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Abstract—In this paper, we present an intrinsic algorithm for
isotropic mesh simplification. Starting with a set of unevenly
distributed samples on the surface, our method computes the
geodesic Delaunay triangulation with regard to the sample set
and iteratively evolves the Delaunay triangulation such that
the Delaunay edges become almost equal in length. Finally, our
method outputs the simplified mesh by replacing each curved
Delaunay edge with a line segment. We conduct experiments
on numerous real-world models of complicated geometry and
topology. The promising experimental results demonstrate that
the proposed method is intrinsic and insensitive to initial mesh
triangulation.

I. INTRODUCTION

Mesh simplification is the process of reducing the number

of faces used in the surface while keeping the overall shape,

volume and boundaries preserved as much as possible. Typi-

cally, mesh simplification is used to improve rendering speed

or to minimize data size or compression requirements [1].

Topology-preserving and feature-preserving schemes are of-

ten desired.

Mesh simplification has been extensively studied in the past

two decades. There exists a rich body of literatures in mesh

simplification. The representative works include progressive

meshes [2] and quadric error metrics scheme [3]. We refer

the readers to [4], [5] for a complete survey.

In this paper, we present a new method for isotropic mesh

simplification. Our method is different than the existing

approaches in that geodesic Delaunay triangulation is em-

ployed. Therefore, the proposed method is intrinsic and

independent of the embedding space. Starting with a set of

initial sample points that are arbitrarily distributed on the

input mesh, our method computes the geodesic Delaunay

triangulation with regard to the sample set and iteratively

evolves the Delaunay triangulation such that the Delaunay

edges become almost equal in length. Our evolving step

iteratively invokes the following operations:

1) Compute the geodesic Delaunay triangulation based

on the sample set;

2) For each sample point, compute a standard deviation

of the first order incident Delaunay edge lengths and

predict a better sample point for substitute;

3) Update the sample point set.

The iterative algorithm terminates when the maximum stan-

dard deviation is less than a prescribed tolerance. Finally,

our method outputs the simplified mesh by replacing each

curved Delaunay edge with a line segment.

Compared with existing methods, our Delaunay evolving

algorithm takes advantage of the geodesic Voronoi diagram,

and therefore it is intrinsic, robust and insensitive to initial

mesh triangulation. Furthermore, our algorithm refines the

Delaunay edges to be as equal as possible in length, which

leads to a simplified mesh of high triangulation quality. In

addition, the evolving is only a local operation and thus can

be parallelized. We apply our approach to real-world models

with non-trivial topology and geometry. The experimental

results demonstrate the efficacy of our algorithm. Figure 1

shows an example of our mesh simplification algorithm.

The remaining of the paper is organized as follows: Sec-

tion II reviews the related work on mesh simplification,

geodesic Delaunay triangulation, discrete geodesics and sur-

face sampling. After that, Section III presents our algorithm

for isotropic mesh simplification followed by the experi-

mental results in Section IV. Finally, Section V draws the

conclusion and discusses the future work.

II. RELATED WORK

Our work is closely related to mesh simplification, geodesic

Voronoi diagram/Delaunay triangulation, discrete geodesics,

and surface sampling.

Mesh simplification The existing mesh simplification

algorithms can be classified into the following categories:

• Volumetric approach [6] converts the input polygonal

mesh into a volumetric description (e.g., voxels), then

simplifies the mesh by 3D morphological operators.

This approach is robust and flexible in that it can handle

mesh degeneracies.

• Simplification envelopes [7] use a geometric construc-

tion to control the simplification, i.e., building a new

surface inside the space formed by the two offsetting

surfaces with regard to the user-specified threshold.
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(a) (b)

Figure 1. An example of running our algorithm on the “ISVD” logo with 50K vertices. (a) Given 800 arbitrarily sampled points on the given surface,
our method locally optimizes the standard deviation of the geodesic Delaunay edge lengths, until all the points are distributed evenly on the surface. (b)
By replacing the curved geodesic edge of the induced geodesic Delaunay triangulation with a straight line segment, our method can naturally generate an
isotropic simplified mesh with the user-specified number of vertices.

(a) (b) (c) (d) (e)

Figure 2. Algorithm overview: (a) The input Dog model with 50K vertices and 1800 randomly sampled points. (b) Take the samples as sources, and
compute the multi-source-all-destination geodesic distance field. (c) The induced geodesic Delaunay triangulation of (b). (d) The updated geodesic Delaunay
triangulation after 5 iterations. (e) The final simplified mesh.

