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Abstract—Current spectral clustering algorithms suffer from
both sensitivity to scaling parameter selection in similarity
matrix construction, and data perturbation. This paper aims
to improve robustness in clustering algorithms and combat
these two limitations based on heat kernel theory. Heat kernel
can statistically depict traces of random walk, so it has an
intrinsic connection with diffusion distance, with which we can
ensure robustness during any clustering process. By integrating
heat distributed along time scale, we propose a novel method
called Aggregated Heat Kernel (AHK) to measure the distance
between each point pair in their eigenspace. Using AHK
and Laplace-Beltrami Normalization (LBN) we are able to
apply an advanced noise-resisting robust spectral mapping
to original dataset. Moreover it offers stability on scaling
parameter tuning. Experimental results show that, compared
to other popular spectral clustering methods, our algorithm
can achieve robust clustering results on both synthetic and
UCI real datasets.

Keywords-Spectral analysis; Diffusion processes; Green’s
function methods

I. INTRODUCTION

Clustering analysis is one of the most important unsuper-

vised knowledge exploration tools in knowledge discovery

and data mining. It is especially of value when we have no

or limited prior knowledge about the data being acquired or

the clustered results are needed to be fed into succeeding

phases of the data analysis pipeline.

However, clustering analysis is of little use if the clustered

results are radically-different when the scaling parameters

of clustering algorithms are slightly modified or even with

very little data perturbation (noise or outliers). We call such

susceptibility the sensitivity of clustering algorithms, and

one of the most desirable properties of clustering algorithms

is robustness. In particular, the robustness of clustering

algorithms should be measured in the following aspects:

(1) not sensitive to any small change of parameters; (2) not

sensitive to data perturbation; (3) non-degraded performance

even with significant noise level or less-correct parame-

ter settings; and (4) competitive and comparable results

when comparing with those less-robust clustering algorithms

without any data perturbation and with correct parameter

settings. Robust clustering algorithms are highly desirable

to combat both scaling parameter tuning sensitivity and

noise sensitivity. With these robustness properties, we can

reliably analyze data and conduct other data-driven tasks

in succeeding analysis steps. The robustness property is

equally significant for domain experts who do not have

strong machine learning background as they become much

more comfortable in utilizing robust clustering algorithms.

It is imperative to develop robust clustering algorithms [5],

and this paper serves this pressing need.

Towards robustness, researchers have explored various

techniques, including robust statistics [14], noise in-sensitive

regression [3], and noise robust clustering [17]. However,

robust clustering approaches considering both parameter

tuning sensitivity and noise sensitivity are rather rare. In fact,

as shown in Figure 1, scaling parameter tuning of spectral

clustering may affect the quality of clusters significantly,

moreover, in Figure 1(c) we can see that both tuning

sensitivity and data perturbation are correlated to each other.

This paper proposes a unified probabilistic method based

on diffusion theory, in this way we try to avoid the influence

of both scaling parameter tuning and data perturbation. Since

we concentrate on global distribution when we conduct

clustering, the embedded structure must be invariant to local

perturbation (noise or outliers), and they should be deter-

mined only by visible neighborhood while avoiding negative

effects from changing scaling parameters. Heat kernel, as the

fundamental solution of heat diffusion on manifolds, offers a

statistical description on random walk, so it can be employed

to build a diffusion map based on global information. In

this paper, we unite spectral clustering and heat diffusion

theory together and show that it facilitates robustness to both

scaling parameter tuning and data perturbation.

A. Motivation

For similarity measure, we typically employ Gaussian

kernel as it is one of the most widely-used metric. As shown

in Figure 1, it is a well known problem that the scaling

parameter, σ, of Gaussian kernel for the affinity matrix

has significant impact on discovering embedded structure

because σ determines whether two points are considered

similar (neighbor) or not [25]. Although several methods

have been proposed to address this problem (e.g., [30],

[17]), it remains challenging to find a certain range which is
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(a) σ = 0.22 (b) σ = 0.23 (c) σ = 0.22 with noises

Figure 1. The sensitivity example of Spectral Clustering Algorithm (NJW) with respect to scaling parameter σ and noises. The small perturbation of
scaling parameter or data points gives rise to radically-different results in spectral clustering.

large enough to maintain optimal, yet data-dependent perfor-

mance. The second challenge in using spectral clustering is

the clustering quality with respect to data noise. As noted in

[18], spectral clustering is less sensitive to data perturbation

than popular K-means algorithms. Yet, depending on the

application domain or inappropriate preprocessing of data,

spectral clustering can still be susceptible to data noise [31],

which tends to make clustering parameter selection even

more difficult, especially when making use of scaling pa-

rameter σ of Gaussian kernel. Since parameter selection

can be significantly affected by the noise level of data, we

must address robust spectral clustering in terms of parameter

selection and noise simultaneously.

