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Abstract Multi-scale geometric processing has been a
popular and powerful tool in graphics, which typically
employs isotropic diffusion over scales. This paper pro-

poses a novel method of multi-scale anisotropic heat
diffusion on a manifold, based on a new normal-driven
shape representation and edge-weighted heat kernels

(EHK). The new shape representation, named as Normal-
Controlled Coordinates (NCC), can encode local geo-
metric details of a vertex along its normal direction

and rapidly reconstruct the surface geometry. More-
over, the inner product of the NCC and its correspond-
ing vertex normal, called Normal Signature (NS), de-

fines a scalar/heat field over curved surface. The an-
isotropic heat diffusion is conducted using the weighted
heat kernel convolution governed by local geometry.

The convolution is computed iteratively based on the
semigroup property of heat kernels towards accelerated
performance. This diffusion is an efficient multi-scale

procedure that rigorously conserves the total heat. We
apply our new method to multi-scale feature detection,
scalar field smoothing and mesh denoising, and hierar-

chical shape decomposition. We conduct various exper-
iments to demonstrate the effectiveness of our method.
The proposed method can be generalized to handle any

scalar field defined over manifold.
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1 Introduction

Recently, heat kernels and their utilities in diffusion
start to gain momentum for geometric information pro-

cessing in graphics, with applications in various research
problems, including multi-scale feature detection [31],
scalar field smoothing [26], automatic diffusion [8], shape

matching [25], shape retrieval [2], etc. A typical dif-
fusion process is conducted by convoluting an initial
scalar/heat field with heat kernels. The advantage of

such process is that, both diffusion and its kernel func-
tion afford robust multi-scale processing on manifolds,
with intrinsic property of isometric-invariance. While

these techniques have shown promise in multi-scale shape
analysis, there still remain certain limitations in the
current state-of-the-art, including initial heat field de-

sign, anisotropic diffusion, short-time scale behavior,
improved performance, etc.

First, existing work oftentimes emphasizes the com-
prehensive studies of kernel functions and their proper-

ties, while paying far less attention to the initial heat
field design. The initial field is a scalar function defined
on the surface at time 𝑡 = 0. It will gradually diffuse

on the surface along 𝑡, resulting in different scales. The
initial field is frequently assigned by using some sim-
ple characteristics such as curvature [20], texture [13],

or other surface measurements [32,28]. These charac-
teristics lack sufficient information to describe and re-
construct the shape. Moreover, they are sensitive to

scale changes, which goes against the scale-invariant
nature of the diffusion. To better depict the charac-
teristics of a surface, an informative and stable initial

field is strongly desirable. Second, all the previous heat
diffusions are isotropic in nature, which are based on
isotropic heat kernels on manifolds. Yet, anisotropic dif-

fusion is much more desirable in many cases, such as
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smoothing and feature finding on surfaces with sharp

edges. Anisotropic diffusion, which is much more pow-
erful than standard isotropic diffusion, could control
the diffusion direction by assigning weighted heat ker-

nels to vertices. Third, while the kernel function itself
can somehow represents surface geometry, it is hard to
capture details in the short-time scale. Short-time heat

kernels are intrinsically linked to high frequency spec-
trum of the shape, which are computation-wised costly
to obtain. Therefore, heat kernels often start from a

moderate scale and ignores short-time scales. To tackle
this problem, an initial heat design that can capture
the short-time details is much more favorable, and the

initial scalar field with such attractive property can
be naturally fed into the diffusion process that depicts
the long-time behavior. In addition, the computation of

heat diffusion may involve convolution over the entire
surface, which could be extremely expensive. It must
be accelerated to afford efficient multi-scale processing.

In this paper, our efforts are dedicated to address
the aforementioned difficulties. We propose a normal-
driven shape representation, called Normal-Controlled

Coordinates (NCC), which have several outstanding prop-
erties, including being parallel with normal directions,
scale-invariance, and properly behaving for open sur-

faces without tangential tension (Fig. 3 (right)), etc.
Essentially, NCC can be viewed as an improved general-
ization of differential coordinates [21]. They can encode

local details for each vertex and reconstruct mesh geom-
etry. The inner product of NCC and its corresponding
normal, defined as the Normal Signature (NS), is both

rotation-invariant and scale-invariant, which is used to
initialize a heat field in our work. After the field design,
we devise a novel anisotropic heat diffusion based on

edge-weighted heat kernels (EHK) directly derived from
the NCC. The EHK can well control the anisotropic
heat diffusion on surface, since such filter is properly

weighted by local geometric information. Moreover, the
EHK is stable to irregular sampling of surfaces by us-
ing local area as one weighting factor and can be trans-

formed into a scale-invariant filter. In addition, the an-
isotropic diffusion field is a heat conservation field, which
has clear physical meanings and avoids numerical de-

generacy. The initial heat field coupled with its an-
isotropic diffusion, can naturally characterize and bridge
both the short-time (local) and long-time (global) geo-

metric behaviors. Inspired by the semigroup property of
heat kernels, we use a multi-step method to diffuse the
heat instead of computing heat kernels directly over a

larger region for a longer time span. The heat diffusion
is then reduced to simple matrix-vector multiplication.
Since only sparse matrices are used, the diffusion pro-

cess is very fast. Fig. 1 illustrates the pipeline of our
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Fig. 1 The pipeline of our approach. We use NCC and NS to
compute the EHK and the initial heat field, respectively. The
diffusion process affords listed applications and could have
more.

approach. Specifically, the contributions of this paper
are summarized as follows:

– We propose a normal-driven shape representation

(NCC) towards feature definition. The inner prod-
uct of NCC and the corresponding vertex normal
(i.e. NS) is defined as an initial field for diffusion.

