [2] extended the SIFT approach to 3D rigid recogni-
tion, and other applications include rigid registration of medical images [3, 4]
and panoramic medical image stitching [5, 6].

Despite the limited success, certain difficulties still prevail and need to be
resolved. The challenges are prompted by the facts that volumetric images typ-
ically have much more spatial flexibility, and are frequently accompanied by
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Fig. 1. The algorithmic pipeline of our method

non-rigid deformation with higher degrees of freedom. As for non-rigid regis-
tration, although some intensity/information entropy based methods can easily
achieved this goal by integrating global energy optimization and deformable
templates, however, a typical global approach tends not to consider local de-
formable feature-driven information and non-affine distortion. It remains hard
for localized, feature-centric registration methods, since this requires the feature
descriptor to be intrinsic, concise, informative, and discriminative. Simple statis-
tics on local properties in intensity and gradient domain won’t work, we should
resort to the intrinsically physical laws underlying the embedded manifold space.
Specially, the main challenges are documented as follows.

First, due to the complex topological degrees of freedom inside the volume
dataset, multi-scale feature extraction based on Difference-of-Gaussian (DoG)
convolution analysis frequently obtain a large number of less salient or false
alarm candidates. Especially, ambiguities are unavoidable for the ones with low
contrast or being poorly localized nearby an edge. More material-aware convolu-
tion kernels, which can respect the local geometry structure and its orientations,
still need to be further explored for multi-scale feature extraction.

Second, most of the 3D descriptors simply imitated from 2D SIFT can only
partially satisfy the rotational invariance. Although Allaire et al. [3] achieves the
full rigid orientation invariance by taking 3-angle orientation (azimuth, elevation,
and tilt) into account, the descriptor dimensionality is up to 16, 384. From the
application’s viewpoint, this is less efficient and far from practical.

Third, analogous to the analysis for shape descriptor in [7], and besides the
rigid transformation, the feature descriptor should take deformation into account
as much as possible. However, this typically requires certain kind of mapping
by parameterizing local volumetric structure with intrinsic metric over certain
canonical domain, which may cause even more severe deformation effects. Thus,
intrinsic metrics supporting deformation-invariant volumetric feature description
are yet to be systematically explored.

To tackle the aforementioned challenges, we systematically articulate a novel
material-aware feature descriptor for volumetric images. Towards the ambi-
tious goal of isometric invariance, our observation is that, the diffusion pro-
cess is intrinsically relevant to the diffusion distance metric design and the
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probability of random walk, which are informative for the description of lo-
cal intrinsic structure. Meanwhile, naively using the popular isotropic diffusion
process (e.g., Gaussian kernel) will naturally give rise to the smooth transition
between nearby regions without respecting evident clues on edges and ridges.
One feasible strategy to combat this problem is to replace Gaussian kernel with
the structure-aware anisotropic DT-weighted kernel during convolution. Thus,
we formulate a novel descriptor by combining random walk with probability den-
sity functions in DT space. Fig. 1 illustrates the pipeline of our approach, and
highlights its application in automatic registration of volumetric features (un-
dergoing quasi-isometric deformation). The salient contributions of this paper
include:

– We formulate a local diffusion tensor based on Hessian eigen-system, which
can fully grasp the second order differential properties, encode the directional
curvatures of local structure, intrinsically reveal the material continuity, and
control the diffusion in anisotropic way.

– We devise a data-specific kernel by integrating diffusion tensor with bilateral
filter, which can be employed to conduct dyadic-wavelet based direction-
aware decomposition for structure-respected multi-scale feature extraction.

– We design a random walk based feature descriptor, which depicts the local
material property by measuring the difference among probability density
functions defined in DT space. Inherited from heat diffusion, it is robust to
noise, supports isometric deformation invariance, and can better reveal the
underlying material distribution statistics.