To overcome such difficulties of spectral clustering, we

consider heat equation in diffusion theory, which has the

built-in robustness of data perturbation and an intrinsic

relationship with spectral clustering. Diffusion distance is

based on Markov matrix which is a stochastic matrix rep-

resenting a random walk on graph [19], it can consider up

to t steps out of all the possible paths bridging any two

points, which makes it much more robust than geodesic

distance [6]. Diffusion distance has a potential to be more

robust to data perturbation via a family of diffusion maps [6].

In this paper, we focus on heat kernel [13] which offers

a natural mechanism to express diffusion distance through

heat dissipation process. Heat kernel makes use of not only

eigenvectors but also eigenvalues, which give us insight

regarding the relative importance of eigenvectors. Inspired

by the concept of heat kernel diffusion distance, a more

stable clustering algorithm could be designed in terms of

data perturbation because it considers multiple paths like

diffusion maps. Typically, any diffusion method often starts

with some local observation (e.g., Euclidean distance) which

is then refined into a global metric (e.g., geodesic or heat

kernel distance) through propagation. Nonetheless, existing

methods still need to make non-intuitive decisions at various

stages for selecting neighbors, global similarity, and em-

bedded reconstruction. As a result, burdensome parameter

selection is unavoidable in the current state-of-the-art.

B. Contribution
This paper articulates a novel unsupervised robust spectral

clustering method to combat the problem of scaling parame-

ter tuning and data perturbation. It is built on top of spectral

clustering and heat kernel theory for robust diffusion with

the following contributions:

(1) We derive a robust heat kernel by integrating all time

scales of heat kernel into one single term, namely Ag-

gregated Heat Kernel (AHK) (Section III). As a result,

we removed the time scaling parameter of heat kernel

and design a complete robust clustering algorithm. We

discuss the connection of this kernel with other popular

robust clustering approaches.

(2) We investigate the best matching normalization ap-

proaches for our proposed AHK, which is critical in

parameter sensitivity and noise robustness. Laplace-

Beltrami Normalization (LBN) [6] is another key in-

gredient in our clustering framework, which has a very

close relationship with diffusion theory and spectral

clustering as well. We integrate LBN into our clustering

framework rather than the standard graph Laplacian nor-

malization, so that we can recover Riemannian manifold

structure regardless the density distribution of dataset.

(3) Our novel clustering algorithm (Section IV), combining

Aggregated Heat Kernel with the best matching normal-

ization approaches, delivers robust clustering results in

terms of both parameter selection and noise level.

(4) We systematically evaluate the proposed algorithm with

several closely-related baseline clustering algorithms on

a number of synthetic and benchmark datasets (Section

V). We focus on the sensitivity of parameter selec-

tions (e.g., both global and local scaling parameters of

Gaussian kernel) and the sensitivity of noise level. Our

experimental results confirm that the proposed algorithm

produces not only competitive results of carefully-tuned

baselines on non-noisy datasets but also outperforms

existing results with noisy or off-the-sweet-spot param-

eters.

II. BACKGROUND AND DIFFUSION THEORY

Since our new method is founded upon both spectral

clustering and heat diffusion, we shall briefly review the
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basic idea of spectral clustering, diffusion maps, and heat

equation, and address the weakness of existing approaches.

A. Spectral Clustering

Algorithm 1: SpectralClustering(X ,k)

Input: Input data X ∈ Rn×m, and k is the number of

clusters

Output: Cluster assignments of n instances

1 Compute the affinity matrix W ∈ Rn×n where

W (i, j) = exp(||x(i)− x(j)||/2σ2) ;

2 Compute the diagonal matrix D ∈ Rn×n where

D(i, i) =
∑n

j=1W (i, j) and D(i, j) = 0 if i �= j;

3 Compute the graph Laplacian L where Lnn = D −W ,

Lrw = I −D−1W or Lsym = I −D−1/2WD−1/2 ;