– We develop a novel method for anisotropic diffu-
sion on manifolds, with anisotropic kernels (EHK)
derived directly from the NCC.

– We conduct the diffusion using kernel convolution
within a local region. An iterative method is utilized
to diffuse the heat over the surface efficiently.

– We concentrate on three applications of our method,
including multi-scale feature detection, scalar field
smoothing and mesh denoising, and hierarchical model

decomposition.

2 Related work

As a local shape descriptor, differential coordinates [1,

21] have been widely used for mesh processing during
recent years because of their robustness, speed, and ease
of implementation. Their application scopes also ex-

pand to industrial and artistic design. Nonetheless, the
definition of previously-used differential coordinates ap-
pears to be incomplete on boundary vertices, and tan-

gential tension may occur on boundaries of open sur-
faces (Fig. 3 (left)). Also the differential coordinates
do not explicitly unite with their vertex normals, un-

til the vertex normals are extraordinarily defined using
cotangent weight [4]. Other descriptors, as proposed in
the literature [24,29,22], are simple and efficient. How-

ever, they suffer from the problems of mesh quality and
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sampling, and are highly sensitive on scale changes. Lo-

cal descriptors constructed by shape spectrum, such as
the eigenfunctions of Laplace-Beltrami operator [8] and
heat kernels [31], represent the shape information in a

multi-scale way. While the global information can be
well captured by the first few eigenfunctions, for lo-
cal information, much more eigenfunctions are needed,

which is computationally expensive. Furthermore, since
the spectrum are globally defined, they are sensitive to
boundary and topology changes.

Given an initial scalar field defined on the surface,
Gaussian kernel was first adopted to conduct the diffu-
sion [20,14,34,13], for its easy implementation. It was

used to construct a multi-scale representation and then
find features as local extrema. The Gaussian kernel can
mimic the diffusion kernel in small regions on curved

surfaces, but are not suitable for large regions. Ricci
flow [35] has also been employed to construct a scale
space by shape diffusion. While this diffusion intrin-

sically follows the curvature evolution, it diffuses the
shape, not the scalar field. Recently, Patané and Fal-
cidieno [26] utilized heat kernels spanned on Laplace-
Beltrami eigenfunctions to smooth a scalar field on the

surface. Heat kernels are the fundamental solutions to
the diffusion equation on manifold, thus, they can cor-
rectly describe the diffusion at all scales. Because of the

multi-scale property of heat kernels, their methods can
smooth the scalar field in both local and global scales.
Similar work can be found in [28]. However, computing

the entire eigenfunctions of the Laplace-Beltrami oper-
ator necessary for short-time scales, is computationally
expensive. Their methods used approximations of heat

kernels, and thus may lose the property of heat conser-
vation, which may result in degeneracy. Also, they have
less control of heat diffusion on surface, since the heat

kernels refer to insufficient geometry information, such
as normals.

Anisotropic geometry diffusion and bilateral filter

have been proposed to smooth bivariate data or gen-
eral discretized surfaces. The anisotropic geometry dif-
fusion [5,3,11] are either complex or sensitive to bound-

ary and scale changes. The bilateral filter [18,6,30] fo-
cuses on only local geometry information, which may
also suffer from the problems of mesh quality and sam-

pling. Moreover, they may result in degeneracies due to
energy loss during the diffusion procedure.

3 Normal-Controlled Coordinates (NCC)

Given a 2D manifold 𝑀 , let (𝑉,𝐸) be vertex set 𝑉 and
edge set 𝐸 that comprise an irregular triangular mesh
of 𝑀 . Without loss of generality, we assume that each

vertex has at least three neighbors. If not, we simply

Fig. 2 The construction of NCC (colored in green) at a ver-
tex. Tangential components on the projection plane and nor-
mal components are also highlighted. The conventional dif-
ferential coordinates (without normal-control) of this vertex
is also shown (colored in red), which is not parallel to the
vertex normal.

subdivide the corresponding triangulation by adding a

vertex in the centroid.

The NCC at vertex 𝑣𝑖 is defined as

𝛿𝑖 = 𝒩 (𝑣𝑖) =
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗(𝑣𝑖 − 𝑣𝑗), (1)

where 𝒩 denotes the NCC operator, 𝑁(𝑖) is the one-
ring neighborhood of vertex 𝑣𝑖, and 𝜔𝑖𝑗 is the coefficient

of the NCC operator, also called NCC weight. The inner
product of NCC and the corresponding vertex normal
is defined as normal signature (NS). It effectively repre-

sents local geometry information, such as feature size,
convexity, and concavity.

