
1

Surface Mapping using Consistent Pants
Decomposition

Xin Li, Student Member, IEEE, Xianfeng Gu, Member, IEEE, and Hong Qin, Member, IEEE

Abstract—Surface mapping is fundamental to shape computing and various downstream applications. This paper develops a pants
decomposition framework for computing maps between surfaces with arbitrary topologies. The framework first conducts pants
decomposition on both surfaces to segment them into consistent sets of pants patches (a pants patch is intuitively defined as a genus-
zero surface with three boundaries), then composes global mapping between two surfaces by using harmonic maps of corresponding
patches. This framework has several key advantages over existing techniques. First, it is automatic. It can automatically construct
mappings for surfaces with complicated topology, guaranteeing the one-to-one continuity. Second, it is general and powerful. It flexibly
handles mapping computation between surfaces with different topologies. Third, it is flexible. Despite topology and geometry, it can also
integrate semantics requirements from users. Through an simple and intuitive human-computer interaction mechanism, the user can
flexibly control the mapping behavior by enforcing point/curve constraints. Compared with traditional user-guided, piecewise surface
mapping techniques, our new method is less labor-intensive, more intuitive, and requires no user’s expertise in computing complicated
surface map between arbitrary shapes. We conduct various experiments to demonstrate its modeling potential and effectiveness.

Index Terms—Mathematics of Computing, Computer Graphics, Computational Geometry and Object Modeling, Geometric algorithms,
languages, and systems.

F

1 INTRODUCTION

Computing bijective surface mappings is one of the
most fundamental problems in modeling and simulation
fields and their engineering applications. Its primary
goal is to build up a one-to-one correspondence from
one shape to another. This mapping has been widely
used as an enabling tool for numerous applications
such as shape analysis, retrieval, shape morphing, tex-
ture/attribute/motion reuse, recognition, etc.

Techniques for surface mapping computation can be
classified into implicit methods and explicit methods.
Implicit methods typically make use of the volumetric
concept. Such methods usually pay less attention to the
underlying topology. In addition, they do not require
surface models’ generation from many real-world raw
data acquired from scanners. However, their drawbacks
are also obvious – they are computationally more expen-
sive, because volume-based techniques must consider
one more dimension. The lack of efficiency significantly
restrains their application scopes in practice. In contrast,
the majority of surface mapping techniques is based
on the explicit approach (our method presented in this
paper falls into this category). Such an approach only
uses surface’s information (e.g., mesh’s connectivity and
vertices’ positions) for the mapping computation. Com-
pared with volume-based techniques, it is more efficient
and direct for most graphics/modeling/visualization

• X. Li is with Department of Computer Science, Stony Brook University
(SUNY), Stony Brook, NY 11790.
E-mail: xinli@cs.sunysb.edu

• X. Gu and H. Qin are with Stony Brook University.

Manuscript received July 24, 2008.

applications.
Explicit methods need to consider surface topology

carefully. When the input surfaces are with complicated
topology, i.e., with a large amount of handles or bound-
aries, the computation is much more challenging and
a large portion of existing research focuses on cases
dealing with surfaces with trivial topology. Furthermore,
when we try to map a surface to another surface with dif-
ferent topological type, the one-to-one continuity could
not be guaranteed, and some tearing has to happen in
some specific regions. Much less current work tackles
this case due to its technical difficulties.

We further classify the explicit surface mapping tech-
niques into two general approaches. One is local ap-
proach, or the piecewise method (segmentation + local
mapping); and the other is the global approach (global
mapping without segmentation). The global approach
works well for genus-0 surfaces but meets great chal-
lenge when dealing with cases of non-trivial topological
surfaces; [1] presented a method to compute the globally
optimized surface mapping. However, the majority of
surface mapping methods ([2], [3], [4], [5], [6]) follow
the direction of local approach due to its efficiency and
controllability. The basic idea of local approach is to
firstly partition two surfaces into two consistent sets of
sub-regions with simple topology, then compute locally
optimized mapping between corresponding sub-regions,
and finally compose the local results to a global contin-
uous map.

Although surface mapping is important and has been
widely studied, state-of-the-art surface mapping tech-
niques are far from adequate and perfect. A more desir-
able and powerful surface mapping method is needed

2

and should have the following properties.
The first one is generality. The mapping methodol-

ogy should be general, i.e., it should be able to han-
dle surfaces with arbitrary topology, with or without
boundaries. The generality also includes another impor-
tant issue – being capable of accommodating topology
changes. We can see the importance of topology change
in surface mapping from its applications. When we use
surface mapping for shape comparison and difference
analysis, data to be registered could easily have dif-
ferent topology due to shape variations and accompa-
nying noises (e.g., small boundaries and tiny handles).
Moreover, when we use surface mapping to drive the
animation of a morphing sequence, we usually transform
one object to another based on their intrinsic semantics,
regardless of whether they have the same topology or
not (see Fig. 14(a)).

Many existing surface mapping techniques primarily
focus on genus-zero surfaces, and recent works start to
aim at general surfaces, yet much fewer techniques have
been devised to flexibly work for arbitrary topological
changes. In this work, we aim at a general framework
that can handle arbitrary mesh inputs.

The second property is automation. Most current sur-
face mapping techniques heavily rely upon large amount
of user intervention. Although in many applications, the
requirements of object semantics forbid us from entirely
ignoring user intentions, the primary reason for the
lack of fully automatic methods in this research field
are still due to technical difficulties. Real-world shapes
could be complex in both topology and geometry. To our
best knowledge, if the given surfaces are topologically
non-trivial (neither sphere-like nor disk-like), even with
the same topology, no existing techniques are able to
compute the mapping in a fully automatic way. A key
difficulty stems from that, although most current map-
ping methods depend on a preprocessing stage of mesh
segmentation, few surface segmentation techniques have
been devised for automatically providing consistent seg-
mentation on different surfaces.

When mapping is used in applications dealing with
large amount of data, such as analysis and compari-
son on shapes in database, user involvement on every
registration trial could not be practical. Therefore, we
definitely need a surface mapping technique that works
for general inputs, yet is as automatic as possible.

The third property is controllability. Although au-
tomation makes the mapping process much less labor-
intensive, in applications where the semantics plays a
critical role, such as morphing (requiring feature points
matching), automatic methods based on pure topology
and geometry fail. We must have a new mechanism that
can provide an easy way to let the user manage the
behavior according to semantics-specific requirements.
Indeed, current surface mapping techniques oftentimes
provide limited control to the user; but for surfaces with
complicated topology, they either require a large number
of markers [5] or need user’s great efforts to design the

base mesh as a good starting point [2], [7]. In principle,
a good mapping framework should provide an intuitive
and easy-to-use human computer interaction.

Fourth, it is also important to emphasize complete-
ness. The global continuity is typically required for the
underlying mapping. However, between given surfaces,
there may exist many continuous yet topologically dif-
ferent mappings, i.e., mappings could have different
homotopy types (see Fig. 9). Two surface mappings
belong to the same homotopy type if and only if they can
continuously deform to each other without degeneracy.
Among so many legitimate choices, there are no viable
ways to select the best ones from all candidates, since
different homotopy may represent different semantics. In
such a case, being able to let user easily and intuitively
determine arbitrary topological type of a mapping not
only demonstrates the completeness of the mapping
algorithm, but also has practical importance.

In this paper, we design a new surface mapping
framework in order to unify the above four properties.
We conduct our experiments on several challenging
examples to demonstrate the power and potential of our
method. Our contributions are as follows.

• Generality: Our framework flexibly handles surfaces
with arbitrary topology, with or without boundaries.
It also handles surface mapping with topological
changes.