2 Related Work

2.1 Feature Descriptor Design

Existing descriptors can be roughly divided in two classes according to their level
of invariance. Rigid transformation has been accommodated rather easily in dif-
ferent descriptors, such as phase-based descriptor, spin images, gradient location
and orientation histogram [3], automated learning based descriptor [8], and com-
bined method of logarithmic sampling with Fourier analysis [9]. As for non-rigid
deformation, to our best knowledge, only in the field of surface shape analy-
sis, some deformation-invariant descriptors have been proposed in [10–12]. Of
which, most advanced approaches are the ones based upon Laplacian spectrum
analysis [13], however, the required global eigen-decomposition of such methods
cannot be afforded by volumetric images. Thus, analogous intrinsic feature de-
scriptors of volumetric images still need to be systematically explored in a local
and efficient way.

2.2 Image Structure Analysis

Tensor space method has great superiority in structure-respected image analy-
sis. The structure tensor, as a measurement for edges and their orientations, has
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been widely used in texture analysis. For Example, Malcolm et al. [14] general-
ized the tensor method to segment images by taking the Riemannian geometry
of the tensor space into account. However, the structure tensor used in [14] only
reflects the orientation information at a single scale and fails to discriminate
textures which are varying across different scales. Most recently, the multi-scale
structure tensor proposed in [15] has demonstrated successful applications in
image fusion. Besides, Brox et al. [16] argued that if the local orientation is
not homogeneous, the local neighborhood induced by the Gaussian filter will
integrate ambiguous structure information. Thus, Bazán and Blomgren [17] pro-
posed to perform image smoothing and edge detection by combining anisotropic
diffusion and bilateral filtering. As an extension to this, Bazán et al. [18] also
successfully used this technique to enhance the structure of electron tomography.
Therefore, it is necessary to introduce certain tensor distance metric to govern
multi-scale feature extraction.

2.3 Intrinsic Distance Metrics

Geodesic distance can measure the shortest path between two points over the
curved surface, which has been widely used in graphics tasks. However, as noted
in [19], the geodesic is not shape-aware, and sensitive to topological noise. An-
other popular metric is the diffusion distance, which has been widely employed in
texture synthesis, gradient approximation, and shape matching [20]. In essence,
the diffusion distance relates to diffusion time and a number of random walks in
Brownian motion. The integration of diffusion distance along time [21], named
commute-time distance, is also adopted on graphs. It measures the average time
of the heat diffusion between two points, and relates to the Green’s function of
the Laplacian. As an improvement, Lipman et al. [19] proposed the bi-harmonic
distance derived from the Green’s function of the bi-harmonic operator. The
bi-harmonic distance is locally isotropic, globally shape-aware, and isometry-
invariant. However, it fails to handle local/partial shape analysis, because the
Green’s function is globally defined. For other distance metrics, please refer to
the comprehensive survey [22]. Inspired by these, it is a robust way to devise
intrinsic volumetric feature descriptor by measuring local material distribution
with the help of diffusion-like distance metric.

3 Diffusion Tensor Space Construction

As already demonstrated in many previous works, the proper definition of
tensor space over a scalar image will be a key to local material structure anal-
ysis and subsequent image processing. The rich differential geometry theory of-
fers an elegant method to achieve this by treating an image as a differentiable
manifold [23].

As the simplest tensor, structure tensor (Fig.2A) is derived from first-order
differential analysis, which can locally characterize the predominant directions
of material changes and how those directions are related to each other. However,
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Fig. 2. Illustration of structure tensor, diffusion tensor and its physical meaning

first-order derivatives cannot fully grasp the local geometric differential property.
Thus, we employ Hessian eigen-system to define the local diffusion tensor, which
facilitates to the description of the second-order structure and intuitively depicts
how the surface normal changes.