• Wavelet surfaces method [8] begins with a wavelet

description of the input model and results in a base

shape plus a sequence of successively finer surface

details [9].

• Vertex clustering [10] partitions the vertex set into a

set of clusters and unify all vertices within the same

cluster. Vertex clustering methods are fast and general.

However, the simplification process itself is hard to

control and gives poor quality approximations.

• Region Merging [11] partitions the surface into disjoint

connected regions such that each region is as planar as

possible.

• Vertex decimation [12], [13] is an iterative simplifica-

tion algorithm. In each step of the decimation process,

a vertex is selected for removal, all the faces adjacent

to that vertex are removed from the model and then the

resulting hole is re-triangulated.

• Edge contraction is based on the iterative contraction

of vertex pairs (edges) [3], [11]. The fundamental oper-

ation is to iteratively merge two neighboring vertices to

the same position. Hoppe [2] introduced the progressive

mesh (PM) structure to encode a sequence of edge

contraction. This technique also provides an effective

technique for compressing the input geometry.

Geodesic Voronoi diagram Delaunay triangulation and

Voronoi diagram in R
n are the most frequently employed

techniques in computer graphics, e.g., mesh reconstruc-

tion [14], [15]. However, geodesic Voronoi diagram and

geodesic Delaunay triangulation on polyhedral surfaces have

not been widely studied due to the computational difficulty.

Leibon and Letscher [16] proved that the geodesic distance

based Voronoi diagram (GVD), as well as the geodesic-

distance based Delaunay triangulation, exist on a manifold

if the sampling points are sufficiently dense. Kimmel and

Sethian [17] applied the Fast Marching method [18] to

approximate GVD, while Xin and Wang [19] extended

their exact geodesic algorithm [20] onto the GVD prob-

lem. Peyré and Cohen [21] took approximate GVD as a

tool for remeshing and parametrization purpose. Fort and

Sellarès [22] presented a method for computing generalized

k-order Voronoi diagrams on triangulated surfaces. Yan et
al. [23] successfully extended the idea of Centroidal Voronoi

Tessellation (CVT) to isotropic remeshing. However, they

used Restricted Voronoi Diagram (RVD) to construct CVT,

rather than actual GVD, where RVD is defined as the

intersection between a 3D Voronoi diagram and the input

mesh surface.
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Discrete geodesics In fact, the computation of geodesic

Voronoi diagram and geodesic Delaunay triangulation

depends heavily on algorithms for computing discrete

geodesics. The discrete geodesic problem is first introduced

by Sharir and Schorr [24], where an O(n3 log n) algorithm

was presented for convex polyhedra. Later, Mitchell et
al. [25] (MMP) improved the time complexity bound to

O(n2 log n) by using the “continuous Dijkstra” technique,

while Chen and Han [26] (CH) suggested building a binary

tree to encode all the edge sequences that can possibly

compute a shortest path, thereby improving the time com-

plexity to O(n2). Surazhsky et al. [27] implemented the

MMP algorithm and extended it to compute approximate

geodesics with bounded error. Recently, Xin and Wang [20]

improved the CH algorithm by exploiting a filtering theorem;

their proposed method outperforms both the MMP and CH

algorithms. Besides the exact geodesic algorithms, there are

also many approximation algorithms. Polthier and Schmies

introduced straightest geodesics on polyhedral surfaces [28]

and developed a method to compute the evolution of distance

circles on polyhedral surfaces using geodesic flow [29].

Xin and Wang [30] presented an algorithm to compute a

locally exact geodesic between two distinct vertices on a

polyhedral surface. In addition, the known approximation

algorithms also include [31], [32], [33], [34]. Among these

approximation algorithms, the Fast Marching Method [31]

with an O(n log n) time complexity has been widely used

in the computer graphics community.

Sampling Many remeshing algorithms [35], [36] depend

on a high-quality sampling method. Poisson disk sam-

pling [37] has been widely studied in recent years. The

basic idea is to generate new sample points around existing

points, and then check whether they can be added without

disturbing the minimum distance constraint. Recent works

have generalized Poisson disc sampling to arbitrary 3D

surfaces [38] [39].