• Automation: Our framework has great automation.
When a set of surfaces are with complicated topol-
ogy, our decomposition can generate the consistent
segmentation automatically.

• Controllability: When for any semantics reasons,
feature alignment is necessary; user interaction can
be easily applied. Our framework coherently aligns
constraint points or curves to enforce constraints,
and provides users a simple and intuitive mecha-
nism to control the mapping behavior.

• Completeness: Our framework can enumerate dif-
ferent homotopy types of mappings. It shows the
completeness (as well as controllability) of our
framework, demonstrating the rigorousness of this
method from the mathematical point of view.

• Efficiency: The technical core of the decomposition
is simple and efficient, the algorithm primarily relies
on the Dijkstra algorithm, and only the triangular
metric of given surfaces is employed.

The remainder of this paper is organized as follows.
We briefly review the prior work in Section 2, then
introduce theoretic background as well as necessary
terms and definitions in Section 3. The fundamental
idea of our framework is illustrated in Section 4, which
is a two-step pipeline, as discussed in Section 5 and
Section 6, respectively. Some implementation details and
discussion are given in Section 7. Finally, we demon-
strate experimental results with various applications in
Section 8 and conclude the paper in Section 9.

3

2 RELATED WORK

Surface mapping is a fundamental problem in computer
graphics/modeling fields. In order to build up a one-to-
one mapping from one surface to another, we can use a
straightforward yet effective method that uses a regular
domain as the bridge. Mappings from a surface to com-
mon regular domain such as plane or sphere is usually
called surface parameterization. Surface parameterization
has been extensively studied, and have been playing an
important role in the modern graphics, modeling and
geometric processing pipeline. A survey of parameteri-
zation is beyond the scope of this work, and we refer
the reader to [8] and [9]. In the following, we skip the
review of parameterization, and only briefly recap the
surface mapping techniques.

Earlier work on computing inter-surface mappings is
mostly motivated by the need of shape blending. The
natural and intuitive approach, which uses the canonical
planar or spherical domain and establishes surface cor-
respondence using parameterization techniques, is best
suitable on the genus-zero case.

For genus-zero meshes, the sphere (for closed surfaces)
and the plane (for open surfaces) are naturally widely-
used intermediate domains. Kent et al. [10] projected
star-shaped surfaces onto spheres, and merged them
by clipping one sphere to the other. Kanai et al. [3]
used harmonic maps to build the correspondence from
surfaces to the unit disk domain, therefore not only the
star-shaped surfaces, but also all genus-zero closed or
open surfaces can be mapped easily. However, it only
allowed one constraint point from users. Alexa [11] pro-
posed to match multiple feature points between genus-0
surfaces. His work wrapped two surfaces onto a unit
sphere by minimizing a distance function, and feature
points on the surface were aligned and the resultant
embedding was used for the surface mapping. They
started to aim for matching multiple feature points.
However, its limitation is that no bijectivity is guaranteed
and hard constraints may not be fully enforced. More
recently, Asirvatham et al. [4] used their constrained
spherical parameterization to map genus-zero surfaces
onto the sphere, the progressive mesh was used to get
a simple base mesh and to enforce constraints at certain
positions on the sphere. This method allows multiple
hard constraint points between genus-0 surfaces.

For surfaces with more general topology, common
canonical domains such as disks and spheres become un-
available. Directly solving intra-surface mapping usually
fails. Most techniques, as we mentioned in the previous
section, first segment surfaces into consistent sets of sub-
regions, then compose or refine the global result from the
sub-region mappings. DeCarlo and Gallier [2] designed
a surface mapping framework based on user-specified
base meshes. When base meshes are carefully designed,
the framework is flexible, and mapping between surfaces
with different topology can be computed. However,
deep domain knowledge in topological surgery may be

required to manually design consistent base meshes;
and when the surface has high genus, the design are
usually quite complicated. Only examples up to genus-
2 were provided in their work. Gregory et al. [7] and
Zöckler et al. [12] also used the base mesh approach.
When the consistent “base mesh” have been manually
designed, harmonic or barycentric mappings are used to
correspond these sub-regions accordingly. More earlier
surface mapping work for morphing applications can be
found in the survey [13].

Recent work has been trying to seek more automatic
methods to consistently generating the base mesh. Lee
et al. [14] used their “MAPS” algorithm to hierarchically
map fine meshes onto a common base mesh. Praun et
al. [15] introduced a graph tracing algorithm to transfer
the coarse base mesh from one surface to another with
the same topology. Kraevoy and Sheffer [5] designed
another algorithm to trace out base meshes consistently
on different surfaces. To build up the base meshes, many
feature points have to be provided by users for high
genus surfaces. For example, at least four points are
required for each topological handle to proceed the base
mesh tracing algorithm. Schreiner et al. [6] first traced
original surfaces into a corresponding set of triangular
patches, with feature points as path endpoints, and cre-
ated original surfaces’ progressive mesh representations.
Then they created a trivial map onto the base mesh, and
iteratively refined the map back to the original surfaces.

Base mesh construction (consistent segmentation) in
many of these aforementioned works consumes a large
amount of human labor, which motivates the recent
research direction of the automatic generating segmenta-
tion on surfaces and its subsequent mapping framework.
This automation becomes very challenging for surfaces
with complicated topology, where little work has been
explored. Furthermore, when given surfaces with dif-
ferent topologies are present, it is even more difficult.
Manual base mesh design [2] requires greater effort and
stronger expertise from the user. This is the motivation
for us to seek the automatic decomposition for consis-
tent shape segmentation for surfaces with complicated
topology.

A topological issue should be considered for mapping
between surfaces with nontrivial topology. It is the so-
called homotopy type of mappings. In [16] and [1],
canonical homology bases [17] and systems of loops [18]
were used to study this issue and build mappings of
different homotopy types. [19] defined terms handle loops
and tunnel loops, which provide another intuitive way
to study the topological handles on surfaces; they also
introduced a practical computation algorithm to com-
pute tunnel and handle loops respectively. In our work,
if a given surface has non-trivial topology, our algorithm
takes the surface as well as its handles and tunnel loops
as inputs.

Surface Pants decomposition has been widely stud-
ied [20]. Work has been done to investigate the optimal
segmentation of a given surface into pants [21]. For

4

surface mapping purpose, instead of decomposing just
one surface, we need to compute consistent decomposi-
tion on several surfaces, or find canonical decomposition
for the same types of surfaces. Less work has been
accomplished along this direction.

3 THEORETICAL FOUNDATION

3.1 Definition of Pants Decomposition
We briefly introduce the related background in topology
and geometry and make necessary definitions in this
section.

A surface M is a topological Hausdorff space in which
each point has a neighborhood homeomorphic to either
the plane or the closed half-plane. Points with closed
half-plane neighborhood are defined as the boundary of
M .

A path is a continuous map p : [0, 1]→M . A loop(cycle)
is a closed path, meaning that the endpoints p(0) and
p(1) coincide. The concatenation of two paths p and q,
with p(1) = q(0) is the path p ◦ q defined by

(p ◦ q)(t) =
{

p(2t), t ≤ 1/2;
q(2t− 1), t ≥ 1/2.

When we say two paths are homotopic, it means one
path can continuously evolve to the other one through
a family of paths on the surface. Rigorously speaking, a
homotopy between paths p and q is a continuous map
h : [0, 1]×[0, 1]→M s.t. h(0, ·) = p, h(1, ·) = q, h(·, 0) = a,
h(·, 1) = b, where a and b are two paths joining p(0)
with q(0) and p(1) with q(1), respectively. We denote the
homotopy equivalence class of path p as [p].