The global geometry can then be decomposed into

two sets of scalar data representing tangential and nor-
mal components, which collectively encode local pa-
rameterization (along local tangent plane) and local

geometry information (perpendicular to local tangent
plane), respectively. The local parameterization infor-
mation is captured by the coefficients of the NCC oper-

ator {𝜔𝑖𝑗}, and the local geometry information is cap-
tured by the NS. Given any kind of evaluations on
vertex normals, the local parameterization and geom-

etry information are uniquely defined. Specifically, we
use the mean weighted by areas of adjacent triangles
(MWAAT) normals [17] in our experiments. Oftentimes,

the local parameterization information can be consid-
ered to be unchanged, and hence only the operation
of normal components is necessary. And the mesh ge-

ometry can be recovered linearly from coefficients of
the NCC operators and the updated NS with the aid of
vertex normals. In the following section, we will provide

the derivation of NCC.
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3.1 Derivation of NCC

For each vertex 𝑣𝑖, let 𝑛𝑖 = (𝑛𝑖𝑥, 𝑛𝑖𝑦, 𝑛𝑖𝑧) be the ver-
tex normal, and 𝑃𝑖 be its projection plane that can be

any plane with the normal 𝑛𝑖. We formulate 𝑃𝑖 as the
tangent plane of 𝑣𝑖,

𝑃𝑖 = 𝑛𝑖𝑥𝑥+ 𝑛𝑖𝑦𝑦 + 𝑛𝑖𝑧𝑧 − 𝑛𝑖⋅𝑣𝑖 = 0. (2)

We define the normal weight 𝜔̃𝑖𝑗 of the neighbor vertex

𝑣𝑗 as,

𝜔̃𝑖𝑗 =
tan(𝛼𝑗/2) + tan(𝛼𝑗−1/2)

∥𝑣′𝑖 − 𝑣′𝑗∥
, (3)

where 𝑣′𝑗 denotes the projection of 𝑣𝑗 onto the plane 𝑃𝑖,

and angles 𝛼𝑗 and 𝛼𝑗−1 are computed from the projec-
tion plane (as shown in Fig. 2). Note that the normal
weight of 𝑣𝑗 indirectly relates to 𝑣𝑗 via projection. It is

the mean value coordinate weight [19] on the projection
plane.

The weight in Eq. (1) is the normalized normal

weight 𝜔𝑖𝑗 = 𝜔̃𝑖𝑗/
∑

𝑗∈𝑁(𝑖) 𝜔̃𝑖𝑗 . To make NCC insen-
sitive to sampling and scale, we rescale the NCC by
areas, and Eq. (1) becomes

𝛿′𝑖 = 𝛿𝑖/𝑎
1/2
𝑖 =

∑
𝑗∈𝑁(𝑖)

𝜔′
𝑖𝑗(𝑣𝑖 − 𝑣𝑗), (4)

where 𝑎𝑖 is the Voronoi area centered at 𝑣𝑖 [24], and

𝜔′
𝑖𝑗 = 𝜔𝑖𝑗/𝑎

1/2
𝑖 . Note that, all the NCC mentioned later

are rescaled by Voronoi areas.

Assembling Eq. (4) at each vertex, we obtain a linear
system:

NV = 𝜹 = Sn𝑣, (5)

where 𝜹 is a vector consisting of NCC, S is a matrix

consisting of NS, n𝑣 is a vector consisting of vertex nor-
mals, and N is a sparse matrix with following elements

𝑁𝑖𝑗 =

⎧⎨⎩1/𝑎
1/2
𝑖 , 𝑖 = 𝑗,

−𝜔′
𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐸,

0, otherwise.

(6)

Eq. (5) can be effectively used to edit and reconstruct
meshes in our applications.

3.2 Properties of NCC

NCC are generalized from differential coordinates in
principle. They share some common properties of con-
ventional differential coordinates, such as easy imple-

mentation, efficiency, etc. Moreover, NCC have their
distinctive properties:

– NCC are always parallel with the corresponding ver-
tex normals. The detailed proof is documented in

the appendix.

Fig. 3 Comparison between NCC and Laplacian coordi-
nates. Laplacian coordinates have tangential tension on the
boundary (colored in red), while NCC are well-defined on the
boundary and insensitive to the sampling (colored in green).

– NCC are scale-invariant. Assume that we scale the

model M by 𝑠, then the NCC of 𝑠M are given by

𝛿𝑖(𝑠M) =
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗

(𝑠2𝑎𝑖)1/2
(𝑠𝑣𝑖 − 𝑠𝑣𝑗)

=
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗

(𝑎𝑖)1/2
(𝑣𝑖 − 𝑣𝑗) = 𝛿𝑖(M). (7)

– NCC are well defined on boundary. For open meshes,
the normals of boundary vertices can be well de-
fined. Fig. 3 shows the Laplacian coordinates and

NCC. The tangential tension appears in the Lapla-
cian coordinates (a), while it completely disappears
in NCC (b).

These properties are significant for mesh processing.
They afford the stability, efficiency, and a wide range
of applications of NCC. In our work, we use the NS to

initialize a scalar field as the heat at 𝑡 = 0 for diffusion.