Hessian matrix H is a symmetric matrix consisting of second-order partial
derivatives, and has real-valued eigenvalues (λ1, λ2, λ3) and corresponding eigen-
vectors. The directions corresponding to the maximal eigenvalue of H should
represent the most direct change from one material to adjacent neighboring ma-
terial, while the direction corresponding to the minimal eigenvalue shows the
material interface and how such material flows along the interface. To suppress
the diffusion when cutting across sharp material boundaries, we formulate an
anisotropic diffusion tensor by a spectral representation as:

D(p) = ˜λ1e1e
T
1 + ˜λ2e2e

T
2 + ˜λ3e3e

T
3 , (1)

˜λi = exp
(

− λi

σd

)

, i = 1, 2, 3, (2)

with diffusion parameter σd that controls the diffusion velocities. As shown in
Fig.2C, in fact we construct an ellipsoid that encodes the direction and velocity
of diffusion. According to the theory of Rayleigh quotient, the diffusion velocity
from voxel p along e can be viewed as the length of the vector projection onto
the ellipsoid, which is expressed as

vel(p, e) =
eTD(p)e

eTe
. (3)

Therefore, for a voxel inside a blob, all of its diffusion directions are principal
diffusion directions. For a voxel on a boundary surface, all the directions aligning
with its tangent plane are principal diffusion directions. For a voxel on a sharp
edge, the direction along the edge is principal diffusion direction. For an isolated
noise voxel, it will have no principal diffusion directions, as the velocities along
all the directions are extremely small.
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4 Multi-scale Feature Extraction

With the constructed anisotropic diffusion tensor field governing the diffusion
direction and velocity, we extract multi-scale point features founded upon dyadic
wavelet transform based decomposition, which comprises two steps: anisotropic
wavelet kernel construction, multi-scale analysis and feature extraction.

4.1 Anisotropic Wavelet Kernel Construction

The visual perception research has indicated that the cells having directional
selectivity are found in the retinas and visual cortices of the entire major verte-
brate classes, thus naively using the anisotropic kernel will naturally give rise to
directional information loss without having evident clues on material structure.

In order to respect the direction information embedded in the local structure
during multi-scale analysis, our anisotropic wavelet kernel (AWK) is derived
from the diffusion tensor and bilateral filter. AWK determines the convolution
weights by considering both the directional continuity of material structures and
the photometric similarity, which prefers nearby values to distant values in both
spatial and material metric domain (DT space). Given two neighboring voxels
located at p and q, we first define their diffusion tensor space distance as

dD(p, q) = exp(−(p− q)T (wpq(D(p) +D(q))−1(p− q)), (4)

wpq is introduced to amend the gradient, which changes in response to the inten-
sity change of neighboring voxels. In fact, D(p) +D(q) describes the diffusivity
and controls the diffusion directions and velocities, and wpq respects the intensity
variance between neighboring voxels. Therefore, we can define the AWK as

Ψ(p) =
1

Wp

∑

q∈N(p)

Gσs(p− q)Gσk
(dD(p, q))I(q). (5)

whereWp is a normalization factor,Gσ(x) = exp(−x2/σ2) is the Gaussian kernel
function, and σk is a control parameter being set to the inverse of the maximal
eigenvalues of diffusion matrices D(p) and D(q).

4.2 AWK Based Multi-scale Feature Extraction

With the built-in capability to faithfully respect material structure, and also
inspired by the wavelet decomposition nature of DOG operation in the SIFT
framework, we can use the proposed AWK to decompose a volumetric image
into an approximation sub-band and a detail sub-band. However, only one-level
decomposition is not enough to extract the feature information since images may
be noisy and objects inherently comprise different details changing as a function
of the observation scale. Thus, we adopt the dyadic wavelet transform to define
the multi-scale form of AWK as

In+1(p, σs) =
1

Wp

∑

q∈N(q)

ωn(p− q, σs)Gσk
(dnD(p, q))In(q), (6)
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Fig. 3. Illustration of features respectively extracted by DOG and AWK operators

ωn(x, σs) =

{

Gσs(|| x
2n ||) if x

2n ∈ Z3 and || x
2n || < m

0 otherwise
(7)

n represents the n-th level of the decomposition, Wp has the same meaning as
Eq. (5), m is a threshold to control the size of neighboring region.