All homotopy classes under the product [p]◦[q] = [p◦q]
form a group called the fundamental group, denoted as
π1(M). Suppose f : M → M ′ is a continuous map, p
is a loop on M , then f ◦ p is a loop on M ′. f maps
the homotopy class [p] to the homotopy class [f ◦ p],
and f induces a homomorphism f∗ : π1(M) → π1(M

′).
Suppose f1, f2 : M → M ′ are two continuous maps
between M and M ′, we say f1 and f2 are homotopic,
if and only if they induce the same homomorphism
between the fundamental groups f 1

∗
= f2

∗
.

A pair of pants is a genus-0 surface with 3 boundaries.
A pants decomposition of M is an ordered set of simple,
pairwise disjoint cycles that splits M into pairs of pants.
Every compact orientable surface, except the sphere,
disk, cylinder, and torus, has pants decomposition. If M
is of genus G and has B boundaries, a pants decompo-
sition is made of 3G + B − 3 cycles [20]. In this work,
we present an automatic decomposition algorithm to cut
surface apart iteratively along certain non-trivial loops.
The 3G + B − 3 cycles segment the given surface M to
2G−2+B pairs of pants (M0, . . . ,M2G−2+B−1). Each pair
of pants Mi (for simplicity, we also call such a surface
patch a pants patch in the remaining part of this paper)
has three boundaries, which are denoted as the waist Γ0

i ,
and two legs Γ1

i ,Γ
2
i . Two pants Mi and Mj are adjacent

if they share boundaries.

3.2 Handle and Tunnel Loops
Suppose a closed embedded
surface M ⊂ R

3 separates R
3

into a bounded space I and
an unbounded space O. Han-
dle and tunnel loops of M can
be defined as follows (see also
[19]). A loop bi is a handle if
it spans a disk in the bounded
space I; if one cuts M along
bi and fills the boundary with
that disk, one eliminates a handle. A loop ai is a tunnel
if it spans a disk in the unbounded space O; and its
removal eliminates a tunnel. The handle and tunnel
loops characterize important topological information of
the surface, and we use them to determine the homotopy
types of our mappings. An intuitive illustration is shown
in the above figure. Red curves represent the handle
loops while the green ones are tunnel loops. More details
about handle and tunnel loops are addressed in [19].
All handle loops form a basis of π1(I), and all tunnel
loops form a basis of π1(O). The union of their homology
classes form a basis of π1(M). Respectively, tunnel loops
and handle loops can be effectively computed using
techniques presented in [19]. Our algorithm takes sur-
faces, their handle and tunnel loops as input.

4 OVERVIEW OF KEY IDEAS

Pants as Decomposition Elements. The core of our
mapping framework is consistent pants decomposition.
Given a set of arbitrary surfaces of the same topology,
our decomposition scheme canonically segment these
surfaces into consistent sets of patches with “pants”
topology. The reason that “pants” is used as the de-
composition element rooted in topology. Surfaces are
topologically classified by their handle numbers and
boundary numbers, and characterized by Euler numbers.
For example, a genus-G surface with B boundaries has
its Euler number χ = 2−2G−B. The Euler numbers for
surfaces of most topological types are negative integer
(except for some trivial cases, e.g. G = 0, B = 0, see
below for detailed discussion). The Euler number of a
pants patch is −1, and therefore pants decomposition
provides a canonical decomposition scheme, partitioning
this surface into 2G+B − 2 pants patches.

Decomposing a Surface. The first step of our mapping
framework is pants decomposition. It segments the given
surface into a set of pants. Once the indexed handle
and tunnel loops (ai, bi, 0 ≤ i < G) are provided in the
preprocessing stage 7.1, the subsequent decomposition
is unique and we will obtain an ordered set of pants.

To give an intuitive overview, we start from a closed
genus-G (G ≥ 2) surface M . In Fig. 1, a genus-4 torus
example is used to illustrate key steps of our pipeline.
First, we remove G handle patches from M (a), and
get a set of genus-one surfaces Mi, (0 ≤ i < G) with
one boundary and (if G ≥ 3), a topological sphere M ′

5

(a) (b) (c)

Fig. 1. Pants Decomposition Pipeline. (a) Find and remove
“waists” of handles. (b) and (c) Decompose the base patch and
handle patches.

� � �� � �� � �� � � � � �� � �� � �� � �
��� �� �� �� � � �� �	 		 	

(a) (b) (c) (d)

Fig. 2. Pants Decomposition on Surfaces with Simple
Topology. (a) A genus-2 surface has 2 handle patches, no
base patch. (b) A closed genus-1 surface (χ = 0) needs one
punch. (c) A topological disk (χ = 1) needs two punches. (d) A
topological sphere (χ = 2) needs three punches.

with G boundaries. We call M ′ the base patch and these
boundaries waists. Second, we decompose the base patch
M ′ and all the handle patches Mi into pants patches ((b)
and (c)). For genus-2 surfaces, no base patch exists, 2
handle patches M0 and M1 compose the segmentation
(Fig. 2(a)).

When surfaces have high genus (G ≥ 2) with bound-
aries, we leave boundaries on the base patch M ′, treat
them as usual “waists”, and apply base patch decompo-
sition similarly.

We can also decompose surface M with more trivial
topology (G < 2) with some extra “holes”. The basic idea
is, the Euler number of a pair of pants is −1, so if M ’s
Euler number χ = 2− 2G− B is negative (for example,
G ≥ 2 will guarantee χ < 0), M can be decomposed
directly. Otherwise, we punch holes on M until M gets
a minus Euler number. One punch decreases the Euler
number by 1, and since the Euler number of a surface
can not exceed +2, we at most need 3 punches.

More specifically, if M is genus-1 and has a boundary,
χM = −1, it is directly processed as a handle patch Mi. If
the surface M is genus-1 and closed (Fig. 2(b)), χM = 0,
one marker is required from the user. We punch a hole
on the marker, get a boundary and make χM = −1 so
that it can also be decomposed like Mi. If M is a genus-
0 surface with a boundary (Fig. 2(c)), like a disk, then
χM = 1. We already have one “waist”, and need two
more punches as “legs”. If the surface is a closed genus-
0 surface (Fig. 2(a)), three markers are required to form
a pair of pants.

When a genus-zero or genus-one surface has more
than one boundary, similarly we compute its Euler num-
ber and check whether extra punches are necessary. As
we will discuss in the later part of this paper, these mark-

ers can be used as feature points in the surface mapping
because their exact correspondence is guaranteed.

�
�

����
��
��
���

�� ��
�
��
�

��
�
��
���

��

P1

P3 P4

P5P2

P0 P0 P1

P3

P2

P4

P5

Q1 Q0

Q5

Q4
Q3

Q2

Q1
Q0

Q5

Q4 Q3

Q2

Q1 Q0

Q5

Q4
Q3

Q2

P1

P3 P4

P5P2

P0

Fig. 3. Mapping Two Pants Patches. Each pair of pants is
decomposed into two topological hexagon patches. Harmonic
maps from these patches to regular hexagons are used to
compose the pants mapping.

Pants Mapping. When surfaces are decomposed into
a set of sub-regions, each with “pants” topology, the
mapping computation becomes easier. To make sure
the map has global continuity and bijectivity, boundary
mappings on neighboring sub-regions have to be con-
sistent. Many mapping techniques with fixed boundary
conditions, such as harmonic map [22], mean value
coordinate map [23] and so on can all be the choice for
pants mapping. Free boundary mapping techniques are
not preferred for sub-regions mapping here because if
we cannot control the boundary mapping behavior, it
will fail to satisfy continuity and bijectivity along the
sub-regions’ boundaries.