III. ALGORITHM FOR ISOTROPIC MESH SIMPLIFICATION

This section details our algorithm for isotropic mesh sim-

plification. Section III-A gives the algorithm overview. In

Section III-B, we skeleton Xin-Wang algorithm which plays

a central role in computing geodesic Delaunay triangulation

that will be discussed in Section III-C. Finally, Section III-D

describes how to evolve sample points.

A. Overview

This subsection gives an overview of our simplification

algorithm; see Figure 2 for an illustration. Our algorithm

begins with a set of randomly sampled points. After that, we

evolve the sample points by iteratively calling the following

operations:

1) Compute the geodesic Delaunay triangulation with

Xin-Wang’s exact geodesic algorithm [20]; see Sec-

tion III-B and Section III-C.

2) For each sample point, we compute the standard

deviation of the lengths of 1-order adjacent Delaunay

edges and update its location which tends to reduce

the standard deviation; see Section III-D.

3) If the sample points do not change any more or the

maximum standard deviation reaches a prescribed tol-

erance, we extract the Delaunay triangulation structure

and output the simplified mesh by replacing each De-

launay edge with a straight line segment. Otherwise,

we repeat 1) and 2).

B. Xin-Wang’s Exact Geodesic Algorithm

The classic shortest path algorithm on graphs is due

to Dijkstra’s algorithm [40]. It propagates wavefronts

from near to far. For the discrete geodesic problem on a

polyhedral surface, the key to discretize the wavefronts is

to construct windows such that each window encodes a

set of shortest paths that share a common edge sequence.

Windows fall into two categories: pseudo-source windows

that end at a vertex, and interval windows that cover a

continuous subset of an edge. The basic rules for computing

the children of an existing window w are as follows (see

Figure 3):

if w is a pseudo-source window at vertex v with geodesic
distance d

if v is a saddle vertex (see Figure 3(a))
for each adjacent vertex

compute a pseudo-source window;
end for
for each opposite edge

compute an interval window;
end for

else /*v is a convex vertex*/
No children need to be computed;

end if
else /*w is an interval window. Suppose w covers an
interval [a, b] of the edge v1v2. Let v be the vertex opposite
to v1v2 and I be the unfolded image of the last vertex
passed through by w.*/

if the line segment Iv is right to the interval [a, b] (see
Figure 3(b))

Compute the only interval-window child on edge v1v;
elseif the line segment Iv is left to the interval [a, b] (see

Figure 3(c))
Compute the only interval-window child on edge vv2;

else /*Iv intersects the interval [a,b] at some point (see
Figure 3(d)).*/
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(a) (b) (c) (d)

Figure 3. Computing the children of a window: (a) A pseudo-source window at a saddle vertex v may have children both on opposite edges and at
adjacent vertices; (b-d) An interval window w on edge v1v2 may have one or two interval-window children, depending on how the line segment Iv
intersects w’s interval.

Compute two interval windows as the children, one
on edge v1v and the other on edge vv2;

Compute a pseudo-source window at vertex v.
end if

end if

The existing exact geodesic algorithms [25], [26], [20] differ

in two key factors: one is how to check the validity of a

new window and the other is how to control the priority of

window propagation. The reason that Xin-Wang algorithm

[20] outperforms the MMP algorithm [25] and the CH

algorithm [26] is two-fold:

• Xin-Wang algorithm [20] checks the validity of a new

window very strictly. On one hand, it inherits Chen

and Han’s “one angle one split” that allows at most

one of the windows covering the same angle can have

two children; see Figure 4(a). On the other hand, the

algorithm discards an interval window if it cannot

provide a shorter geodesic distance than one of the

neighboring vertices; see Figure 4(b).

• A priority queue is maintained throughout the algorithm

to guarantee that the wavefront propagates from near to

far, like that achieved in Dijkstra’s algorithm [40].

(a) (b)

Figure 4. Xin-Wang algorithm [20] depends on two key theorems: (a) Chen
and Han’s “one angle one split” [26] states that at most one of the windows
covering the same angle can have two children; and (b) Xin and Wang’s
filtering theorem [20] asserts that an interval window is no use if it cannot
provide a shorter geodesic distance than one of the neighboring vertices.

Figure 5. The key idea for computing geodesic Delaunay triangulation is
that we take the sample points s1 and s2 as neighbors if they provide the
geodesic distances for different endpoints of the same edge.