4 Compute the first k eigenvectors ψ of L,

ψ = {ψ(1), ψ(2), . . . , ψ(k)} ;

5 Re-normalize the rows of ψ ∈ Rn×k into

Yij = ψ(i, j)/(
∑

q ψ(i, q)
2)1/2. ;

6 Run k-means with Y ∈ Rn×k ;

Among several kinds of clustering algorithms, we focus

on spectral clustering, which has gained popularity in the

last decade in data mining community because of its ability

to discover embedded data structure. Spectral clustering

(Algorithm 1) has been known as one of the most popular

clustering algorithms nowadays. It has strong connection

with graph cutting, in the way that spectral clustering uses

eigenspace to solve relaxed forms of the balanced graph par-

titioning problem [22]. Another aspect of spectral clustering

is that, it can capture the manifold structure of data as shown

in Figure 1, which is difficult or impossible to achieve for

other popular k-means or similar algorithms.

However, there are two challenges in spectral clustering.

First, the selection of scaling parameter σ of affinity matrix

computation could affect the clustering results radically

(Figure 1) because this parameter determines the neighbor-

hood. Second, it is still sensitive to noise. For instance in

Figure 1(c), with only a few noisy instances, the clustering

result is quite different and the optimal range of scaling

parameter σ is also changed.

B. Diffusion Maps

In 2006, Coifman et al. [6] designed a framework based

on diffusion process to consider both eigenvalues and eigen-

vectors. The non-negativity property of affinity matrix W
allows us to normalize it into a Markov transition matrix

P = D−1W where the states of the corresponding Markov

process are data points, which enables us to analyze it as

random walk. It is straightforward to calculate the transition

probability, pt(i, j) (the probability of transition from i to

j after t steps or time) using entries from P . The diffusion

distance between two points at time scale t is

D2
t (i, j) =

∑
k

[
(pt(i, k)− pt(j, k))2

φ1(k)
], (1)

where φ1(z) is the stationary distribution of the random walk

(trivial left eigenvector). So the diffusion maps at time scale

t project the data point to m dimensional eigenspace as

Ψt : x→ [λt1ψ1(x), λ
t
2ψ2(x), ..., λ

t
mψm(x)], (2)

where λi are eigenvalues and ψi are the corresponding right

eigenvectors of P [20]. In this way the diffusion distance

between two points becomes

D2
t (x, y) =

m∑
i=1

[λ2ti (ψi(x)− ψi(y))
2]. (3)

By projecting the data to diffusion space, the effect of

scaling parameter in Gaussian similarity is reduced. How-

ever, the scaling parameter t in diffusion space is still very

essential in terms of the transitive connectivity: small scaling

t makes the loosely-connected graph into slightly stronger

connection within t connections, while large scaling t makes

the graph tend to be more strongly-connected. In 2009,

Richards et al. [27] proposed multiscale diffusion distance,

which considers all possible paths between each point pair

in diffusion space across all time scales t, so that multiscale

diffusion distance is more robust to the structure at different

time scales. To do this, λti of Equation (2) is replaced by

∞∑
t=1

λti = λi/(1− λi). (4)

So they eliminated the effect of different time scales.

C. Heat Equation

Our proposed work is strongly inspired by heat kernel

theory [13] and its attractive properties. For instance, it

is symmetric, positive semi-definite, multiscale, and stable.

Moreover, it can be interpreted as the transition density

function of Brownian motion [29], which is the most fun-

damental continuous time Markov process.

Specifically, the heat equation is associated with normal-

ized graph Laplacian, Lrw, which can be defined by

∂Ht

∂t
= −LrwHt, (5)

where Ht = e−tLrw is the heat kernel on Riemannian

manifold M and t is the time scaling parameter [10]. For

Lrw = ψ′Λψ, the heat kernel can be re-written as follows:

Ht(x, y) =
n∑

i=1

[e−λitψi(x)ψi(y)], (6)

where Ht(x, y) represents the amount of heat being trans-

ferred from x to y in time t given a unit heat source at

x.
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(a) σ = 0.15 (b) σ = 0.16 (c) σ = 0.28

Figure 2. The sensitivity of time scaling parameter t on Iris dataset is shown in NMI (Section V). We use random walk normalization for all three
examples.

III. AGGREGATED HEAT KERNEL

A. Aggregated Heat Kernel

As discussed earlier, heat kernel is multiscale. For small

t, the function Ht(x, ∗) is mainly determined by the nearby

neighborhood of x, and this area grows bigger as t increases.