In this work, we use the harmonic map, because it is
physically natural and can be computed efficiently. Like
other fixed boundary mapping techniques, the shape
of the target regions should be convex to guarantee
the map’s existence and validity. Such a direct convex
domain for shapes with pants-topology does not exist;
therefore, we simply decompose the pants into two
patches with disk-like topology to make the mapping
computation stable. As illustrated in Fig. 3, each pants
patch is decomposed into two topological hexagons,
and each hexagon is harmonically mapped to a regular
hexagon. The pants mapping is then composed through
these hexagonal domains.

5 CONSISTENT PANTS DECOMPOSITION

This section introduces our algorithm and implementa-
tion of the consistent pants decomposition on surfaces.
The pipelines are introduced in Section 5.1, Section 5.2,
and Section 5.3, respectively.

6

5.1 Removing Handles

The first step of the pipeline is to remove handle patches
from a given surface M . We iteratively trace a special
shortest cycle wi that topologically bounds a handle and
slice M along it to separate this handle patch (which
becomes a pants patch Mi later) from M . wi indicates
that we make it the “waist” of Mi. Given the handle
loop (ai) and tunnel loop (bi), the cycle wi is homotopic
to ci = a1

i ◦ b1i ◦ a−1
i ◦ b−1

i . The computation of wi is not
trivial, which is illustrated using the following example.

ai

bi

wi ∼ ci

��
��

P
−1

i

P
1

i

bi

(a) (b)

������
 !"�"#�#

b−1

i

P
−1,−1

i

P
1,1
i

b1

i

P
−1,1
i

P
1,−1

i ci = a
1

i
◦ b

1

i
◦ a

−1

i
◦ b

−1

i

(c) (d)

Fig. 4. Computing ci of the handle i. (a) wi is the waist, but
we need to compute ci first. (b) Slice ai apart, get P 1

i and P−1

i .
(c) Slice bi apart, P 1

i and P−1

i split to P
1,1

i , P 1,−1

i , P−1,1

i and
P
−1,−1

i separately. (d) The newly generated boundary is ci.

Step One: Compute ci.
Fig. 4 shows a surface patch near the handle and il-
lustrates the idea. In this step, we compute the curve
ci = a1

i ◦ b1i ◦ a−1
i ◦ b−1

i which is homotopic to wi. As (b)
and (c) show, we slice ai and bi along their intersection
point, and get the resultant green boundary in (d):
ci = P 1,1

i → P 1,−1
i → P−1,−1

i → P−1,−1
i → P−1,1

i → P 1,1
i .

Step Two: Shrink ci to the “Waist” wi.
As shown in Fig. 5, in step one, we sliced apart M ((a))
and get all its ci ((b)). Now we iteratively shrink each
ci to its shortest homotopic cycle wi. It is computed
through the following algorithm 1:

Algorithm 1: Shrink ci to wi.
In: Surface M , ci.

Out: The shortest loop wi homotopic to ci.
1. Connect all existing boundaries except ci together

using shortest paths (dashed green curves in
Fig. 5(b)).

2. Slice these paths, we get one new large boundary c′i
(Fig. 5(c)). M becomes a topological cylinder.

3. Compute the shortest path γ (green curve in
Fig. 5(c)) connecting the cylinder’s two boundaries.

4. (The shortest cycle wi at least intersects once with γ)
Slice γ apart, every point p ∈ γ splits to a pair (P, P̃).
Find the point pair (P, P̃) having the minimal length
of shortest connecting path. This shortest path is wi
(blue curve in Fig. 5(c)).

a2

b2
b0

b1

b3

a1

a0

a3

c0

c3

c2

c1

c23

c12

(a) (b)

c
′

i

ci

P

P̃

c3

c2

c1

w0

(c) (d)

Fig. 5. Computing the “Waist”. (a) Slice M apart along its
handle/tunnel loops, get boundaries ci. (b) Connect all other
boundaries j, (j 6= i) to a large boundary c′i, and get a topo-
logical cylinder. (c) Slice apart γ (green) connecting ci and c′i;
get a topological “trapezoid”; compute wi (blue) as the shortest
path connecting boundary point pairs. (d) Continue the process
on other handles.

Here, the shortest path connecting two curves can be
straightforwardly computed in O(n log n) by a slightly
modified Dijkstra algorithm: first, set all points on one
curve as the initial starting set, second, keep propagating
until a vertex on the target curve is hit, finally, trace the
path from this hit point on the target curve back to the
point on the source curve and this is the shortest path
that we want.

When we get w0 from c0, we remove the sub-region
bounded by c0 and w0 from M , and denote it as M0. We
go on processing the above algorithm on other ci, i =
1 . . . G− 1 on the new M , only substituting c0 by w0 as
shown in (d).

This process ends after G steps, and we get G handle
patches M0 . . .MG−1. Each waist wi is the shortest cycle
on M\ ∪i−1

j=0 Mj , making the segmentation geometrically
optimal under this order. We also get a leftover patch
M , which is a topological sphere with G holes, denoted
as the base patch M ′. We further decompose M ′ and all
the Mi into pants patches in the following sections.

5.2 Decomposing the Base Patch

The base patch M ′ is a topological sphere with G + B
holes (G is the genus, B is the number of original
boundaries on surface M). As we mentioned previously,
when there are less than 3 boundaries (for example,
G < 3, B = 0), there is no base patch. In those cases, this

7

w1

w3

w2

w4

w0

w
′

0

w3

w
′

0

w2

w
′

1

w4

(a) (b)

Fig. 6. Decomposing the Base Patch. (a) Slice w′0, get a
new pair of pants. Boundary number decreases by 1. (b) Set w′0
as a new boundary, go on to compute w′1.

step is skipped. Fig. 6 illustrates illustrates an example
of our base patch decomposition, the algorithm is as
follows.

Algorithm 2: Base Patch Decomposition.
In: Base Patch M ′ and all the waists wi=0...G+B .

Out: G+B − 2 pants patches.
0. Put all boundaries wi of M ′ into a queue Q.
1. If Q has ≤ 3 boundaries, end; else goto Step 2.
2. Compute a shortest loop w′ homotopic to wi ◦ wj .

(Red curves in Fig. 6(a) and (b))
3. w′, wi and wj bound a pair of pants, remove it from

M ′. Remove wi and wj from Q. Put w′ to Q. Goto
Step 1.

During each iteration, we decrease the number of
boundaries on M ′ by 1 because two boundaries wi
and wj are removed, one new boundary w′ is created.
Therefore, this algorithm will process for G + B − 3
iterations, and we get G+B−2 pants patches (G+B−3
from iterations, and base patch becomes the last one).

In step 2, we need to trace a shortest loop w′ homo-
topic to wi ◦wj . The computation follows the idea of the
previous algorithm of shrinking waists (Fig. 5(b) and (c)).

Algorithm 3: Compute shortest loop w′ homotopic to
wi ◦ wj .
In: Surface M ′ and two waists wi, wj on it.

Out: Shortest (under the given metric) loop w′ homotopic
to wi ◦ wj .

1. Connect wi and wj together by a shortest path wij .
2. Connect all other loops in Q together with shortest

paths without intersecting wij . These loops together
form a new big boundary w′

ij

3. wij and w′

ij bound a cylinder (same as in Fig. 5(c)).
Compute the shortest cycle w′ using the same idea
of step 3 and step 4. in Algorithm 1.

5.3 Decomposing Handles Patches
After we find each waist wi in the pipeline’s step one, we
remove the handle patches Mi from M , each of which
is a genus-1 surface with one boundary. We can simply
find a shortest cycle homotopic to the handle loop ai and
slice it apart to make Mi a pants patch.