In implementation, it is iterated over the approximate sub-bands according
to Eq. (6) and only the one-ring neighbors of each voxel are considered in each
iteration. After k + 1 iterations, the approximate sub-band corresponding to
a certain scale can be obtained, and k detail sub-bands are respectively the
difference between the neighboring approximate sub-bands as

I(p, kσ) = Ik+1(p, σ)− Ik(p, σ). (8)

Since point features are usually defined as local extrema of some quantities
related to geometry, texture, or other information, and our multi-scale sub-band
decomposition is exactly an anisotropic approximation to the Laplacian, the
multi-scale point features can be obtained by extracting local minima/maxima
from the detail sub-bands across scales, where a voxel will be accepted as feature
if and only if all of its 80 neighbors approve that it is the brightest/darkest one
respectively. Fig. 3 shows the comparison of DOG based features and AWK based
features. In Fig. 3 and the other experiment figures, larger point corresponds to
larger scale feature. AWK operator proves to be more informative, since the
resulted features intrinsically respect sharp structures and suppress the unstable
features which are poorly localized near the low contrast regions.

5 Invariant Feature Descriptor Based on PDF Distances

5.1 DT-Space PDF Distance Metrics

Inside the diffusion tensor space, the behavior of anisotropic heat diffusion can be
determined by its graph Laplacian. Consider volumetric image I as an undirected
graph G = (V,E), the anisotropic diffusion operator T can be defined as

T(vi, vj) = S(vi)− L(vi, vj), (9)
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Fig. 4. Illustration of unnormalized PDFs for two feature points inside head volume

where L denotes the graph Laplacian operator over G, L(vi, vj) equals to
dD(vi, vj) (Eq. (4)), and S(vi) =

∑

vj∈Ni
L(vi, vj). Since L is self-adjoint, the

operator T is self-adjoint with all non-negative entries.
From the perspective of probability in Brownian motion, T is a random walk

matrix with non-zero entries along the main diagonal, which allows one-step
walk from a point to itself. Each entry T(vi, vj) stands for the probability of
the Brownian motion moving from vi to vj in one step. Thus, the power Tn

encodes the probability of a Brownian motion from one point to another in n
steps, which naturally gives rise to the random walk based probability density
functions (PDF) after approximation and normalization. We formulate the PDF
Pvi(vj) of voxel vi as

Pvi(vj) =
Tn(vi, vj)

‖Tn(vi, vk)‖2 , (10)

where the denominator serves for the normalization purpose, thus ||Pvi(vj)||2 =
1 and Pvi(vj) > 0. The number of random walks n is a positive integer. For
fast computation, we select n from the dyadic powers 2j. It allows to compute
the matrix power Tn through matrix multiplication in numerics. Since we are
particularly interested in measuring the local geometry structure of volumetric
image, the number of random walks n is empirically set to 24. Fig. 4 illustrates
the unnormalized PDFs for two feature points (the central red point). It states
that PDF can efficiently reflect the material continuity, for example, the vox-
els belonging to the same kind of material as that of feature point have high
probability, which appear red.

Consider a family of PDFs {Pv}v∈V in I, if ∀vx, vy ∈ V , vx �= vy, and there
∃vz ∈ V , satisfies Pvx(vz) �= Pvy (vz), then {Pv}v∈V is called generic, which
means that no two PDFs are completely the same in a generic family of PDFs.
We use the 2-norm distance between two PDFs in {Pv}v∈V as PDF metrics
(PDFM):

dP (vx, vy) = ‖Pvx(vz)−Pvy (vz)‖2. (11)

Eq. (11) can also use Lp (p > 0) norm. Since P is a vector, the range of dP (vx, vy)
is [0, 21/p]. Thus it is [0,

√
2] here.