In other words, for small t, Ht(x, ∗) only reflects local

properties of the area around x but large t captures the

properties from larger area or even global structure. But this

additional one more degree of freedom makes it difficult to

determine t in any algorithm (Figure 2) because we have

little clue about how to find the best t, which is similar

to the scaling parameter σ of Gaussian similarity. In other

words, the clustering result could become sensitive due to

this time scaling selection.

We propose a new approach by integrating the entire time

scale from zero to infinity on heat kernel, which is called

Aggregated Heat Kernel (AHK).

H(x, y) =

∫ ∞

t=0

Ht(x, y)dt =
n∑

i=1

[(1/λi)ψi(x)ψi(y)]. (7)

AHK inherits many powerful properties from heat kernel.

Among them, the most relevant ones to our current work

include

• Symmetric: H(x, y) = H(y, x).
• Semigroup identity: H(x, y) =

∫
M
H(x, z)H(y, z)dz.

• Positive semi-definite:
∑

i,j H(x, y)cicj ≥ 0, where

c1, c2, ..., cn are real numbers.

From Figure 2 we observe that in conventional heat kernel

the time scaling parameter t is also correlated with the

scaling parameter σ and it needs to be carefully tuned. But

AHK is better than traditional HK on most of the time

parameters. AHK is originally defined by the anisotropic

transition kernel such as Lrw but we could generalize AHK

to Hsym of symmetric Lsym or Hnn of unnormalized Lnn.

B. Connections to AHK

In this subsection we built theoretical connections from

AHK to the other existing popular techniques.

Inverse Laplacian: AHK, H, is pseudo inverse or

Moor-Penrose inverse [11]. By doing so, we achieve mul-

tiscale heat diffusion. Instead of doing pseudo inverse, we

could directly inverse graph Laplacian matrix [17].

(I + αLsym)−1, (8)

where α is the positive regularization parameter and I allows

us to invert Laplacian matrix always. Note that, [17] used

this direct inversion to get noise robust clustering results.

Commute Distance: Commute distance C(x, y) be-

tween x and y is the expected random walk round trip travel

time. AHK is also known as Green’s function [26], which

is closely related to commute distance (CD) or resistance

distance. The Green’s function is left inverse operator of

Laplace operator, Hrw ·Lrw = I . For Hnn constructed from

unnormalized Lnn, commute distance can be defined as

C(x, y) = vol(Hnn(x, x) +Hnn(y, y)− 2Hnn(x, y)), (9)

where vol =
∑n

i=1D(i, i). Just like AHK, commute dis-

tance also considers all possible length, paths and their

weights, which is more robust than the shortest path. Note

that, commute distance can also be expressed by the random

walk or symmetric graph Laplacian normalization [26].

Multiscale Diffusion Map: Commute distance is also

related to diffusion distance. By replacing Equation (7) into

the above equation, we get

C(x, y) = vol
n∑

i=2

[(1/λi)(ψi(x)− ψi(y))
2], (10)

and also multiscale diffusion distance can be defined by:

∞∑
t=0

D2
t (x, y) =

m∑
i=1

[1/(1− λ2i )(ψi(x)− ψi(y))
2]. (11)

Both commute distance and diffusion distance look similar

but they have different eigenvalue weighting and different

Laplacian normalization.

Multiscale diffusion distance [27] can also be represented

by
∑∞

t=0 λ
t
i = 1/λi, which shares the same weighting with

H but it is for distance weighting. If the time summation

starts from t = 1, then it is exactly the same as the multiscale

diffusion map (MDM) of Equation (4). Both of eigenvalue
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weighting (starting t = 0 and t = 1) will show quite similar

weighting distribution anyway for 0.5 ≤ λ ≤ 2, which is

common for most of normalized graph Laplacian.

C. Normalization

Even though we made proper connections among simi-

lar approaches, most of them used different normalization

without thorough evaluation. Therefore it is not clear what

is the best way to normalize graph Laplacian matrix for

our proposed H. It is shown in [16] that if we assume

uniform sampling of data points from a sub-manifold M,

the eigenvectors of Lrw with σ → 0 and n → ∞, tend

to approximate Laplace-Beltrami operator on M, which

guarantees manifold structure reconstruction. However, in

reality, the sampled data points tend to be nonuniform and

show skewed density distributions, resulting in poor mani-

fold structure reconstruction in AHK. To improve the dis-

tributional sensitivity of Random Walk (RW) normalization,

we consider the following two additional normalizations:

W (α) = D−αWD−α, (12)

L(α) = I −D(α)−1
W (α), (13)

where α is a normalization parameter and D(α) is a diagonal

matrix with the sum of row weight of W (α).