The idea is illustrated in Fig. 7. We first slice ai to
get a cylinder with an inner boundary wi; then we find

wi

ai

ai

ãi

wi

P̃P

(a) (b)

Fig. 7. Decomposing a Handle Patch. (a) Slice ai apart.
(b) Slice apart of the green curve that connects two outer
boundaries. Then find the shortest path (red) connecting cor-
responding point pairs on the green curve.

the shortest path γ (green curve in (b)) connecting two
outer boundaries. Then we slice γ, and find the shortest
“shortest paths” connecting P and P̃ , P ∈ γ, P̃ ∈ γ̃. Now
we make Mi a pants patch by slicing this shortest cycle
(red cycle in (b)).

6 MATCHING PANTS PATCHES

After we perform consistent pants decomposition on two
surfaces M and M ′ respectively, we get two consistent
pants sets Mi, (i = 0 . . . n) and M ′

i , (i = 0 . . . n). In
this section, we map each corresponding pairs of pants
patches: fi(Mi)→M ′

i .
To assure global continuity, mappings across the pants’

boundaries should be consistent. Rigorously speaking, if
a curve segment γ is on two adjacent pants Mi and Mj :
γ ⊂ ∂Mi, γ ⊂ ∂Mj , then we should have fi(γ) = fj(γ).
Therefore, as we discussed in Section 4, we slice a pair
of pants into two patches and compute their boundary-
fixed harmonic maps.

As shown in Fig. 3, slicing a pants patch Mi into
two hexagons needs 3 curves connecting Mi’s bound-
aries. We simply use the shortest paths to connect each
boundaries pair. Then these three paths slice Mi into two
patches. The 6 intersection points among these curves
and pants’ boundaries are mapped to 6 corners of the
regular hexagon. To assure the mapping is continuous
across the boundary, when corners of Mi have been
determined, its adjacent pants’ corners on their shared
boundary should be consistently determined. The fol-
lowing algorithm computes all corners on a set of pants
consistently.

Algorithm 4: Computing corners for a set of pants
Mi, i = 0 . . . n.
In: A set of pants patches Mi.

Out: All corners on each of Mi.
1. For handle patches M0 . . .MG−1:

(1.1) Connect shortest cycles between legs, we get
corners P3, P4 (the index follows Fig. 3).
(1.2) Set P2 as the point on Γ1

i farthest from P3. The

8

farthest point on Γ2
i from P4 is P5.

(1.3) Trace the shortest path from P5 to Γ0
i ; its end

point on Γ0
i is P0. The farthest point on Γ0

i from P0

is P1.
2. Propagate existing corners to adjacent pants: check

every Mi’s adjacent pants Mj ; if corners on Mj ’s
shared boundaries have not been determined, fix
them.

3. For each newly propagated Mj , if Mj ’s corners on
Γ0
j have not been decided. Use Step (1.3) above to

fix them.
4. Stop if all corners have been fixed, otherwise Goto

Step 2.
We first go through all handle patches because their

corners are freely determined. Then we propagate their
corners to the adjacent pants. Each step of the base patch
decomposition combines two waists to generate a new
pants patch, so the above propagation will not get stuck,
and it ends within several iterations with all corners
consistently fixed.

Now each pants patch Mi can be sliced into two
patches M0

i and M1
i , as Fig. 3 shows. We compute their

harmonic maps to the regular hexagon H, hj(M
j
i) →

H, (j = 0, 1) with the following boundary conditions: set
each patch’s 6 corners’ UV coordinates to the regular
hexagon’s corners; for other boundary points between
each pair of corners, interpolate their UV coordinates us-
ing the arc-length ratio. Each harmonic map is computed
after solving a sparse linear system [22]. On the pants
M ′

i , the same harmonic maps h′j(M
′j
i)→ H, (j = 0, 1) are

computed. Then we can immediately get the final com-
posed patch mapping f(M j

i) = h′
−1
j ◦ hj by barycentric

point locations. Mapping on boundaries across neigh-
boring patches and pants is consistent. Because each
boundary point’s image is determined by the corners
and corresponding arc length ratios, and both neighbor-
ing regions arrive at the same result.

7 IMPLEMENTATION AND DISCUSSION

In this section, we address implementation details of our
algorithm, and also discuss the balance between the au-
tomation and user involvement within our framework.

7.1 Handle Correspondence

The correspondence of topological handles on two sur-
faces determines the topological type of the mapping.
Different handle correspondences lead to mappings in
different homotopic types. Bijective mapping exists in
each homotopic type, and generally there is no rigorous
way to compare mappings that are topologically differ-
ent since they could all lead to satisfactory result while
carrying different semantics meanings (Fig. 9 shows an
example). Our framework can automatically generate a
homotopic type (handle correspondence) that is good
from geometry aspect, however, we also provide an
intuitive interfaces that allows user to enumerate and

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Handle Matching. (a) Spherical vectors of original
surfaces (David and Torus). (b) Handles matched, the target
surface rotated. (c) Closed up view. (d)-(h) Some more handle
matching for examples used in this paper.

(a) (b)

(c) 25% (d) 50% (e) 75% (f) 100%

(g) 25% (h) 50% (i) 75% (j) 100%

Fig. 9. Surface Mapping with Different Homotopy Types.
(a) The source surface and its canonical decomposition. (b)
Users can design different homotopy types of mappings by us-
ing different indexing of handle/tunnel loops. (c)-(f) First homo-
topy type: the “green” handle goes up. (g)-(j) Second homotopy
type: the “blue” handle goes up.

select different homotopic types of mappings for the
semantic purpose.

Handle Matching. The handle correspondence be-
tween two surfaces is determined by the indexing of
their handle and tunnel loops. Our framework computes
default indexing for these loops (as an implicit handle
matching) through a rigid alignment.

Once we get all tunnel loops on both surfaces ai ⊂M
and a′i ⊂ M ′, we compute a rigid rotation between M
and M ′ to get this alignment. First, on surface M , we
compute its mass center Mc as well as mass centers ri
for each tunnel loop ai, and we get a set of vectors
T = {ti}, ti = ri−Mc started from the origin. Intuitively,
since our pants decomposition treats each surface with
handles as a topological “sphere” (base patch) with
many “antennas” (handle patches). Each ti indicates the
relative spatial position of a handle to the base patch.

9

Fig. 8(a) shows these vectors on David and 4-torus
models.

A natural optimized matching between T (for M) and
T ′ (for M ′) is that, under some rigid rotation R applied
on M ′, pairwise matched vectors between R(T ′) and
T have their spatial angular distances reached the least
square sum. This can be formalized as follows.

Given T = {t0, · · · , tg−1}, and T ′ = {t′0, · · · , t′g−1},
we seek a 3D rigid rotation R and a bijective mapping
matrix S : T → T ′ which defines the bijective correspon-
dence between T and T ′, optimizing:

min

g−1
∑

u=0

g−1
∑

v=0

S(u, v)||tu,R(t′v)||

s.t.
Su, v ∈ {0, 1} (1)

g−1
∑

u′=0

S(u, u′) ≤ 1,∀u = 0, . . . , g − 1 (2)

g−1
∑

v′=0

S(v′, v) ≤ 1,∀v = 0, . . . , g − 1 (3)

where || · || is a measure of the similarity between the
two aligned vectors , which the Euclidean distance is
used here. Equation (2) and (3) say on each row and
collum of the {0, 1} matrix S, all elements are 0 except
the one that equals 1, which guarantee the bijectivity of
the correspondence.

Under a specific quaternion, the computation of S

could be considered as a so called ”Optimal Assignment
Problem” ([24], Chapter 5.5), which can be very effi-
ciently solved using Kuhn-Munkres algorithm in O(G3)
operations where G is the genus number.

To avoid getting stuck on local optimal, we uniformly
sample the space of quaternions (using the method
presented in [25]), then pick the quaternion with the
minimized matching error, and use that corresponding S

as the handle matching. In implementation, we use the
software of [25] to uniformly generate 360 quaternion
vectors using “layered Sukharev” grid sequence.

