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CUDA Threads 

• Differences between GPU and CPU threads  

– GPU threads are extremely lightweight 

• Very little creation overhead 

– GPU needs 1000s of threads for full efficiency 

• Multi-core CPU needs only a few 
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Arrays of Parallel Threads 

• A CUDA kernel is executed by an array of 
threads 

– All threads run the same code (SPMD)‏ 

– Each thread has an ID that it uses to compute 
memory addresses and make control decisions 

 
7 6 5 4 3 2 1 0 

… 

float x = input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 
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… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 

Thread Block 0 

… 
… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block 0 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block N - 1 

Thread Blocks: Scalable Cooperation 

• Divide monolithic thread array into multiple blocks 

– Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization 

– Threads in different blocks cannot cooperate 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 
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Figure 3.2. An Example of CUDA Thread Organization.
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Block IDs and Thread IDs 

 

• Each thread uses IDs to 
decide what data to work on 
– Block ID: 1D or 2D 

– Thread ID: 1D, 2D, or 3D  

 

• Simplifies memory 
addressing when 
processing 
multidimensional data 
– Image processing 

– Solving PDEs on volumes 

– … 
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CUDA Memory Model Overview 

• Global memory 
– Main means of 

communicating R/W 
Data between host and 
device 

– Contents visible to all 
threads 

– Long latency access 

• We will focus on 
global memory for 
now 
– Constant and texture 

memory will come later 
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CUDA Device Memory Allocation 

• cudaMalloc() 

– Allocates object in the 

device Global Memory 

– Requires two parameters 

• Address of a pointer to 

the allocated object 

• Size of of allocated object 

• cudaFree() 

– Frees object from device 

Global Memory 

• Pointer to freed object 

Grid 

Global 

Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Device Memory Allocation (cont.)‏ 

• Code example:  

– Allocate a  64 * 64 single precision float array 

– Attach the allocated storage to Md 

– “d”‏is‏often‏used‏to‏indicate‏a‏device‏data‏

structure 

TILE_WIDTH = 64; 

Float* Md 

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); 

 
cudaMalloc((void**)&Md, size); 

cudaFree(Md); 
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CUDA Host-Device Data Transfer 

• cudaMemcpy()‏ 

– memory data transfer 

– Requires four parameters 

• Pointer to destination  

• Pointer to source 

• Number of bytes copied 

• Type of transfer  

– Host to Host 

– Host to Device 

– Device to Host 

– Device to Device 

• Asynchronous transfer 

Grid 

Global 

Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Host-Device Data Transfer 

(cont.) 

• Code example:  

– Transfer a  64 * 64 single precision float array 

– M is in host memory and Md is in device memory 

– cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic constants 
 
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

 

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost); 
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CUDA Keywords 
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CUDA Function Declarations 

host host __host__   float HostFunc()‏ 

host device __global__ void  KernelFunc()‏ 

device device __device__ float DeviceFunc()‏ 

Only callable 

from the: 

Executed 

on the: 

•  __global__ defines a kernel function 

– Must return void 

•  __device__ and __host__ can be used 

together 
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CUDA Function Declarations (cont.)‏ 

•   __device__ functions cannot have their 

address taken 

• For functions executed on the device: 

– No recursion 

– No static variable declarations inside the 

function 

– No variable number of arguments 
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Calling a Kernel Function – Thread 

Creation 
• A kernel function must be called with an 

execution configuration: 
 

__global__ void KernelFunc(...); 

dim3   DimGrid(100, 50);    // 5000 thread blocks  

dim3   DimBlock(4, 8, 8);   // 256 threads per 

block  

size_t SharedMemBytes = 64; // 64 bytes of shared 

memory 

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes 

>>>(...); 

• Any call to a kernel function is asynchronous from 

CUDA 1.0 on, explicit synch needed for blocking 
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A Simple Running Example 

Matrix Multiplication 

• A simple matrix multiplication example that 

illustrates the basic features of memory and 

thread management in CUDA programs 

– Leave shared memory usage until later 

– Local, register usage 

– Thread ID usage 

– Memory data transfer API between host and device 

– Assume square matrix for simplicity 
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Programming Model: 

Square Matrix Multiplication Example 

• P = M * N of size WIDTH x WIDTH 

• Without tiling: 

– One thread calculates one element 

of P 

– M and N are loaded WIDTH times 

from global memory 
M 

N 

P 
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WIDTH WIDTH 
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M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

Memory Layout of a Matrix in C 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 
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Step 1: Matrix Multiplication 

A Simple Host Version in C 

M 

N 

P 

 

 

 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

/ /  Matrix multiplication on the (CPU) host in double 

precision 

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 

{    

    for (int i = 0; i < Width; ++i)‏ 

        for (int j = 0; j < