
CSE 591/CSE 392: GPU Programming

 Threads

Klaus Mueller

Computer Science Department

Stony Brook University

Some portions © David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

2

CUDA Threads

• Differences between GPU and CPU threads

– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

3

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads

– All threads run the same code (SPMD)‏

– Each thread has an ID that it uses to compute
memory addresses and make control decisions

7 6 5 4 3 2 1 0

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

4

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 0

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks

– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

5

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to
decide what data to work on
– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

6

CUDA Memory Model Overview

• Global memory
– Main means of

communicating R/W
Data between host and
device

– Contents visible to all
threads

– Long latency access

• We will focus on
global memory for
now
– Constant and texture

memory will come later

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

7

CUDA Device Memory Allocation

• cudaMalloc()

– Allocates object in the

device Global Memory

– Requires two parameters

• Address of a pointer to

the allocated object

• Size of of allocated object

• cudaFree()

– Frees object from device

Global Memory

• Pointer to freed object

Grid

Global

Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

8

CUDA Device Memory Allocation (cont.)‏

• Code example:

– Allocate a 64 * 64 single precision float array

– Attach the allocated storage to Md

– “d”‏is‏often‏used‏to‏indicate‏a‏device‏data‏

structure

TILE_WIDTH = 64;

Float* Md

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

9

CUDA Host-Device Data Transfer

• cudaMemcpy()‏

– memory data transfer

– Requires four parameters

• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Asynchronous transfer

Grid

Global

Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

10

CUDA Host-Device Data Transfer

(cont.)

• Code example:

– Transfer a 64 * 64 single precision float array

– M is in host memory and Md is in device memory

– cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

11

CUDA Keywords

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-

2009

ECE 498AL, University of Illinois, Urbana-Champaign

12

CUDA Function Declarations

host host __host__ float HostFunc()‏

host device __global__ void KernelFunc()‏

device device __device__ float DeviceFunc()‏

Only callable

from the:

Executed

on the:

• __global__ defines a kernel function

– Must return void

• __device__ and __host__ can be used

together

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

13

CUDA Function Declarations (cont.)‏

• __device__ functions cannot have their

address taken

• For functions executed on the device:

– No recursion

– No static variable declarations inside the

function

– No variable number of arguments

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

14

Calling a Kernel Function – Thread

Creation
• A kernel function must be called with an

execution configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per

block

size_t SharedMemBytes = 64; // 64 bytes of shared

memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(...);

• Any call to a kernel function is asynchronous from

CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

15

A Simple Running Example

Matrix Multiplication

• A simple matrix multiplication example that

illustrates the basic features of memory and

thread management in CUDA programs

– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

– Assume square matrix for simplicity

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

16

Programming Model:

Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without tiling:

– One thread calculates one element

of P

– M and N are loaded WIDTH times

from global memory
M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

17

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

18

Step 1: Matrix Multiplication

A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

/ / Matrix multiplication on the (CPU) host in double

precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏

{

 for (int i = 0; i < Width; ++i)‏

 for (int j = 0; j < Width; ++j) {

 double sum = 0;

 for (int k = 0; k < Width; ++k) {

 double a = M[i * width + k];

 double b = N[k * width + j];

 sum += a * b;

 }

 P[i * Width + j] = sum;

 }

}

i

k

k

j

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

19

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;

 …

1. // Allocate and Load M, N to device memory

 cudaMalloc(&Md, size);

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)‏

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

20

Step 3: Output Matrix Data Transfer
(Host-side Code)‏

2. / / Kernel invocation code – to be shown later

 …

3. / / Read P from the device

 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 / / Free device matrices

 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

 }

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

21

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏

{

 // Pvalue is used to store the element of the matrix

 // that is computed by the thread

 float Pvalue = 0;

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

22

Nd

Md Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

Step 4: Kernel Function (cont.)‏

 for (int k = 0; k < Width; ++k)‏ {

 float Melement = Md[threadIdx.y*Width+k];

 float Nelement = Nd[k*Width+threadIdx.x];

 Pvalue += Melement * Nelement;

 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;

}

 ty

tx

ty

tx

k

k

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

23

 // Setup the execution configuration

 dim3 dimGrid(1, 1);

 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation

(Host-side Code)

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

24

Only One Thread Block Used

• One Block of threads computes
matrix Pd

– Each thread computes one
element of Pd

• Each thread

– Loads a row of matrix Md

– Loads a column of matrix Nd

– Performs one multiply and
addition for each pair of Md
and Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not
very high)‏

• Size of matrix limited by the
number of threads allowed in a
thread block

 Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

 ‏(2 ,2)

 WIDTH

Md Pd

Nd

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

25

Next: Handling Arbitrary Sized Square

Matrices

• Have each 2D thread block to

compute a (TILE_WIDTH)2 sub-

matrix (tile) of the result matrix

– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of

(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop

around the kernel call for

cases where

WIDTH/ TILE_WIDTH is

greater than max grid size

(64K)!

TILE_WIDTH

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

26

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
0 1 TILE_WIDTH-1 2

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W

ID
T

H

Matrix Multiplication Using

Multiple Blocks

• Break-up Pd into tiles

• Each block calculates one

tile

– Each thread calculates one

element

– Block size equal tile size

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

27

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

TILE_WIDTH = 2

A Small Example

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

28

Pd 1,0

A Small Example: Multiplication

Md 2,0

Md 1,1

Md 1,0 Md 0,0

Md 0,1

Md 3,0

Md 2,1

Pd 0,0

Md 3,1 Pd 0,1

Pd 2,0 Pd 3,0

Nd 0,3 Nd 1,3

Nd 1,2

Nd 1,1

Nd 1,0 Nd 0,0

Nd 0,1

Nd 0,2

Pd 1,1

Pd 0,2 Pd 2,2 Pd 3,2 Pd 1,2

Pd 3,1 Pd 2,1

Pd 0,3 Pd 2,3 Pd 3,3 Pd 1,3

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

29

Revised Matrix Multiplication

Kernel using Multiple Blocks
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

30

CUDA Thread Block

• All threads in a block execute the same
kernel program (SPMD)

• Programmer declares block:

– Block size 1 to 512 concurrent threads

– Block shape 1D, 2D, or 3D

– Block dimensions in threads

• Threads have thread id numbers within block

– Thread program uses thread id to select
work and address shared data

• Threads in the same block share data and
synchronize while doing their share of the
work

• Threads in different blocks cannot cooperate

– Each block can execute in any order relative
to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,

NVIDIA

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

31

Transparent Scalability

• Hardware is free to assign blocks to any processor at any time, given

the resources

– A kernel scales across any number of parallel processors

– When less resources are available, hardware will reduce the

number of blocks run in parallel (compare right with left block

assignment below)

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative

to other blocks.

time

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

32

G80 Example: Executing Thread Blocks

• Threads are assigned to Streaming

Multiprocessors in block granularity

– Up to 8 blocks to each SM as

resource allows

– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3

blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently

– SM maintains thread/block id #s

– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

33

G80 Example: Thread Scheduling

• Each Block is executed as

32-thread Warps

– An implementation decision,

not part of the CUDA

programming model

– Warps are scheduling units

in SM

• If 3 blocks are assigned to an

SM and each block has 256

threads, how many Warps are

there in an SM?

– Each Block is divided into

256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

… Block 1 Warps

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

34

G80 Example: Thread Scheduling

(Cont.)

• SM implements zero-overhead warp scheduling
– Effectively provides for latency hiding (memory waits, etc.)

– At any time, only one of the warps is executed by SM

– Warps whose next instruction has its operands ready for

consumption are eligible for execution

– Eligible Warps are selected for execution on a prioritized

scheduling policy

– All threads in a warp execute the same instruction when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/ NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana-Champaign

35

G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take

up to 768 threads, there are 12 Blocks. However, each SM can

only take up to 8 Blocks, only 512 threads will go into each SM!

This will lead to under-utilization (bad for latency hiding).

– For 16X16, we have 256 threads per Block. Since each SM can

take up to 768 threads, it can take up to 3 Blocks and achieve full

capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit

into an SM!

Number of Threads

• All threads on an SM must run in lock-step

– if one thread is delayed because of memory load then

all threads in a warp must wait

– a new warp is scheduled

– so it is good to have more threads per block

– however, there is a limit on the number of threads per

SM

– 768, 1024, 1536, 2048 depending on compute

capability

– this is a function of the maximum number of warps

(24, 32, 48, 64) of 32 threads each

Number of Blocks

• Workload of threads is not always uniform

– all threads must complete before a new block can be

scheduled

– if the slow thread is part of a large block the idle time

is high

– so it is better to have smaller blocks

– however, there is a limit on the number of blocks per

SM (8 or less, depending on compute capability)

GPU Utilization

• Goal is to allocate as many threads per SM as

maximum limit

• Here take into account:

– max number of blocks

– modulus of warps

• So to achieve 100 % utilization depends on

compute capability and threads/block

GPU Utilization

• So 256 threads per block is safest across all

compute capabilities

Shane‏Cook‏“CUDA‏Programming”‏

Practical Example

• Histogram computation

 for (unsigned int i=0; i< max; i++)

 {

 bin[array[i]]++;

 }

CPU Algorithm

1. Read the value from the array into a register

2. Work out the base address and offset to the correct bin

element

3. Fetch the existing bin value

4. Increment the bin value by one

5. Write the new bin value back to the bin in memory

Steps 3, 4, 5 are not atomic

- OK for CPU since serial but not for GPU

- use atomicAdd(&value) on the GPU

GPU Algorithm 1

Shane‏Cook‏“CUDA‏Programming”‏

GPU Algorithm 1

• Not overly fast

• Why?

– each thread only fetches 1 byte

– half warp fetches 16 bytes

– maximal supported size is 128 bytes

– hence memory bandwidth is heavily underused

GPU Algorithm 2

GPU Algorithm 2

• In fact, achieves zero speedup

– no improvements in memory bandwidth

– advanced compute capability already does good

coalescing

– need to look for other culprit

GPU Algorithm 2

• In fact, achieves zero speedup

– no improvements in memory bandwidth

– advanced compute capability already does good

coalescing

– need to look for other culprit

– maybe reduce the amount of global number of atomic

writes?

GPU Algorithm 3

Shane‏Cook‏“CUDA‏Programming”‏

GPU Algorithm 3

Shane‏Cook‏“CUDA‏Programming”‏

GPU Algorithm 3

• results in a 6 fold speedup

• but could still reduce global memory traffic

• what can we do?

GPU Algorithm 3

• results in a 6 fold speedup

• but could still reduce global memory traffic

• what can we do?

• compute more than one histogram per thread

GPU Algorithm 3

Shane‏Cook‏“CUDA‏Programming”‏

GPU Algorithm 3

Shane‏Cook‏“CUDA‏Programming”‏

GPU Algorithm 3

Shane‏Cook‏“CUDA‏Programming”‏

GPU Algorithm 3

Shane‏Cook‏“CUDA‏Programming”‏

not much growth in bandwidth after N=32 due to other factors impeding growth

(atomics adds in this case)