This above handle matching preprocessor provides us
very well approximated optimal rigid alignment and
handle matching. Its advantages are three-folds. First,
it automatically and efficiently generates a reasonable
homotopy type of the mapping. Second, it directly leads
to a generalization on input surfaces that are with dif-
ferent topologies (we will show in the coming section).
Third, this pre-alignment can improve the end effects
of mapping applications such as morphing (when linear
interpolation is used to generate the intermediate shapes
as we do in this paper), surface comparison (if the error-
matching is conducted on explicit geometric terms such
as vertex positions) and so on.

While the default handle matching can be auto-
matically computed, users are allowed to interactively
change the homotopy type of the mapping. Fig. 9 and

Fig. 13 are two examples in real applications: users
may want to enumerate and design different homotopy
types of mappings. Within our framework, this is flex-
ibly achieved: users enumerate different mappings by
switching indexing numbers1 of arbitrary two handles.

Base Patch Decomposition Sequence. Sequences used
to decompose the two base patches should be consistent
as well. The default order is to sequentially remove
boundaries from small indices to large ones. Users can
also provide their decomposition sequence script when
desired. Given a decomposition sequence, the unique
pants adjacency relationship can be rigorously deduced.
For a surface with G topological handles and B bound-
aries, we get 2G− 2+B pairs of pants, and 6G− 6+2B
adjacency relations.

7.2 Topological Surgery and Evolution

(a) (b)

Fig. 10. Consistent Decomposition for Surface with Dif-
ferent Topologies. (a) User specifies a pair of markers to
correspond to a handle. (b) Each pair of markers generate a
new pants patch, which is matched with a handle patch from the
second surface.

Another key advantage of our framework is that it
can also flexibly map surfaces with different topologies.
Due to the topological difference, “tearing” is inevitable
and we call it topological surgery. Pants decomposition
framework provides a natural scheme to generate such
surgery locally on some points, called surgery points.

Fig. 10 illustrates an example of topological surgery
(Many real examples are presented in the experimental
section). When we want to evolve a region to a handle
(a), for example, correspond the bottom area of the left
torus to the bottom handle on 2-torus. A pair of surgery
points are picked and punched, and their one-ring neigh-
bors become boundaries c1 and c2. Then similar to the
previous process introduced in Algorithm 3, we find a
cycle c3 homotopic to c1 ◦c2. These three curves bound a
pants patch (as shown in (b)), which is then matched to
the corresponding handle patch on the second surface.

An automatic way to generate surgery points comes
from the handle matching preprocess. Fig. 8(a)-(c) illus-
trate our idea. Suppose the vector set T , representing
handles of surface M (David in (a)), is matched with
T ′ of M ′ who has higher genus (torus in (a)), then
some vectors in T ′ are not matched. Each such vector t′i

1. In our system interface, indexing are color-coded and visualized
on handle/tunnel loops, while users can simply do the switching.

10

indicates the spatial position of an extra handle on M ′,
and we directly “transplant” the vector to T . Then we
trace the ray from the mass center mM of M towards the
direction of mM + t′i, and compute this ray’s intersected
regions on M using the technique of [26]. The farthest
intersected region from mM is a reasonable suggestion
to place surgery points for the corresponding handle
(David in (b)). Another example is shown in Fig. 8(d).
For better semantic control, users can also interactively
pick two points on the mesh through the interface and
assign to them the index number of the handle that they
correspond.

7.3 More User Interaction
As we showed in the previous two sections, automation
is achieved in our framework for surface mapping.
On the other hand, semantics plays important roles in
some applications, in which situation users want to have
refined control on the mapping behavior. Designing the
special homotopy mapping type is an example. In this
section, we show that our framework also integrates
more precise user involvement such as feature alignment
(Fig. 14(c)) and user-guided segmentation (Fig. 15(g)).

Feature Alignment. An intuitive way to control map-
ping behavior is through feature alignment. User want to
set up corresponding feature points on both surfaces and
have them exactly matched under the map. Our frame-
work can naturally enforce correspondence of feature
points. It firstly punches a hole on each feature point and
makes its 1-ring neighbor a boundary; then the canonical
decomposition treats these “feature boundaries” as usual
boundaries. As discussed in Section 6, since all bound-
aries in the pants set are consistently matched, hard
constraint will be guaranteed. Similarly, the system cuts
user-provided feature curves into “feature boundaries”,
and guarantees their correspondence in the same way.

7.4 User-Guided Segmentation
Canonical pants decomposition must follow the topo-
logical consistency, and as discussed above, segmenting
paths are determined by geometry (shortest paths) of
the surface. However, for any semantic purpose, users
are also allowed to adjust these paths by sketching.

Note that decomposition should be topologically cor-
rect to assure validity and consistency of segmentation.
Therefore, our system takes user’s sketches (or called
guiding curves) as soft constraints, and try to follow
the guidance while at the same time guarantees the
traced cycles to be homotopic to original ones. This can
ease user’s operations, eliminate the necessity of user’s
expertise, and greatly improve our system’s robustness.

When the user sketches a set of guiding curves (or
curve segments) Γ on the mesh to guide the segmen-
tation (i.e. waists tracing), the system designs a special
metric mM to attract the shortest cycle towards Γ. The
following algorithm computes mM based on vertices’
distances from Γ. Intuitively, it “shrinks” Γ’s nearby

(a) (b) (c)

Fig. 11. Adaptive Edge-Split. (a) Two waists (thick red
curves) are close to each other. No path can cross through the
upper left region. (b) Edge-split on base patch before tracing. (c)
Shortest cycles pass through successfully.

regions, and preserves or expands distant regions, so that
the shortest paths are attracted towards Γ:

Algorithm 5: Compute the Guiding Metric.
In: Surface mesh M , guiding curves set Γ, threshold D,

parameter α.
Out: Guiding metric mM defined on each edge e ∈ E(M).

1. Set an initial metric mM (e) = 1 for all edges. Set all
vertices on guiding curves as starting points.

2. Perform the Dijkstra algorithm, using mM (e) as the
edge length of the graph. We get the hop distance
d(v) from all vertices to the guiding curves.

3. Set the weight function:

w(vi) =

{

1, d(vi) > D;

(d(vi)
D)α, o/w.

,

where D is a hop distance threshold, α is a param-
eter to control the strength of the attraction.

4. Set
mM (eij) = (

w(vi) + w(vj)

2
) ∗ |eij |,

where |eij | is the original edge length of eij .

7.5 Robust Shortest Path Tracing
Shortest cycles tracing generates the “pants” topology of
each patch. To avoid degeneracy, it should prevent short-
est cycles from intersecting each other or boundaries. We
slightly modify the Dijkstra algorithm to prevent short-
est paths from reaching boundaries (or user-specified
curves). In the Dijkstra algorithm, when a vertex v is
visited, we enqueue it and relax its neighbors ([27], page
595). Now if v is on boundaries (or on some specific
curves we want to circumvent), we do not enqueue v
nor update its neighbors. The new algorithm prevents
any shortest cycle from intersecting boundaries.

The Dijkstra algorithm always succeed to trace a short-
est path for an arbitrary vertex on a connected mesh, and
our modified algorithm only fails when two boundaries
are too close to each other. An example is illustrated in
Fig. 11. (a) shows a three-hole torus with a boundary,
and its waists w0 and w1 (thick red curves) are close to
each other, therefore the upper left region is error-prone:
there are some edges spanning these two boundaries.
So although topologically a path should be able to go
through this region between two boundaries without
any intersections, a discrete path will inevitably intersect

11

(a) (b)

Fig. 12. Mapping Genus-9 Mechanical Parts. (a) shows
genus-9 surface models and color-codes their homotopy group
bases. (b) illustrates the corresponding canonical decompo-
sition result. The next two rows visualize mappings through
morphing sequences.

boundaries under the current connectivity. We call this
kind of spanning edges dangerous edges. We perform
“edge-split” on all dangerous edges before computing
shortest cycles/paths, as shown in (b). This robustly
guarantees the success of our path tracing (c).