4 Edge-weighted heat kernels (EHK)

It is well-known that the heat diffusion over a manifold

𝑀 is governed by the heat equation{
∂𝑢(𝑥,𝑡)

∂𝑡 = −𝛥𝑢(𝑥, 𝑡), 𝑡 ∈ 𝑅+,

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ 𝑀,
(8)

where 𝛥 is the Laplace-Beltrami operator, 𝑓(𝑣) is the
initial heat defined on 𝑀 . The results of Eq. (8) can be
obtained by

𝑢(𝑥, 𝑡) =

∫
𝑀

ℎ𝑡(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦, (9)

where ℎ𝑡(𝑥, 𝑦) is the heat kernel between 𝑥 and 𝑦 at
time 𝑡.

Heat kernels have many nice properties [31]. For in-
stance, they are symmetric: ℎ𝑡(𝑥, 𝑦) = ℎ𝑡(𝑦, 𝑥), and sat-
isfy the semigroup identity: ℎ𝑡+𝑠(𝑥, 𝑦) =

∫
𝑀

ℎ𝑡(𝑥, 𝑧)

ℎ𝑠(𝑦, 𝑧)𝑑𝑧. They are also isometric-invariant, multi-scale,
informative, and stable. However, the commonly-used
heat kernels do not consider some key geometry infor-

mation, such as normals and sampling of meshes. As a
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result, they lack control of heat diffusion and are sen-

sitive to irregular sampling. A weighted linear finite
element method (FEM) discretization of heat kernels
was given in [26]. They discretized the Laplace-Beltrami

operator in Eq. (8) by adding area weights. This dis-
cretization is stable to the sampling with the cost of los-
ing symmetry. Despite of the improvements, they still

lack control of the direction of heat diffusion.

At each vertex, heat diffuses through its connected
paths (edges) as time goes by. Therefore, the edge weight

plays an important role in thermal conductivity. A proper
edge weight that can control the heat diffusion is pre-
ferred. Moreover, the area weights are used to compute

eigen-system only to combat the problem of irregular
sampling and symmetry of heat kernels. The Laplace-
Beltrami operator is discretized by the edge-weighted

Laplacian matrix L̃ := B−1L𝑒 [26,27],

L𝑒(𝑖, 𝑗) =

⎧⎨⎩
𝑤(𝑖, 𝑗) := 𝑒−

∥𝛿𝑖−𝛿𝑗∥22
𝜎2 , 𝑗 ∈ 𝑁(𝑖),

−𝛴𝑘∈𝑁(𝑖)𝑤(𝑖, 𝑘), 𝑖 = 𝑗,

0, otherwise,

(10)

B(𝑖, 𝑗) =

⎧⎨⎩
∣𝑡𝑟∣+∣𝑡𝑠∣

12 , 𝑗 ∈ 𝑁(𝑖),
𝛴𝑘∈𝑁(𝑖)∣𝑡𝑘∣

6 , 𝑖 = 𝑗,
0, otherwise,

(11)

where 𝜎 is a parameter proportional to the variance
of NCC, 𝑡𝑟 and 𝑡𝑠 are the triangles that share the edge

(𝑖, 𝑗), and ∣𝑡𝑟∣ is the area of triangle 𝑡𝑟. Here,B is a mass
matrix used to compensate the irregular sampling, and
L𝑒 is a weighted matrix controls the tendency of heat

diffusion (e.g. isotropic or anisotropic) using parameter
𝜎, which will be further discussed in Section 6.

The generalized eigen-system {(𝜆𝑖,𝝓𝑖)}𝑛𝑖=1 of (L
𝑒,B)

satisfies

L𝑒𝝓𝑖 = 𝜆𝑖B𝝓𝑖, 𝑖 = 1, 2, . . . , 𝑛. (12)

Using the eigenfunctions, EHK can be analytically writ-
ten as

ℎ𝑒
𝑡 (𝑖, 𝑗) =

𝑛∑
𝑘=1

𝑒−𝜆𝑘𝑡𝝓𝑘(𝑖)𝝓𝑘(𝑗). (13)

The new heat kernels are determined by the discretized

edge-weighted Laplace-Beltrami operator, which incor-
porates more geometry. We can control the heat dif-
fusion easily by adjusting the edge weight 𝑤(𝑖, 𝑗). In-

tuitively, the heat diffuses faster along the prominent
parts, but rather slow when cutting across them, such
as sharp edges. Fig. 4 (a) and (b) show the difference be-

tween commonly-used heat kernels and our new EHK,
and it clearly illustrates that EHK are more aware of
local geometry. Moreover, EHK are robust w.r.t. noise

and perturbation (Fig. 4 (c)).

(a) (b) (c)

Fig. 4 Comparison between the commonly-used heat kernels
(a), our EHK (b) and EHK on the noisy surface (c). The
heat kernels of four different vertices (highlighted as small
red balls) on a cuboid are shown, respectively.