C. Geodesic Delaunay Triangulation

In this subsection, we describe how to build a geodesic

Delaunay triangulation from a given set of sample points

S = {si}m
i=1:

Step 1. Use si, i = 1, · · · ,m, as source points and com-

pute the geodesic distance field on the input mesh with

Xin-Wang’s geodesic algorithm [20]. So each vertex v is

associated with a geodesic distance d(v, si) where si is the

closest sample point to v. Let c(v) be the closest sample

point of vertex v.

Step 2. Consider each mesh edge eij = (vi, vj), where vi

and vj are neighboring mesh vertices. If c(vi) �= c(vj), let

s1 = c(vi) and s2 = c(vj) be the two sample points and

mark them as neighbors; as shown in Figure 5.

Step 3. For every pair of sample points si and sj which

are marked as neighbors, find the geodesic path between si

and sj .

The above algorithm is inspired from such an observation:

if there is a point q, such that d(q, s1) = d(q, s2) <
d(q, si), i �= 1, 2, then s1 and s2 are neighbors. Numerous

experimental results show that the above algorithm gives a

correct Delaunay triangulation as long as the input mesh is

sufficiently dense.

We must point out that Step 3 is the most time-consuming

step. However, it is not necessary for our simplification

algorithm since only the neighboring structure is required.

We list Step 3 here for completeness of geodesic Delaunay

triangulation.
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D. Evolving Sample Points

Yan et al. [23] successfully applied the idea of Centroidal

Voronoi Tessellation (CVT) [41] onto isotropic remeshing.

Furthermore, their algorithm uses a quasi-Newton method

to acquire a fast convergence. In fact, the construction of

CVTs can be viewed as an energy minimization process.

In the case of Euclidean metric, the objective of CVT is to

make the Voronoi cells to be similar in shape and basically

equal in size.

Figure 6. The adjacent vertices vi, i = 1, 2, 3, 4, 5 serve as candidate
sample points for the existing sample point s. We take vi as the substitute
of s if vi can reduce the standard deviation of the lengths of the geodesic
edges ŝsj , j = 1, 2, 3, 4.

In this paper, we use another optimization technique for

mesh simplification purpose. Suppose the sample point s
is neighboring to s1, s2, · · · , sk in the geodesic Delaunay

triangulation. Let ŝsi be the geodesic path between s and

si. Our basic idea is to make the geodesic Delaunay edges

to be as equal as possible in length. Mathematically, we

need to find a substitute s′ for s in its neighborhood, such

that the standard deviation of ‖̂s′s1‖, ‖̂s′s2‖, · · · , ‖̂s′sk‖ is

minimized. Technically, we take the 1-order adjacent mesh

vertices of the sample point, v1, v2, · · · , vm, as candidates

and use vj(1 ≤ j ≤ m) to replace s if vj can give the

minimum standard deviation; see Figure 6. At each iteration,

we find a new substitue for every sample point in S and

thus update S into S′. If S = S′ or the maximum standard

deviation is less than a prescribed tolerance, we extract the

geodesic Delaunay triangulation structure of S′ as the final

simplified result.

For showing the difference between CVT and our Delaunay

evolving technique, we take a collection of 2D points as

the input and compare the two methods in Figure 7. It

can be seen that by minimizing energy of CVT, the final

Voronoi cells tend to be similar in shape and basically equal

in size, while by locally minimizing the standard deviation

of Delaunay edge lengths, the Delaunay edges tend to be

equal in length. (We must point out that we add another

constaint, for the case of Figure 7(c), that the sample points

are required to be not too far away from the boundary. The

constraint is not necessary for simplifying meshes.)

IV. EXPERIMENTAL RESULTS

We implemented our mesh simplification algorithm and

tested it on a PC with an Xeon 2.66GHz CPU and 4GB

RAM. The experimental results show that our algorithm is

robust, intrinsic to the geometry and insensitive to the input

mesh triangulation. Therefore, it can be applied to real-world

models with complicated geometry and topology. Figure 8

(a) (b)

Figure 8. Test our algorithm on the genus-5 Decocube model: (a) the
input Decocube model with 80K vertices and (b) the simplified mesh with
only 2.2K vertices (3 iterations).