8 EXPERIMENTAL RESULTS

(a) (b) 33% (c) 67%

(d) 33% (e) 67% (f)

Fig. 13. Different Homotopy Types of Mapping from
Armadillo to 3-Torus. (a) Armadillo Model. (b),(c) Map-
ping/Morphing of one homotopy type. (d) and (e) Map-
ping/Morphing of another homotopy type. (f) 3-Torus Model.

This section experimentally demonstrates our map-
ping framework. In most examples, the mapping is
visualized using linear-interpolated morphing sequence,
all of which can be found in our accompanying video.

Automatic Mapping Genus-9 Mechanical Parts. Con-
sistent pants decomposition is automatically performed

on three genus-9 mechanical parts. As shown in Fig. 12,
no user involvement is necessary for generating map-
ping between these models with very complicated topol-
ogy and geometry. This demonstrates great automation
of our framework and its availability in registering com-
plicated objects.

Surface Mappings with Different Homotopy Types.
Fig. 9 and Fig. 13 illustrate the completeness of our
mapping framework. As previously mentioned, different
homotopy classes can be enumerated by users, by simply
switching the indexing of the homotopy group basis (as
shown in Fig. 9(b)). In Fig. 9, the morphing sequences
from the source surface (a) to the target surface based on
different mappings are illustrated in the next two rows.
They are both geometrically good, and it is up to the user
to select which one they really want. Our framework
provides a rigorous way for users to decide an arbitrary
homotopy type of the mapping. Fig. 13 shows another
example. The mapping and morphing illustrated in (b)
and (c) follow the homotopy type of Fig. 8(e); while
morphing of (d) and (e) follow the homotopy type of
Fig. 8(f).

Deforming Hands: “Five” to “Okay”. In this example,
we map a human hand (Fig. 14(a) (left)) to another
hand (right). It demonstrates that our framework inte-
grates feature alignments for semantic mapping purpose.
The source hand is an open genus-0 surface and the
target hand is genus-1 with a boundary (red curves
are its handle/tunnel loops). To make the topological
evolution, at least a pair of surgery points is required on
the first hand. Here we can manually set them on tips
of the indexing finger and thumb (red points in (b)).
Now without any further feature points, each hand is
decomposed into one pants patch by default. This leads
to a global one-patch mapping that follows no shape
semantics, visualized by morphing in (d): three fingers
shrink while three new fingers grow from somewhere
else, because this mapping does not match fingers to
fingers. User can control the mapping behavior by fea-
ture alignment. (e) shows the refined decomposition on
both hands based on the feature setting of (c). The new
resultant mapping guarantees the finger correspondence
and therefore generates a more semantically natural
morphing as illustrated in (f) and (g).

Genus-4 Greek Model to Genus-3 David Model.
Fig. 15 illustrates the mapping between Greek and David
models and shows the user interaction on setting guid-
ing curves. (a) shows the original surfaces and their ho-
motopy group bases. According to the handle matching
of (b), a pair of surgery points, as shown in (c), is gener-
ated corresponding to the small handle in the lower right
part of the Greek sculpture. In (d), we place two feature
points on the base patch of each model, to semantically
guarantee correspondence between “head” regions. We
show the canonical decomposition result in (e). Now
semantically, we do not like the segmentation around the
right hand (blue patch) of the Greek because the shortest
cycle goes through his wrist. The segmentation of the

12

(a) Src/Trg Models (b) Surgery Points (c) Feature Points

(d)50% Morph (no features) (e) (f) 33% Morph (g) 67% Morph

Fig. 14. Mapping Hands: “Five” to “Okay”. (a) Source and target surfaces. (b). Two surgery points are the least requirements
due to the topological difference. (c) Users define more feature points for semantics purpose. (d) Without feature points in (c), 3

fingers are not matched, the morphing is ugly. (e) The refined decomposition results (with feature points). (f) and (g) show the newly
generated morphing.

(a) Src/Trg Surfaces (b) Handle Match (c) Surgery Points (d) Feature Points (e)Decomposition

(f)50% (g) Guiding Curves (h) Decomposition (i) 25% (j) 50% (k)75%

Fig. 15. Mapping Greek Sculpture to David. (a) Two surfaces and their homotopy group bases. (b) Two surgery points (matched
with the lower right green handle on the Greek). (c) Base patches of both models, and two feature points to assure correspondence
on head regions. (d) The decomposition result without further user involvements. (e) Geometrically optimal decomposition may
have poor semantics effect (yellow regions). (f) Users sketch some guiding curves. (g) The new decomposition result with guided
segmentation. (h)-(j) A more visually natural morphing sequence.

Fig. 16. Mapping two Dragons. Feature/surgery points are placed on both dragons (red and green markers on the head and
legs). The morphing sequence is generated.

13

(a) (b) (c) 33% (d) 67%

Fig. 17. Mapping Armadillo to Angel. (a) The initial setting. (b) Decomposition Result. (c),(d) Morph Armadillo to Angel.

(a) Src/Trg Models (b) Area Stretch (c) Mean Curvature Difference

(d) Decomposition (e) 25% Morphing (f) 50% Morphing (g) 75% Morphing (h) 100% Morphing

Fig. 18. Vase vs. Teapot. (a) Surfaces with handle/tunnel loops and surgery/feature points. The matching’s area stretching (b)
and mean curvature difference (c) are color-coded. (d) Pants Decomposition Result. (e)-(h) Morphing.

left arm (yellow patch) is even worse; it cuts through
the elbow. A resultant morphing that maps the forearm
of the Greek to the whole arm of David is shown in (f).
Users can easily remedy this in our framework and get
a refined result by simply sketching two short guiding
curve segments on the Greek model, as shown in (g).
The new decomposition result is shown in (h), where
we get a morph with better visual effects as shown in
(i)-(k).

Morphing Dragons. In Fig. 16, we perform decom-
position on two dragons. Several surgery points and
feature points are used at the same time to guide the
mapping, as depicted on the source and target models.
The morphing sequence is shown to demonstrate the
mapping effect.

Shape Matching and Error Analysis. With one-to-one
correspondence between two matched surfaces, we can
measure point-by-point the shape difference using some
geometric properties, and color-code the error distribu-
tion, which is potentially useful for shape comparison
and visual analysis.

Fig. 18 illustrates our mapping from a genus-2 vase
model to a genus-1 teapot model. (a) shows the mod-
els and their handle/tunnel loops; and user-provided
surgery/feature points are also depicted. The decompo-
sition results are shown in (d). (e)-(h) show the morphing

sequence generated by our mapping.

In (b) and (c), we color-code the shape matching error
distribution. We use two terms, one is the area stretching
ratio while the other is mean curvature difference. In (b),
we compute total area of one-ring triangles around each
point on the vase model; when the vase is mapped onto
the teapot, we also compute each point’s corresponding
one-ring area. The ratio of these two areas represents
the stretching of the mapping, which is color-coded on
the surface: red represents the maximum while blue
represents the minimum. From this figure, we can see
that the cap, the left handle, the tips of handles, and
the bottom of the vase have larger stretching values,
because these regions shrink to a relatively small area
on the teapot model. In (c), we color-code the mean
curvature difference on every point: the regions with
large curvature difference (for example, left handle, the
rim of the cap) are red. Integration of these two terms
over the whole surface has been proved ([28]) to provide
an intrinsic energy that measures the shape difference.
Therefore, our surface mapping/registration can be used
for shape comparison and shape analysis.