• If α = 0, L(0) = Lrw (Random Walk normalization).

• If α = 1/2, then it is Fokker-Planck (FP) diffusion.

• If α = 1, it is Laplace-Beltrami Normalization (LBN).

The relations among those three normalizations are well

described in [6]. Depending on α, LBN can also be reduced

to Random Walk or FP diffusion. In particular, we focus

on LBN because it removes the influence of the dataset

density and recovers manifold structures on M with the

condition of both σ → 0 and n→∞ [6]. In other words, the

additional re-normalization of affinity matrix W enables us

to reconstruct manifold structures better under non-uniform

density distribution, so that our clustering results can be less

sensitive to noise and scaling parameter sensitivity.

D. Comparison

Figure 3 shows the effects of different approaches and

normalizations on 20 newsgroup text data (20ngC) (Sec-

tion V). True inversion and commute distance show the

worst results in separating three topics. Although they share

the same Laplacian matrix inversion approaches, the results

are quite different. Interestingly multiscale diffusion map

shows the best separation among non-AHK approaches. In

case of AHK, most of normalization approaches excep-

t unnormalized Laplacian reconstruct ball shape of topic

distribution. The original Random Walk (RW) normalization

shows the most mixture of three topics but as we add the

additional normalization of Equation (12), we reconstruct

better manifold structures. LBN shows the best coherent and

condensed reconstruction quality. AHK with unnormalized

Laplacian appears to have the ability of separation but the

distance among documents are very close to each other com-

pared to other normalizations. Symmetric normalization also

shows very good separation and ball shape reconstruction

but symmetric normalization is not anisotropic transition.

For our future experiments, we mainly focus on LBN but

we provide further detailed analysis across different datasets

regarding different normalization effects and approaches in

Section V.

IV. NEW ALGORITHM

After investigating some nice properties of heat kernel, it

now sets a stage for us to introduce a novel robust spectral

clustering algorithm using both AHK and LBN (Algorithm

2), which is less sensitive to the scaling parameter selection

and noise perturbation. Let X be a matrix of size n ×m,

where n is the number of data points and m is the number

of dimensions, our algorithm is detailed in Algorithm 2.

Algorithm 2: AHKClustering(X ,k,γ, xxx)

Input: Input data X ∈ Rn×m, k is the number of

clusters, γ is an eigenvalue smoothing

parameter, and xxx is a normalization method

Output: Cluster assignments of n instances

1 Construct Laplacian Lxxx ;

2 Compute generalized eigenvectors ψ(i) and

corresponding eigenvalues λi, i = 1, 2, ..., n. ;

3 Construct Hxxx matrix with ψ(i) and λi, where

Hxxx(x, y) =
∑n

i=2[
1

γ+λi
ψ(i, x)ψ(i, y)];

4 Compute the first k eigenvectors ψs of Hxxx,

ψs = {ψs(1), ψs(2), . . . , ψs(k)};
5 Re-normalize the rows of ψs ∈ Rn×k into

Yij = ψs(i, j)/(
∑

q ψs(i, q)
2)1/2. ;

6 Run k-means with Y ∈ Rn×k ;

We suggest to use LBN as normalization choice of our

proposed algorithm. This algorithm undergoes a kind of data

warping by using LBN (Step 1) and AHK (Step 2 and 3).

Then we perform the second eigenvalue decomposition (Step

4) and then normalize its row (Step 5). k-means algorithm is

used for final clustering. We assume that the entire graph is

well-connected, so that the eigenvectors except the first one

are included in Step 3. If unconnected, a threshold can be set

to filter out the smaller eigenvalues and the corresponding

eigenvectors. The eigenvector smoothing parameter γ of

Step 3 is added to stabilize the affinity matrix computation.

Regarding computational complexity, eigenvalue decom-

position is the most time consuming step, which will dom-

inate our computation. There are many iterative methods

to conduct eigenvalue decomposition (e.g., power iteration

[2]), but in general finding the eigenvalues reduces to matrix

multiplication by computing a symbolic determinant, which

gives a running time of O(n3 + n2log2n) [24].
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Figure 3. Effects on embedded construction on 20ngC dataset is shown.