In essence, PDFM describes the intrinsic material relationship, which has
many attractive properties. First, inheriting from the anisotropic Laplacian
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operator, it is isometry-invariant. Second, it is locally supported, since the power
series Tn span a scaling space in the diffusion wavelets, and the PDF Pvi(vj)
is purely determined by a local sub-volume with vi as a center, whose range
is bounded by steps n. Third, according to the probability theory of Brownian
motion and Markov chain, it is insensitive to noise, because small local changes
do not have much influence to the entire set of all connected paths, hence the
distribution of probabilities.

5.2 Feature Descriptor Design

PDFM is a metric naturally based on heat diffusion, and it is defined in DT space,
so if the underlying material undergoes isometric deformation, the PDFM dis-
tribution in the vicinity of feature points is expected to have little or no change.
We define our feature descriptor as a 2D shape context histograms comprising
PDFM and the normalized image density (or gradient norm) of the volumetric
image with the closest scale to that of each feature point.

We select a sub-volume centered around each feature point and compute the
PDFM for all voxels in this sub-volume, and the radius is set to be the length of
8 voxels in our experiments. According to the value range of PDFM, we create
15 bins from 0 to

√
2 with step internal 0.1. For each bin, we take statistics of

the normalized intensity (or gradient norm) of the voxels whose PDFM distance
to the feature point is in current bin. Then, we create 17 intensity bins from
0 to 255 with step internal 15 or 10 gradient norm bins from 0 to 1 with step
internal 0.1.

Compared with [3], which can only support rigid transformation/rotation in-
variance and whose descriptor dimensionality is up to 16, 384, our feature de-
scriptor is much more effective and compact (we at most need a 255-dimensional
feature descriptor for each feature point).

6 Applications and Experimental Results

Our prototype system is implemented using C++, and some Matlab functions
are invoked to perform sparse matrix multiplication. We conduct experiments
on a laptop with Intel Core (TM) i7 CPU (1.6GHz, 4 cores) and 4G RAM. Ta-
ble 1 documents the time performance (in seconds) and some other experimental
statistics, including Hessian matrix computation, DT construction (DTC), sub-
band decomposition (SD), feature extraction (FE), number of feature points,
descriptor construction (DC) and registration.

First, in order to verify the full orientation invariance with ground truth, we
create various rotated volumetric images from the original one. In the interest
of visual clearness, only half of the registration lines are shown in Fig. 5 (The
exact number of the matching pairs is documented at the bottom of each sub-
figure). During feature registration, the matching is determined by Distance
Ratio, which is computed by comparing the distance of the closest candidate to
that of second-closest candidate, we set the Distance Ratio to be 0.8. A match
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Table 1. Time performance (in seconds) of our experiments

Dataset Volume Size Hessian DTC SD FE Feature # DC Registration

Fig.1 1282 × 128 40.9 95.3 12.7 224.6 357 220.7 14.6
Fig.5 2562 × 73 152.4 121.8 27.8 515.4 459 296.4 51.2
Fig.6 2562 × 62 150.1 105.8 24.9 567.7 559 469.3 83.2
Fig.7 2562 × 64 96.7 111.7 19.2 373.5 126 106.3 4.2
Fig.8 1282 × 115 38.9 65.5 12.1 279.4 570 480.9 88.7

Fig. 5. Rigid registration with full 3D orientation of head volumetric images

Fig. 6. Multi-modality registration of Monkey head volumetric images

is deemed true when the counterpart lies within 2 voxel diagonal length of the
ground truth position, the results in Fig. 5 quantitatively prove that our method
can well (average 98% accuracy) support full orientation invariance.