The complexity of our algorithm is theoretically
bounded by O(n3/2 log n) from the the Dijkstra algorithm
in the “waists” tracing step, where the square root of n
comes from the length of the shortest path between two

14

Model Topology Vertex/Pants # Time
Hand-1 G = 0, B = 1 19832/7 24.5s
Hand-2 G = 1, B = 1 21055/7 26.1s
Teapot G = 1, B = 0 22012/4 27.0s
Vase G = 2, B = 0 10014/4 10.1s

4-Torus G = 4, B = 0 7994/6 6.3s
David G = 3, B = 0 26138/8 140.3s
Greek G = 4, B = 0 43177/8 380.5s

Asian Dragon G = 0, B = 0 26562/10 110.1s
Casting G = 9, B = 0 34116/16 423.4s

handles, which is of the complexity of O(
√
n). Runtime

performance of our algorithm on most real examples
presented here is given in the following table.

9 CONCLUSION AND FUTURE WORK

We have developed a consistent pants decomposition
framework for mapping surfaces with arbitrary topol-
ogy. The consistent generation of sets of pants is a
key component to ensure the subsequent high quality
surface mapping. Our novel mapping framework has
been demonstrated to be efficient, robust, and power-
ful on examples with arbitrary types of surfaces. Also,
the mapping framework simultaneously provides great
automation and accommodates intuitive user control.
Therefore, our new modeling framework can serve as
an enabling tool for many visual computing tasks.

Besides surface mapping, we believe our pants decom-
position framework has many other potential applica-
tions. First, pants decomposition provides a piecewise
representation for any given surface. When we have
the semantically meaningful patch segmented from the
original surface, we can easily perform the “cut-and-
paste” operation from a “part” database ([29]) to pro-
duce more meaningful shapes from examples. Since all
our segmented patches are pants-like shapes, we could
streamline many modeling and simulation tasks. Also,
pants decomposition can be extended to a consistent
segmentation of volumetric data. Compared with di-
rectly computing harmonic maps between volumetric
shapes with complicated topology and geometry [30],
this decomposition should make the process more robust
and general, and it will also provide more semantics
control. Our generated morphing sequence has the con-
nectivity of the source surface, whose limitation is that
the sampling may not be good for the target surfaces.
A postprocess adaptive remeshing technique [1] could
be applied to improve the quality of the final mesh,
however, a dynamic online remeshing method will be
an interesting research direction for the morphing appli-
cation.

REFERENCES

[1] X. Li, Y. Bao, X. Guo, M. Jin, X. Gu, and H. Qin, “Globally optimal
surface mapping for surfaces with arbitrary topology,” IEEE Trans.
on Visualization and Computer Graphics, vol. 14, no. 4, pp. 805–819,
2008.

[2] D. DeCarlo and J. Gallier, “Topological evolution of surfaces,” in
Proc. Graphics interface, 1996, pp. 194–203.

[3] T. Kanai, H. Suzuki, and F. Kimura, “Three-dimensional geometric
metamorphosis based on harmonic maps,” The Visual Comput.,
vol. 14, no. 4, pp. 166–176, 1998.

[4] A. Asirvatham, E. Praun, and H. Hoppe, “Consistent spherical
parameterization,” in International Conference on Computational
Science (2), 2005, pp. 265–272.

[5] V. Kraevoy and A. Sheffer, “Cross-parameterization and compat-
ible remeshing of 3D models,” ACM Trans. Graph., vol. 23, no. 3,
pp. 861–869, 2004.

[6] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-
surface mapping,” SIGGRAPH., vol. 23, no. 3, pp. 870–877, 2004.

[7] A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston,
“Feature-based surface decomposition for correspondence and
morphing between polyhedra,” in Proc. of the Computer Animation,
1998, pp. 64–71.

[8] M. S. Floater and K. Hormann, “Surface parameterization: a
tutorial and survey,” in Advances in Multiresolution for Geometric
Modelling, ser. Mathematics and Visualization, 2005, pp. 157–186.

[9] A. Sheffer, E. Praun, and K. Rose, “Mesh parameterization meth-
ods and their applications,” Found. Trends. Comput. Graph. Vis.,
vol. 2, no. 2, pp. 105–171, 2006.

[10] J. Kent, W. Carlson, and R. Parent, “Shape transformation for
polyhedral objects,” in SIGGRAPH ’92. ACM Press, 1992, pp.
47–54.

[11] M. Alexa, “Merging polyhedral shapes with scattered features,”
in Proc. of the Intl Conf. on Shape Modeling and Applications, 1999,
pp. 202–210.

[12] M. Zöckler, D. Stalling, and H.-C. Hege, “Fast and intuitive gen-
eration of geometric shape transitions,” Visual Computer, vol. 16,
no. 5, pp. 241–253, 2000.

[13] F. Lazarus and A. Verroust, “Three-dimensional metamorphosis:
a survey,” The Visual Computer, vol. 14, no. 8/9, pp. 373–389, 1998.

[14] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder, “Multiresolution
mesh morphing,” in Proc. SIGGRAPH, 1999, pp. 343–350.

[15] E. Praun, W. Sweldens, and P. Schröder, “Consistent mesh param-
eterizations,” in Proc. SIGGRAPH, 2001, pp. 179–184.

[16] C. Carner, M. Jin, X. Gu, and H. Qin, “Topology-driven surface
mappings with robust feature alignment.” in IEEE Visualization,
2005, pp. 543–550.

[17] X. Gu and S.-T. Yau, “Global conformal surface parameterization,”
in Proc. Symp. Geometry Processing, 2003, pp. 127–137.

[18] J. Erickson and K. Whittlesey, “Greedy optimal homotopy and
homology generators,” in ACM-SIAM Symp. on Discrete algorithms,
2005, pp. 1038–1046.

[19] T. K. Dey, K. Li, and J. Sun, “On computing handle and tunnel
loops,” in International Conf. on Cyberworlds, 2007, pp. 357–366.

[20] A. Hatcher, P. Lochak, and L. Schneps, “On the Teichmüller tower
of mapping class groups,” J. Reine Angew. Math., vol. 521, pp. 1–
24, 2000.

[21] E. Verdière and F. Lazarus, “Optimal pants decompositions and
shortest homotopic cycles on an orientable surface,” J. ACM,
vol. 54, no. 4, p. 18, 2007.

[22] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle, “Multiresolution analysis of arbitrary meshes.” in
SIGGRAPH, 1995, pp. 173–182.

[23] M. S. Floater, “Mean value coordinates.” Computer Aided Geometric
Design, vol. 20, no. 1, pp. 19–27, 2003.

[24] J. Bondy and U. Murty, Graph Theory with Applications. North
Holland, 1982.

[25] A. Yershova and S. Lavalle, “Deterministic sampling methods
for spheres and SO(3),” in Proc. IEEE Int. Conf. on Robotics and
Automation, 2004, pp. 3974–3980.

[26] D. Badouel, “An efficient ray-polygon intersection,” pp. 390–393,
1990.

[27] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. The MIT Press, 2001.

[28] X. Gu, Y. Wang, T. Chan, P. Thompson, and S. T. Yau, “Genus zero
surface conformal mapping and its application to brain surface
mapping,” IEEE Trans. Med. Imaging, vol. 23, no. 8, pp. 949–958,
2004.

[29] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by example,” ACM
Trans. Graph., vol. 23, no. 3, pp. 652–663, 2004.

[30] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin, “Harmonic
volumetric mapping for solid modeling applications,” in Proc.
ACM symp. on Solid and physical modeling, 2007, pp. 109–120.