Table I
STATISTICS OF OUR EVALUATION DATASETS

Data Set # instances # attributes # clusters

1 Iris 150 4 3
2 Glass 214 9 6
3 PenDigits01 200 16 2
4 PenDigits17 200 16 2
5 PolBooks 105 105 3
6 UBMCBlog 404 404 2
7 AGBlog 1222 1222 2
8 20ngA 200 61188 2
9 20ngB 400 61188 2

10 20ngC 600 61188 3
11 20ngD 400 61188 4
12 FaceContour 266 2 3

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Dataset. To demonstrate the robustness of our proposed

method, we evaluate our algorithm on one synthetic Face-
Contour dataset and seven UCI benchmark datasets includ-

ing four text datasets, and three network datasets, summa-

rized in Table I. Such diverse combination of data is intended

for our comprehensive study. Iris dataset is a collection of

three species of irises where one is linearly separable but

the other two are not [9]. Glass includes types of glasses

for criminological investigation [8]. We also test two hand-

written pendigit data PenDigits01 and PenDigits17 with digit

“0” vs. “1” for easy task and “1” vs. “7” for challenging

task. PolBooks is a network data for co-purchasing pattern

of 105 political books of three classes [21]. UBMCBlog and

AGBlog are political blog connection network data [15][1].

20ng is 20 newsgroup text data [23]. 20ngA includes

100 messages from misc.forsale and 100 messages from

soc.religion.christian. 20ngB and 20ngD add 100 messages

to each category and 20ngC adds 200 from talk.politics.guns

to 20ngB. To show noise robustness, we also add noise

from 10% to 100% by 10% increment on both FaceContour

and 20ngD. Noise in FaceContour is uniformly distributed.

Noise in 20ngD comes from two other different news group

talk.politics.guns and rec.sport.baseball.

Similarity Measure. We apply mainly Gaussian similar-

ity as our similarity measure. For network data (PolBooks,

UBMCBlog, and AGBlog), the affinity matrix is a binary

link matrix where A(i, j) = 1 if there is an edge from i
to j, and A(i, j) = 0 otherwise. By the nature of text data,

cosine similarity metric is the only metric we apply for text

and we use word counts as features except stop words and

singleton words.

Baselines. We compare our results to five competitive

clustering algorithms. For our basis of spectral clustering, we

choose symmetric graph Laplacian spectral clustering (N-

JW) [22]. To show parameter tuning sensitivity, we include

Self-Tuning (ST) spectral clustering [32]. As our diffusion

map baseline, Multiscale Diffusion Maps (MDM) [27] and

Commute Distance (CD) [26] are considered. Finally, to

compare noise robustness, we add Noise Robust Spectral

Clustering (NR) [17].

Evaluation. Since we have the ground truth of labels for

each data, we compare our clustered results with the labels.

We use several popular evaluations in our experiment (e.g.,

purity, normalized mutual information (NMI)). Due to space

limitation, NMI is used as our only evaluation metric among

all being described because most of clustering algorithm

papers make use of NMI as their primary evaluation metric.

Detailed definition of NMI can be referred to [28].

Parameters. Other than scaling parameter σ of Gaus-

sian similarity, our proposed algorithm has one eigenvalue

smoothing parameter γ. In our experiments, if we have big

enough σ ≥ 0.2, we do not need to set γ but if we set
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γ = 0.01, it makes our proposed algorithm stable even

with very small σ and we apply the same γ to commute

distance and it shows better stability as well. In our k-means

implementation, we evaluate Within-Cluster Sum of Square

(WCSS) scores of each random trials and we choose the

best one out of 100 random trials [12].

As for both global and local scaling, we run experiments

with all the sigma inside the range to test NMI average

for each noise level using our algorithm and other five

algorithms. We find the average performance along global

scaling parameter σ ([0.1, 8], with 0.1 as step size between

0.1 to 1 and 0.5 as step size between 1 to 8). For local scaling

parameters, [5, 50], 1 as step size is used. The only differ-

ence in local scaling lies at the number of parameters and

selection of different algorithms. NR seeks σ and β based on

the largest eigen-gap [17]. However, eigen-gap works poorly

on our benchmark dataset and we use the same parameter

for both σ and β. ST selects its only scaling parameter as

σi (σj) where σi (σj) is the distance from point i (j) to its

kth nearest neighbor [32]. Our algorithm, as well as NJW

and MDM, all follow the same way as ST for local scaling

experiments (all the source code and datasets we have used

is available at http://www.cs.sunysb.edu/∼huang3/).