Second, to test the capacity of our method in multi-modality volumetric im-
age registration, we use datasets downloaded from the Laboratory of Neuro
Imaging of UCLA, which have already been registered, thus offering the ground
truth. Here, we compute our feature descriptor with gradient norm bin, because
the gradient norm is more informative than intensity among different modality
images. Fig. 6 (A-C) respectively illustrates the volumetric gradient norm of
original datasets. Since the CT dataset includes less structure information than
the MRI and PET datasets, the corresponding number of the matched pairs in
Fig. 6 (D-E) is a bit less than that of Fig. 6 (F). In this group of experiments,
we can achieve the average registration accuracy of more than 95 percents for
multi-modality images.
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Fig. 7. Feature-based nonrigid registration of thorax MRI volumes

Fig. 8. Feature-based nonrigid registration of abdomen CT volumes

Fig. 9. Noise-perturbed datasets of head MRI volume and the registration results

Third, as for volumetric images with quasi-isometric deformation (far be-
yond isometric deformation), we use two experiments to qualitatively verify the
isometric deformation invariance of our feature descriptor. Fig. 7 shows the non-
rigid registration results of human MRI thorax volumes which are obtained from
the same person before and after breathing. Although the shape of the heart and
blood vessel deforms drastically, with the Distance Ratio reducing from 1.0 to
0.8, the mismatched pairs gradually disappear, and almost all the feature points
in Fig. 7 (C) can be accepted as true. Fig. 8 shows the non-rigid registration
results of two abdomen CT volumes respectively scanned in supine and prone
orientations. All the matched lines in Fig. 8 (B-C) are roughly forming a cross
shape, which well aligns with the orientation change (from supine to prone).
When the Distance Ratio is set to be 0.6, most of the features located at muscle,
stomach and spine can be retrieved as correct ones. It proves the superiority of
our descriptor in feature-based registration with isometric deformation.

Fourth, to further examine the robustness, we respectively add 5%, 10% and
15% (of average intensity) random noise to the original volumetric images at
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Fig. 10. More registration results for noise-perturbed datasets

Fig. 11. The performance analysis

randomly-sampled locations. The top row of Fig. 9 shows the noise effects over-
laid onto the original MRI head volume. We use the original dataset as source
image and the noise-perturbed dataset as target image for feature registration.
The match ratio is defined as the percentage of the matched pairs to the total
detected feature points. As we have the ground truth, we accept the matched
pair as correct ones if the distance between source point and target point is less
than two voxels. For each registration result in Fig. 9, we document the correct
registration ratio and the corresponding Distance Ratio. More results are also
shown in Fig. 10 and our supplementary video, where red lines denote correct
registration, blue lines denote incorrect registration, and feature points in yellow
are the ones that cannot be matched.

Finally, we use correct registration ratios, feature matching ratios, and num-
ber of correctly-matched feature pairs to conduct quantitative evaluation. The
left, middle, and right subgraph of Fig. 11 respectively reveals the relationship
between the above indicators and the parameter Distance Ratio. For example,
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the head dataset can achieve better registration performance when the Distance
Ratio is around 0.5, since it will have both higher correct registration ratios and
enough correctly-matched feature pairs even though the match ratios are not
very high. As for other datasets, focusing on each type of curves, we can observe
similar trends despite different noise perturbation levels and data types.

7 Conclusion

We have detailed a comprehensive feature extraction and description method
for volumetric images with intrinsic properties of being material-aware. The
technical originality is centered in the integration of diffusion tensor weighted
dyadic wavelet transform for multi-scale analysis and the PDF distance based
metric design in diffusion tensor space. At the application level, our method
supports feature-based volumetric registration with full orientation invariance
and isometric deformation invariance. Extensive experiments and comprehensive
evaluation have demonstrated the effectiveness and robustness of our method.

For our ongoing efforts, we will continue to conduct comprehensive evalua-
tion, and to broaden the application scope. Applications of immediate interest
include local parametric representation, solid recognition, similar shapes cluster-
ing, material distance embedded meshless physical simulation, and etc.
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