The discretization of the heat kernel introduced above
can be easily refined to be scale invariant using the

method in [26], if scale changes are encountered. Specif-
ically, assume a manifold 𝑀 is scaled to 𝑠𝑀 . The ma-
trix L𝑒 is unchanged, the mass matrix B becomes 𝑠2B,

and the eigen-system turns into {(𝜆𝑖/𝑠
2,𝝓𝑖/𝑠)}𝑛𝑖=1. The

EHK can be modified to

ℎ′
𝑡(𝑖, 𝑗) = 𝛽

𝑛∑
𝑘=1

𝑒−𝜆′
𝑘𝑡𝝓𝑘(𝑖)𝝓𝑘(𝑗), (14)

with 𝛽 = 𝐵(𝑖,𝑖)+𝐵(𝑗,𝑗)
2 , and 𝜆′

𝑘 = 𝜆𝑘

𝜆2
, which is scale

invariant.

5 Anisotropic diffusion by local convolution

Given an initial heat field 𝑓0 defined by the NS of 𝑀 ,

we can diffuse it isotropically or anisotropically using
EHK. We exploit heat kernel convolution in a local re-
gion to ensure the heat conservation and accelerate the

computation. Before examining the convolution, let us
first investigate the relationship between diffusion re-
gion and diffusion time.

The multi-scale property of heat kernels implies that
for small value of time 𝑡, heat kernels can be well ap-
proximated by the ones within a small geodesic neigh-

borhood of vertex 𝑣 [31,25]. An explicit relationship
between time and the size of diffusion region was given
in [9]. The heat kernel ℎ𝑡(𝑣, ⋅) can be viewed as the tran-

sition density function of the Brownian motion, and
is determined by the geodesic ball 𝐵(𝑣,𝑂

√
𝑐𝑛𝑡 log 𝑡).

Mémoli [23] further justified the interpretation of time

as a geometric scale from the view point of homogeniza-
tion of partial differential equations (PDE). Therefore,
it is justifiable and acceptable to define a heat region

around 𝑣𝑖 as

𝛺𝑖
𝑡 = {𝑣𝑗 ∣ℎ𝑒

𝑡 (𝑣𝑖, 𝑣𝑗) > 𝜏(𝑡)}, (15)
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where 𝜏(𝑡) is a threshold, which is set to 0.01/(1+𝑡) ac-

cording to our experience of the experiments. The heat
region can be found efficiently by taking advantage of
the nearest neighbor method [10]. Moreover, the heat

region of each vertex for a fixed time 𝑡 only needs to be
computed once. The region is invariant during the dif-
fusion using our iterative local heat kernel convolution.

The updated heat field after one-time convolution
in the heat region is

𝑓(𝑣𝑖, 𝑡) =
∑

𝑣𝑗∈𝛺𝑖
𝑡

ℎ̃𝑡(𝑣𝑗 , 𝑣𝑖)𝑓0(𝑣𝑗) (16)

where ℎ̃𝑡(𝑣𝑗 , 𝑣𝑖) =
ℎ𝑒
𝑡 (𝑣𝑗 ,𝑣𝑖)∑

𝑣𝑘∈𝛺
𝑗
𝑡
ℎ𝑒
𝑡 (𝑣𝑗 ,𝑣𝑘)

, and 𝑓0(𝑣𝑗) is the

value of initial field at 𝑣𝑗 . They can be written in matrix
form

F𝑡 = A𝑡F0, (17)

where F𝑡 = [𝑓(𝑣1, 𝑡), . . . , 𝑓(𝑣𝑛, 𝑡)]
𝑇 ,F0 = [𝑓0(𝑣1), . . . ,

𝑓0(𝑣𝑛)]
𝑇 , and A𝑡 is a sparse matrix with elements

A𝑡(𝑖, 𝑗) =

{
ℎ̃𝑡(𝑣𝑗 , 𝑣𝑖), if 𝑣𝑗 ∈ 𝛺𝑖

𝑡

0, otherwise.
(18)

We fix time 𝑡 = 𝑡0 for one-step diffusion in local heat

region. According to the semigroup identity of heat ker-
nels, the heat diffusion can be obtained by using the
local heat kernel convolution iteratively. The heat field

after 𝑘 steps (or equivalently, 𝑘𝑡0 time) is

F𝑘 = A𝑡0F
𝑘−1 = . . .A𝑘−1

𝑡0 F1 = A𝑘
𝑡0F0, 𝑘 = 0, 1, . . . .(19)

When 𝑘 = 0, the heat field is the initial field. As 𝑘 in-

creases, the heat diffuses to a larger region, and more
global behavior results from the convolution. The diffu-
sion turns into matrix-vector multiplication. Since A𝑡0

is a sparse matrix, the computation is very fast.

6 Numerical computation and implementation

Approximation The eigenvalues and eigenfunctions in
Eq. (12) are computed by solving the generalized eigen-

problem. The discrete heat kernel is approximated by
the first 𝑚 smallest eigenvalues and the correspond-
ing eigenfunctions, which contribute to the shape most.