B. AHK Normalization and Cosine Similarity Analysis

We evaluate different normalization methods for our pro-

posed aggregated heat kernel (AHK). To avoid tuning scaling

parameter σ, we adopt cosine similarity, which makes our

proposed algorithm parameter-tuning-free. Table II docu-

ments the clustering results (NMI) of five different normal-

izations: no-normalization (NN), symmetric normalization

(SYM), random walk (RW) normalization, Fokker-Planck

(FP) diffusion, and Laplace-Beltrami normalization (LBN).

These normalization methods are simply applied in Step one

of Algorithm 2.

In Table II, LBN shows the best overall performance

across different types of data. Specifically, LBN shows the

best performance on text data and competitive performance

on network datasets. On remaining dataset, it shows the best

results along with SYM. From now on, AHK uses only

LBN normalization. Compared with LBN, NN, RW and

FP show relatively low performance but FP shows slightly

better performance than RW, which supports the argument

that the first normalization is helpful. Interestingly NN, RW

and FP show quite worse performance on text data. These

observations suggest that the density distribution plays a role

in reconstructing manifold structures of real-world datasets

and LBN is a better choice. No-normalization shows the

worst performance among five approaches, which indicates

the importance of normalization.

Table III summarizes six different approaches using cosine

similarity. Our new AHK shows the best or very close to

the best performances. MDM shows the second best on all

but weak performance on text data. ST and NJW show

Table II
AHK NORMALIZATION COMPARISON USING COSINE SIMILARITY

Data Set NN RW FP SYM LBN

Iris 8.8 40.6 40.6 60.8 70.4
PenDigits01 100 95.9 100 100 100
PenDigits17 2.3 0.9 13.8 16.1 16.1
PolBooks 56.9 56.9 54.0 56.7 58.3
UBMCBlog 5.7 73.7 40.7 73.7 72.8
AGBlog 1.1 41.1 0.0 74.9 70.2
20ngA 6.2 8.0 78.2 73.6 80.8
20ngB 1.9 0.0 37.2 67.8 71.8
20ngC 15.7 2.6 12.4 38.5 67.2
20ngD 0% noise 3.0 0.0 10.2 56.4 61.7
20ngD 50% noise 4.7 0.7 4.0 31.1 49.0
20ngD 100% noise 5.1 0.1 5.6 33.7 43.7
Average 17.6 26.7 33.1 57.0 64.0

quite similar performance on cosine similarity because of

no σ tuning. Although commute distance shares similar

motivation with MDM, CD appears to be worse than MDM

especially on text data. NR shows the worst performance

except PenDigits01 and PolBooks.

Table III
COMPARISON AMONG SIX APPROACHES USING COSINE SIMILARITY

Data Set NR CD NJW ST MDM AHK

Iris 8.8 48.4 63.5 72.3 93.1 70.4
PenDigits01 100 95.9 100 100 100 100
PenDigits17 2.4 12.9 20.4 20.4 20.7 16.1
PolBooks 57.5 52.0 54.2 56.3 58.7 58.3
UBMCBlog 2.4 0.1 73.8 73.8 74.9 72.8
AGBlog 0.5 0.4 0.2 0.2 71.7 70.2
20ngA 2.4 0.7 75.9 75.9 78.2 80.8
20ngB 1.6 0.3 10.0 5.0 2.4 71.8
20ngC 2.2 1.7 34.9 34.4 38.2 67.2
20ngD 0% noise 2.4 0.0 56.8 55.4 53.5 61.7
20ngD 50% noise 2.8 2.0 38.5 41.5 42.1 49.0
20ngD 100% noise 2.6 0.2 39.5 39.5 38.8 43.7
Average 15.5 17.9 47.3 47.9 56.0 64.0

C. Robustness to Scaling Parameter

To systematically manifest the sensitivity of different

algorithms on different scaling parameters, we test them

respectively on a series of global and local scaling pa-

rameters. Datasets used here are Iris and Glass from UCI

including 40% and 20% noise levels, and synthetic noisy

dataset FaceContour with 40% noise level. For noisy dataset,

we repeat randomization 20 times to get stable results. The

quantitative results are shown in Figure 4. We can see that

our new AHK algorithm is either less sensitive or at least

comparable to other five algorithms using both global and

local scaling parameters. Moreover, our algorithm is either

the best or close to the best with noisy datasets and stays at

the top.

