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ABSTRACT
In this paper, we introduce a method for learning illumi-
nation from single images, which can be further applied
to illumination-invariant algorithms in computer vision and
image-based rendering in graphics. Illumination learning has
been widely studied, yet still has some shortcomings such as
the restriction of Lambertian surfaces and the prerequisite of
known shape or texture. Our method can adaptively learn il-
lumination from images of vehicles with unknown shape and
texture. We formulate the illumination model with both dif-
fusion and specularity components using a frequency-space
representation, and adopt an iterative strategy to estimate
lighting, shape, and texture under a joint energy function. Us-
ing our method, we can perform de-lighting and re-lighting
on input images, and render other 3D models with learned
illumination. Experimental results show that our method can
work in a wide range of environments with both indoor and
outdoor illumination conditions.

Index Terms— Illumination learning, 3D model, de-
lighting, re-lighting

1. INTRODUCTION

When many computer vision problems such as detection,
recognition and tracking, are compounded with varying il-
lumination, they become extremely challenging. The ideal
case is to extract illumination from input images, so we can
run algorithms on the left de-lighted images, and if applica-
ble, render other objects with the extracted illumination. It
is, however, hard to achieve with complicated lightings and
unknown shape and texture of the object.

To date, techniques on varying illumination have been
widely studied from various aspects. For a number of al-
gorithms in computer vision, only the degraded reflectance
images are concerned for their invariance under varying il-
lumination, such as the intrinsic images [1], the illumination
ratio map (IRM) [2], etc. The IRM, for example, works on
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homogeneous Lambertian surfaces with linear responses to
illumination changes. Some other work [3, 4] focus on the
separation of diffuse and specular reflections using their dif-
ferent characteristics in the chromaticity space, while the il-
lumination has not been fully extracted and therefore can not
be transfered. The previous work on inverse rendering [5]
showed that the appearance of an object can be described as
a spherical convolution of the illumination and Bidirectional
Reflectance Distribution Function (BRDF). This framework
has been applied in computer vision problems [6, 7, 8], but
restricted to Lambertian surfaces where only the first 9 spher-
ical harmonic coefficients are needed. These methods also
have prerequisites of known geometry of the object, or a large
training dataset of object in the same category.

In this paper, we present a method that adaptively learns
illumination from single images of vehicles. Here the term
“learning” refers to estimating lighting coefficients from in-
put images. Our method alleviates the Lambertian restriction
and the prerequisites on shape and texture. The illumination is
formulated with both diffusion and specularity reflections us-
ing a frequency-space representation. A joint linear and non-
linear optimization is adopted to estimate the lighting, shape,
and texture iteratively. Initial values for shape and texture
are obtained using a 3D generic model and a color grouping
method. By our method, we can perform de-lighting and re-
lighting on input images, and render 3D models with learned
illumination from images. Experimental results show that our
method can work in a wide range or environments with both
indoor and outdoor illumination conditions.

2. ANALYTIC FORMULATION OF ILLUMINATION
MODEL

We consider the reflected light field B(x, ~wo) for a surface
point x and an outgoing direction ~wo, given by

B(x, ~wo) =

∫

Ω

T (x)ρ(~wi, ~wo)L(x, ~wi)(~wi · ~n)dwi, (1)

where ~wi is an incoming direction, and ~n is the surface nor-
mal. This integrand is the product of three terms: the texture
T (x), the BRDF ρ(~wi, ~wo), and the lighting L(x, ~wi).



The reflected light field can be expanded on spherical har-
monics Yl,m with spherical coordinates (θ, φ), given by

B(θ, φ) =

∞∑

l=0

l∑

m=−l

BlmYlm(θ, φ). (2)

Spherical harmonics are represented in the spherical coordi-
nates, forming an orthogonal system. In our method, we ex-
ploit an effective model of reflected light field which is de-
rived from the microfacet BRDF including two components:

B = Bd +Bs,slow,

where Bd is from the diffuse component of the BRDF, and
Bs,slow represents specularity from the slowly-varying light-
ing. Assuming the camera has a linear sensitive function in a
given spectrum band, we can approximate the image intensity
I as