(a) (b) (c)

Figure 9. Test our algorithm on the genus-3 Two-kids model: (a) the input
Two-kids model with 130K vertices, (b) the geodesic Delaunay triangulation
after upon 4 iterations and (c) the simplified mesh with only 2.5K vertices.

and Figure 9 show two models of non-trivial topology, the

genus-5 Decocube model (50K vertices) and the genus-

3 Two kids model (130K vertices). We simplified both

models to approximate 2K vertices by our algorithm. In spite

of the high simplification ratio, the resulting meshes still

have a high-quality triangulation without loss of significant
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(a) (b) (c)

Figure 7. Comparison between CVT and our Delaunay evolving technique: (a) given a set of unevenly distributed sample points, the Voronoi diagram
and Delaunay triangulation are drawn respectively in red and blue; (b) by minimizing energy of CVT, the final Voronoi cells are similar in shape and
basically equal in size; and (c) after we evolve the Delaunay triangulation by locally minimizing the standard deviation, the Delaunay edges tend to be
equal in length.

geometric features. As mentioned before, our algorithm

takes advantage of the intrinsic property of discrete geodesic.

Thus, the resulting geodesic Delaunay triangulation is intrin-

sic to the geometry, independent of the embedding space (see

Figure 11). Moreover, our method is robust and insensitive to

the initial mesh triangulation. Figure 10 shows an example of

the Moai model with irregular triangulation. Our method can

still guarantee a relatively good remeshing. The two popular

mesh simplification algorithms, QSlim [3] and progressive

meshes [2], heavily depend on the initial mesh triangulation

and the embedding space. However, these approaches are

more efficient than ours. The timing statistics of QSlim [3],

progressive mesh [2] and our algorithm are 0.016 seconds,

0.012 seconds and 0.47 seconds, respectively.

Table I shows the timing statistics of our experimental

results. We can clearly see that the running time for each

iteration is basically linear to the mesh size if we fix the

number of sample points. We also observe that the multi-

source geodesic algorithm always runs several times faster

than the single-source geodesic algorithm for the same input

model. Taking the Decocube model for an example, the time

for discrete geodesic is 1.794 seconds for the single-source

case, while it reduces to 0.468 seconds for the case of 2,200

source points. This shouldn’t be surprising since Xin-Wang’s

algorithm maintains a priority queue when the wavefronts

propagates. For single-source geodesic, the wavefront is

quite big and the algorithm terminates only when the wave-

front touches all mesh vertices. For multi-source geodesic,

each source initializes a wavefront propagation, and the

wavefront is usually much smaller than the single-source

case. This is the main reason that our evolving algorithm

runs efficiently in practice.

Table I
TIMING STATISTICS (SECONDS) MEASURED ON A WORKSTATION WITH

AN XEON 2.66GHZ CPU AND 4GB RAM.

Models #vertices #sample points #iterations Time per iteration (s)

ISVD (Figure 1) 24,998 600 3 0.297
Dog (Figure 2) 50,000 1,800 4 0.529
Decocube (Figure 8) 80,000 2,200 3 0.468
Dragon (Figure 12(b)) 750,000 10,000 4 19.937
Dragon (Figure 12(c)) 750,000 5,000 5 17.833
Dragon (Figure 12(d)) 750,000 2,800 5 15.612
Two-kids (Figure 9) 130,000 2,500 5 0.805
Moai (Figure 10) 10,000 2,000 5 0.094

V. CONCLUSION AND FUTURE WORK

In this paper, we present an intrinsic mesh simplification

algorithm. The key idea is to locally optimize the Delaunay

triangulation such that the Delaunay edges are as equal as

possible in length. Our algorithm is robust and insensitive

to mesh triangulation due to the intrinsic feature of geodesic

Voronoi diagram. Furthermore, as the main operations are

local, the proposed algorithm is efficient and parallel in

nature.

Our current implementation only utilized CPU based paral-

lelization with OpenMP. We will develop GPU implemen-

tation to further boost the performance in the near future.

We will also extend our framework to anisotropic mesh

simplication.
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Figure 10. Comparison between quadric error metrics based simplifi-
cation [3], progressive mesh [2] and our method: (a) the original Moai
model with an irregular triangulation, (b) quadric error metrics based
simplification [3], (c) progressive mesh result [2] and (d) our simplification
result, where the target number of sample points is 2000 for all the three
methods.
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