D. Robustness to Noise

We conduct experiments on controlled noisy datasets

to examine the performance of our algorithm and make
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(a) Glass, global scaling (b) Glass, local scaling

(c) Glass with 20% noise, global scaling (d) Glass with 20% noise, local scaling

(e) Iris, global scaling (f) Iris, local scaling

(g) Iris with 40% noise, global scaling (h) Iris with 40% noise, local scaling

(i) FaceContour 40% noise, global scaling (j) FaceContour 40% noise, local scaling

Figure 4. Comparison of six algorithms using different scaling parameters.
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comparison with the other five algorithms. The data sets are

FaceContour with uniformly-distributed noise of different

noise levels (0%, 10%, 20%, · · ·, 100%). To show the noise

robustness and avoid parameter tuning of scaling parameter,

we average all the scaling parameters. The experimental

results are documented in Figure 5. AHK indicates the best

(global scaling) and the second best (local scaling) results as

it always stays in the best candidate list. Although NR shows

the best performance with local scaling, it is one of the worst

performer on global scaling. Such fluctuating performance

of NR is consistent throughout scaling experiments. Similar

to NR, MDM works poorly on local scaling but MDM had

shown stable performance in previous scaling experiments.

Overall, AHK shows robust performance across different

noise conditions including cosine similarity of Table III.

(a) Global parameter tuning

(b) Local parameter tuning

Figure 5. Algorithmic performance on different noise levels.

E. Discussion

Although our proposed clustering algorithm requires no

further parameter tuning except σ, we can make it faster by

dropping less-informative eigenvectors or we can fine tune

special cases. In Step 3 of Algorithm 2, we may use smaller

number of eigenvectors than n within the range of 300 to

the number of data points. Normally, due to the dramatic

value drop-down of eigenvalues, it is safe to choose from

300 to 500 for the data sets no larger than 104.

Choosing the number of eigenvectors k of Step 4 may also

affect clustering results. We typically set this value as the

number of clusters, as most spectral clustering algorithms

take the same strategy. However, if the original data has

strong manifold structures in k dimensions where k is the

number of clusters, then other spectral cluster algorithms

may fail to reconstruct original manifold structure but our

proposed algorithm may be able to reconstruct this original

manifold structure in the first k eigenvectors, which may

produce worse results. Should such situation occurs, we

could simply add one or two additional eigenvectors, which

are expected to greatly improve the results. In reality, it did

not happen on our benchmark dataset or it will not happen

in high dimensional or noisy data because it is much more

difficult to reconstruct original manifold structure.

VI. RELATED WORK

Mean shift clustering [7] and spectral clustering [22] [31]

[19] have shown good performance in some clustering tasks.

However, both of them are sensitive to scaling parameters.

To improve, Zelnik-Manor and Perona proposed to use

local scale [32] which fully considers the local structure

of dataset using neighbor adaptive scale. They introduced

a local scaling value σ for each data point. However, the

local scaling in [32] depends on distance between certain

point pi and its Qth neighbor. So users still need to specify

Q, which is also sensitive to the clustering result for tuning.

Compared with the above methods, our method can maintain

the similar performance which is insensitive to the scaling

parameters.
In [17], the authors proposed a noise robust spectral clus-

tering algorithm. But our experimental results have clear-

ly demonstrated that our method has better performance.

Recently in [4], M-estimation robust statistics is used in a

robust path-based similarity measure which requires no local

parameters to be set manually, nonetheless, prior knowledge

of data domain is required. In contrast, users need no prior

knowledge when using our algorithm.

VII. CONCLUSION

We have developed a new spectral clustering algorithm

with robustness to both scaling parameter tuning and data

perturbation. The mathematically-rigorous theory of our

work, together with the new AHK algorithm, are originated

from heat kernel and diffusion maps. In technical essence,

our AHK permits reorganizing the spectral-embedded struc-

ture regardless sub-optimal scaling parameter selection,

noise perturbation, and non-uniform density distribution.

Extensive experiments and evaluations have demonstrated

robust performance with our AHK algorithm in comparison

with other popular spectral clustering algorithms. Immediate

future work will be concentrated on constructing local and

global coordinates with the goal of learning the intrinsic

structure of data.
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