Eq. (13) can be approximated by

ℎ𝑒
𝑡 (𝑖, 𝑗) =

𝑚∑
𝑘=1

𝑒−𝜆𝑘𝑡𝝓𝑘(𝑖)𝝓𝑘(𝑗), 𝑚 < 𝑛. (20)

As a remaining challenge for large data, the com-
putational cost may be incredibly high. In this case, a
multi-resolution approach can be used to accelerate the

computation of heat kernels. Vaxman et al. [33] showed
that heat kernels at any time can be properly approxi-
mated by a lower resolution version of the original sur-

face. To address this problem, we use a hierarchical

scale space based on a pyramid representation which

consists of consecutive layers {𝑀0,𝑀1, ...,𝑀ℎ} [13],
where ℎ is the number of layers, and 𝑀0 is the original
mesh. There is a large literature on mesh simplification

using various error metrics. General approaches such
as Progressive mesh [12] and QSlim [7] suffice for this
purpose. The EHK on 𝑀0 can be approximated on the

simplified mesh 𝑀ℎ by

H𝑒
𝑡 (𝑀

0) = P1
ℎH

𝑒
𝑡 (𝑀

ℎ)Pℎ
1 , (21)

whereHℎ
𝑡 consists of the EHK at the coarsest resolution

level 𝑀ℎ, and P1
ℎ, P

ℎ
1 are prolongation matrices using

barycentric coordinates [33].

Parameters There are two important parameters 𝜎 and

𝑘 in our approach. The parameter 𝜎 in Eq. (10) controls
the tendency of heat diffusion in some sense. When the
data has noise, 𝜎 should be larger, and vice versa. On

the other hand, if the preservation of sharp features is
important, 𝜎 should be small so that neighboring NCC
deviating far from the current one make very small con-

tributions to itself. The parameter 𝑘 in Eq. (19) controls
the diffusion level. In a nutshell, the bigger the 𝑘 is, the
larger region the heat will diffuse to. The other param-

eters, such as time 𝑡 and the number of eigenvalues 𝑚,
are robust in our approach. To make the time 𝑡 mean-
ingful and stable for different surfaces, we rescale the

surface such that the total area is equal to the number
of vertices. Thus, 𝑡 = 1 results in an average influence
region of about 1-ring size [33], i.e., one step in ran-

dom walk. In our experiments, we set 𝜎 = 0.1 for the
feature-preserving purpose, 𝜎 = 1 for the smooth diffu-
sion purpose, and fix 𝑡 = 1 and 𝑚 = 150, if no special

requirements are documented.

7 Applications and experimental results

In this section, we will first illustrate the heat conser-

vation of our method, by showing the variability of
total heat of a given heat field. Then, we detail ap-
plications of our method, including multi-scale feature

detection, scalar field smoothing and mesh denoising,
and hierarchical shape decomposition. All the experi-
ments are conducted on a computer with 2.67GHz CPU

and 4G RAM. Our system is implemented using C++
with invoked Matlab function ‘eigs’ to compute eigen-
decomposition. Most computational costs of our ap-

proach can be carried out in the pre-processing stage,
such as the computation of NCC, solving eigen-system,
finding local heat regions and the Cholesky decompo-

sition of the matrix in our reconstruction system. Ta-
ble 1 documents the statistics and time performance of
key parts in our experiments, where both synthetic and

scanned models are utilized.
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Table 1 Time performance of experiments. The 3rd, 4th,
and 5th columns show the timing (in seconds) for construct-
ing NCC, solving eigen-problem, and computing local convo-
lution (k=1) at all points.

Models # Vertices NCC Eigen Convolution

Blob 8036 0.829 4.798 0.153
Gargoyle 10002 1.053 5.889 0.196
Fandisk 6475 0.619 3.944 0.119
Dinosaur 28287 2.919 16.554 0.519
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Fig. 5 The plot of total heat on the Fandisk with different
methods. For convenience, we normalize the total heat to 1.

Heat conservation field A heat conservation field is con-
structed via iterative local heat kernel convolution. The
total heat of a field defined on 𝑀 at scale 𝑘 can be

measured by 𝐸(𝑀,𝑘) =
∑𝑛

𝑖=1 F
𝑘(𝑖), where F𝑘(𝑖) is

the value of scalar field F𝑘 at vertex 𝑣𝑖. The global
method [26] and the iterative method [28] can approxi-

mate and smooth a heat field, but do not conserve the
total heat of the field, which might lead to degeneracy.
It is easy to proof that our method rigorously ensures

the heat conservation in the field, which is significant for
applications (e.g. the last application proposed in this
section). In Fig. 5, we illustrate the total heat at dif-

ferent scale compared with these methods. Obviously,
our method conserve the total heat precisely, while the
other two methods generate evident degeneracy. Fur-

thermore, our approach is more efficient, since we con-
volve the heat kernels in the local region, which can be
reused during the diffusion procedure. The computa-

tion complexity of field construction in those methods
is 𝑂(𝑚𝑛2), while it is only 𝑂(𝑚𝑛𝑙) in our approach,
where 𝑙 ≪ 𝑛 is the number of vertices in the local heat

region.