I =

l∗∑

l=0

l∑

m=−l

ΛlLlm(Kdρdl +Ksρsl)Ylm(n), (3)

where Λl is the normalization constant, ρd and ρs are diffuse
and specular BRDF, Kd and Ks are diffuse and specular albe-
dos (texture), l∗ is the cutoff for levels of spherical harmonics,
and Ylm(n) is the spherical harmonic function of surface nor-
mal n in the local coordinate system. The illumination we
want to learn is approximated by

L =

l∗∑

l=0

l∑

m=−l

LlmYlm. (4)

For the Larmbertian BRDF, an analytic formula of Al =
Λlρdl can be computed numerically as

A0 = π, A1 =
2π

3
, A2 =

π

4
, A3 = 0, A4 = − π

24
, ...,

and more than 99% of the energy is captured by l ≤ 2. For
the specularity component of the BRDF, we use the Phone
illumination model with an approximation given by

Λlρsl ≈ e−
l2

2s , (5)

where s is the Phone exponent which can be approximated
according to certain materials or estimated independently by
specifying a neighborhood region of specularity under direc-
tional source of light. This is a good approximation when
l∗ ≈ √

2s. Furthermore, we assume Kd +Ks = 1. Then we
define the basis function as

blm(x) = (KdAl + (1−Kd)e
− l2

2s )Ylm(n), (6)

where x = [nx, ny, nz,Kd]
T . We use b(x) to represent the

transpose of the vector of basis functions blm(x), and L to
represent the vector of lighting coefficients Llm. Therefore,

Fig. 1. The GUI for shape initialization.

assuming s is known or under independent estimation, Eq. (3)
can be simplified as

I = b(x)L, (7)

which is as simple as the product of basis functions and light-
ing coefficients in a (l∗ + 1)2-dimensional space. This func-
tion is linear to L but nonlinear to x.

3. INITIAL SETTINGS OF SHAPE AND TEXTURE

Without known texture and BRDF, the problem of illumina-
tion learning is severely ill-conditioned. In fact for real appli-
cations, shapes and reflectance characteristics of objects are
usually unknown. Therefore, we specify the object category
as vehicle, since it has simple shape that is easy to approx-
imate, and uniform material with the same reflectance char-
acteristic. We also perform optimization on the shape and
texture while estimating the lighting coefficients to relieve re-
strictions on the initial settings.

Observing that only the surface normals are required in
Eq. (3), we adopt a generic model that approximates the shape
of a given vehicle to initialize its normals. The generic model
has 5 surfaces with 6 length parameters. Users can easily
adjust those parameters to generate an approximate model
through a GUI, as shown in Fig. 1.

For the initial texture, we adopt a color classifier inspired
by the work in [1] to group colors. We observe that the
changes in color between pixels are due to either illumination
or texture. When surfaces are Lambertian, any color changes
due to illumination should affect all three color channels
proportionally. When surfaces have low specularities, the
chromatic changes due to illumination between two adjacent
pixels should bring three color channels approximately pro-
portional effect. Assuming two adjacent pixels with the same
albedo have color c1 and c2, their directions in RGB color
space should be close. Otherwise, the chromaticity of colors
is changed and color changes are caused by the changes of
texture not illumination. To group colors associated with
the same texture class, we treat each color as a vector in
RGB space and normalize them. We then compute the angle
between normalized color ~c1 and ~c2 as

(~c1, ~c2) = arccos(~c1 · ~c2). (8)



If the angle (~c1, ~c2) is below a threshold, we assign them into
the same group. Finally, we compute the average of each
group of colors as the texture assigned to this group.

4. ILLUMINATION LEARNING

We design a joint energy function of x and L inspired based
on the errors-in-variables model [9], given by

E(x, L) = λ1Ex(x) + λ2Ef (x, L), (9)

where λ1 and λ2 are coefficients. We take x as the variable
with corresponding error δx in the initial setting, and L as
parameter going to be estimated. The first term is sum of
square of error δxi, expressed as

Ex(x) =
∑

i

(δxi)
2. (10)

The second term is the weighed quadratic sum of residual er-
ror fi(xi, L) = b(xi)L− Ii, given by

Ef (x, L) =
∑

i

wifi(xi, L)
2, (11)

where wi is a weight function defined as

wi =

[(
∂fi
∂xi

)T (
∂fi
∂xi

)]−1

. (12)

We solve this joint minimization problem iteratively, with
estimations of L and x in the each iteration. Taking the deriva-
tive of energy function E with respect to L, it yields

∂E

∂L
= 2[SL − CL]L− 2

∑

i

wibiIi, (13)

with the weighted scatter matrix and the covariance matrix:

SL =
∑

i

wib
T
i bi, CL =

∑

i

(wifi)
2

(
∂bi
∂xi

)T (
∂bi
∂xi

)
.