Multi-scale feature detection Given a heat field con-
structed using local geometry quantities, such as NS,

we can detect multi-scale features by analyzing the heat
field and the heat diffusion. We declare a point 𝑣𝑖 as a
convex feature in scale 𝑘, if both of the following criteria

are met:

0
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3
3


(a)+: 208, -: 90 (b)+: 48, -: 22 (c)+: 10, -: 2

Fig. 6 Multi-scale feature detection on the Blob (initial
scalar field is assigned by NS, 𝜎 = 1 and 𝑐 = 0.8). (a) The
features in scale 𝑘 = 0. (b) The features in scale 𝑘 = 10. (c)
The features in scale 𝑘 = 40. The convex (+) and concave (-)
features are highlighted in blue and red balls, respectively.

1. F𝑘(𝑖) > F𝑘(𝑗), 𝑗 is the index of 2-ring neighborhood

vertex of 𝑣𝑖.
2. F𝑘(𝑖) > 𝑐max{F𝑘(⋅)}, 𝑐 ≤ 1 is a parameter.

The concave features can be defined in a similar way.
For small 𝑘, the detected features depend on more local

geometry information. For large 𝑘, more global infor-
mation is taken into account. Fig. 6 shows the features
detected in different scales. The features detected in the

scale 𝑘 = 0 are easily affected by the noise, and may
be redundant. As 𝑘 increases, the heat field becomes
smooth gradually, and the features detected in different

scales can well depict the shape information in a multi-
scale sense. We also compare our method with the heat
kernel signature (HKS) [31], as shown in Fig. 7. The

HKS fails to distinguish convex and concave features,
and has a limitation on small-scale features at short
time even though all the eigenfunctions are used, while

our method performs well in both cases. Moreover, our
method can also find other types of features by setting
the scalar field as different characteristics, such as tex-

ture, mass, density, conductivity, etc, as long as they
are available.

Scalar field smoothing and mesh denoising One of the
most direct applications of our approach is to smooth

the scalar field defined on mesh surfaces. Given any
scalar field without sharp features, we can smooth the
scalar field using a large 𝜎. In this case, our method and

the isotropic heat kernel smoothing methods [26,28]
perform almost the same in principle. Roughly speak-
ing, the larger 𝜎 is, the smoother the scalar field will be.

For the scalar field with sharp features, our approach
smooths the scalar field using a small 𝜎, and it preserves
the sharp features better than the two aforementioned

methods (Fig. 8 (a)-(c)). Moreover, our method has less
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Fig. 7 Comparison of feature detection on the Gargoyle be-
tween the HKS (left) and our method (right, 𝜎 = 0.1 and
𝑐 = 0.8). HKS has a limitation on small-scale features, such
as features in the eyes, and fails to distinguish convex features
(blue balls) and concave features (red balls), such as features
inside mouth.

deviation from the initial field because of the conserva-
tion of total heat.

After obtaining a smooth scalar field assigned by

NS, a smooth mesh can be reverse-engineered by up-
dating the vertex positions. We compute the new ver-
tex positions using NCC-based mesh reconstruction in

a least squares sense. To better reconstruct the surface,
we update the normals before updating the vertex po-
sitions by

𝑛′
𝑖 =

1∑
𝑗∈𝑁(𝑖) 𝑠𝑗

∑
𝑗∈𝑁(𝑖)

𝑠𝑗𝑛𝑗 , (22)

where 𝑠𝑗 is the NS at vertex 𝑣𝑗 . The reconstruction
system derived from the linear system in Eq. (5) is[
N
𝝎I

]
V′ =

[
S′n′

𝑣

𝝎𝑉

]
, (23)

where V′ is the matrix of unknown vertices, 𝝎 is a
weight matrix being set as the corresponding NS here,
S′ and n′

𝑣 are the updated NS and vertex normal, re-

spectively. Because of the anisotropic diffusion on shape,
our method performs well, especially for models with
sharp feature. We compare our method with the heat

kernel smoothing [28]. As shown in Fig. 8 (e)-(f), the
sharp features are better persevered using our method.

Hierarchical decomposition and processing In addition,

we examine a novel application of hierarchical decompo-
sition of signals (scalar field) over 3D models. A scalar
field defined on a 3D model can also be viewed as a

3D signal. Given any signal on a model S = F0, we
can decompose it into different frequency details and a
residual base signal as

S =
𝑘∑

𝑗=1

D𝑗 + S𝑘, D𝑗 = F𝑗−1 − F𝑗 , (24)
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.
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Fig. 8 Scalar field smoothing and mesh denoising. (a) Scalar
field assigned by NS of Fandisk (Gaussian noise of 5% mean
edge length). (b), (c) The smooth scalar fields computed by
the method in [26] (𝑡 = 4) and our method (𝜎 = 0.1, 𝑘 = 4).
(d) Fandisk mesh with Gaussian noise (5% mean edge length).
(e), (f) The smooth meshes obtained by the method in [28]
and our method.

whereD𝑘 is the detail in 𝑘-th level decomposition, S𝑘 =

F𝑘 is the residual base signal, and F𝑗 is the heat field
computed in Eq. (19). For small 𝑘, D𝑘 represents the
high frequency information of signal S, and vice versa.

Note that, one level decomposition here could contain
several steps in the diffusion processing for the sake of
efficiency.

Because of the conservation of total heat by our
method, that is

∑𝑛
𝑖=1 F

𝑘(𝑖) =
∑𝑛

𝑖=1 F
𝑘−1(𝑖), we can

easily get

𝑛∑
𝑖=1

D𝑘(𝑖) = 0, (25)

where D𝑗(𝑖) is the value of D𝑗 at vertex 𝑣𝑖. Our de-
composition in Eq. (24) is very similar to the empirical
mode decomposition (EMD) [15,16], which is proposed

so far for the function defined in the Euclidean space.
In principle, it can be viewed as a new extension of the
EMD to 3D models. In Fig. 9, we decompose a signal

into 3 levels of different frequency details and a residual
base signal respectively, that is S =

∑3
𝑗=1 D

𝑗 +S3, and

in each level decomposition,
∑𝑛

𝑖=1 D
𝑗(𝑖) = 0, 1 ≤ 𝑗 ≤ 3.
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Fig. 9 Hierarchical decomposition of 3D signals (assigned by NS, 𝜎 = 0.5). (a) The signals on the Dinosaur. (b) The 1st level
decomposition D1. (c) The 2nd level decomposition D2. (d) The 3rd level decomposition D3. (e) Residual base signal S3.

Fig. 10 Mesh reconstruction from 3D signals. (Left) Original
Dinosaur model. (Center) Reconstruction from a smoothing
filter (𝑤1 = 𝑤2 = 0, 𝑤3 = 1). (Right) Reconstruction from
an enhancement filter (𝑤1 = 1, 𝑤2 = 𝑤3 = 3).

Furthermore, we can process the signal in different
levels of detail

S̃ =
𝑘∑

𝑗=1

𝑤𝑗D
𝑗 + S𝑘, (26)

where 𝑤𝑗 is the parameter controlling the weight of the
𝑗-th level detail. They can be edited conveniently ac-
cording to different applications, such as enhancement
filter, smoothing filter, watermarking, etc. Then, the

updated shape𝑀 corresponding to the new signal S̃ can
be obtained using the reconstruction system in Eq. (23).
Fig. 10 shows the results of mesh reconstruction from

the updated 3D signals.

8 Conclusion

In this paper, we have studied both shape and scalar

diffusion on curved surfaces, with novel solutions in
many aspects, including NCC as local shape representa-
tion, anisotropic diffusion using EHK, and iterative lo-

cal convolution to reduce the computational cost. The

proposed solutions comprise a complete and versatile
system for multi-scale processing, which is valuable in

many applications with advantageous properties and
improved performance. Several applications, such as multi-
scale feature detection, scalar field smoothing and mesh

denoising, and hierarchical model decomposition are
pursued to showcase the broad utility of our approach.

In the near future, we plan to apply our method

to define and detect different types of features, such as
point features, line features, and area features. Surface
segmentation and model watermarking are also some

valuable applications that we plan to explore. More-
over, extending this approach to 3D volumetric datasets
deserves further investigation which can broaden our

method’s application scopes.
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Appendix A: The proof of parallel property

Given any vertex 𝑣𝑖, its normal 𝑛𝑖 = (𝑛𝑖𝑥, 𝑛𝑖𝑦, 𝑛𝑖𝑧), its
neighboring vertices {𝑣𝑗}, and the normalized normal weights
{𝜔𝑖𝑗}, we will prove that the NCC 𝛿𝑖 is parallel with the nor-
mal 𝑛𝑖. That is, 𝛿𝑖 = 𝜂𝑛𝑖, where 𝜂𝑖 is a constant.

First, there exists a plane 𝑃 ′ with normal 𝑛𝑖 passing
through the point 𝑣𝑖 =

∑
𝑗∈𝑁(𝑖) 𝜔𝑖𝑗𝑣𝑗 , whose points on such

plane satisfy

𝑃 ′ = 𝑛𝑖𝑥𝑥+ 𝑛𝑖𝑦𝑦 + 𝑛𝑖𝑧𝑧 − 𝑛𝑖 ⋅
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝑣𝑗 = 0. (27)

Second, let us project 𝑣𝑖 and {𝑣𝑗} onto the plane 𝑃 ′,
denoted as 𝑣𝑖′ and {𝑣𝑗 ′}, respectively. According to the re-
production property of mean value coordinates, we have

𝑣′𝑖 =
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝑣
′
𝑗 , 𝑣′𝑗 = 𝑣𝑗 + 𝜆𝑗𝑛𝑖, (28)

where 𝜆𝑗 is a constant. Obviously,

𝑣𝑖 − 𝑣′𝑖 = 𝜆𝑖𝑛𝑖, (29)

where 𝜆𝑖 is also a constant. Plug Eq. (28) into Eq. (29), we
have

𝑣𝑖 −
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝑣𝑗 = 𝜆𝑖𝑛𝑖 + 𝑛𝑖 ⋅
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝜆𝑗 . (30)

It is easy to obtain the following equation from Eq. (27)∑
𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝜆𝑗 = 0.

Finally, we have

𝑣𝑖 −
∑

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝑣𝑗 = 𝜆𝑖𝑛𝑖, (31)

where the left-hand side of Eq. (31) is the NCC 𝛿𝑖, and 𝜂𝑖 =
𝜆𝑖 is the magnitude of 𝛿𝑖. Hence, the NCC are parallel with
the corresponding vertex normals. ⊓⊔