Let the derivative in Eq. (13) be zero, and lighting coefficients
L can be estimated by solving linear equations,

[SL − CL]L =
∑

i

wibiIi. (14)

In the same iteration, we also take the derivative with re-
spect to xi, which yields

∂Ei

∂xi
= 2λ1δxi + λ2(2wifi

∂fi
∂xi

+
∂wi

∂xi
f2
i ). (15)

By ignoring quadratic term and letting the derivative to be
zero, we can estimate δxi by

δxi = −λ2

λ1
wifi

∂fi
∂xi

. (16)

(a) input image (b) texture (c) nc

(d) diffuse (e) specular (f) rendered

Fig. 2. Example of illumination learning: The input image
(a) is decomposed as texture (b), normals (shown are the nor-
malized complements) (c), (d) diffuse lighting and (e) low-
specular lighting, which generate the rendered result (f).

Fig. 3. De-lighting results. The input images (first row) are
processed by three estimation methods with the same settings:
the method in [7] (second row), the method in [8] (third row),
and our method (bottom row).

Then we can update variables xi by estimated δxi. In imple-
mentation, we also impose normalization constraints on nor-
mals and the white light source.

An example of illumination learning with s = 8 is shown
in Fig. 2, where the image is spanned in a 25-dimensional
space. The estimated diffuse lighting illuminates all direc-
tions reflected by the environment, and the specular lighting
highlights the top of the car. The complements of recovered
normals are normalized nc =

1−n
|1−n| to visualize the details.

5. APPLICATIONS AND EXPERIMENTS

We apply our method to image de-lighting and re-lighting, re-
ferring to removing and transferring lighting effects of input
images. The de-lighting technique can be further applied to
illumination-invariant algorithms in computer vision, while
the re-lighting technique is an intuitive way to examine the
performance of illumination learning, with a byproduct of
lightening other 3D models.

De-lighting is performed by factorizing texture from in-
put images. To preserve more details, we smooth the input



(a) input image (b) target image (d) rendered image

Fig. 4. Re-lighting on a de-lit image: The input image (a) is
re-rendered (c) by the illumination learned from (b).

Fig. 5. Re-lighting on a 3D model: Illumination of input im-
ages (first row) is transferred to a 3D model (second row).

image using a Gaussian filter, and record the pixel-wise ratios
between the input image and its smoothed version. Then we
apply the ratios to the estimated texture to get the de-lit im-
age. Fig. 3 shows some indoor results of de-lighting. There
the input images (first row) are processed by three estimation
methods with the same settings: the method in [7] (second
row), the method in [8] (third row), and our method (bottom
row). The two previous methods only embody the diffuse
component in their illumination model. Hence the specular-
ity can be found in their delit images.

Re-lighting is performed by permutation of lighting co-
efficients L and basis functions b(x). A new image I ′ can
be rendered by the combination of its basis function b(x) and
learned illumination L′:

I ′ = b(x)L′, (17)

if the BRDF and texture are known. Fig. 4 shows a re-lighting
on a de-lit image, where the outdoor image (a) is re-rendered
(c) by the illumination learned from (b). It is more clear to
examine the illumination learning by transferring illumina-
tion to 3D models with known shape and texture, as shown
in Fig. 5. There illumination of input images (first row) is
transferred to a 3D model (second row). Please note the spec-
ular effects are transfered as well.

6. CONCLUSION

We have detailed a practical method to adaptively learn il-
lumination from single images of vehicles, which alleviates
the demanding requirements on Lambertian restriction and
known shape and texture. The goal of this method is to span
images on a low-dimensional space and estimate the lighting
coefficients. So far cast shadows and occlusions are not con-

sidered. It can not guarantee to acquire the accurate shape and
texture of the given object. In fact, details of shape and texture
are not necessary to be distinguished, since the majority of
lighting is approximated by a low-dimensional vector. We ap-
ply this method to image de-lighting and re-lighting. Experi-
mental results demonstrate that our method can work in both
indoor and outdoor environments. Moreover, our method can
couple the vehicle model fitting method [10] to further omit
the generic model.
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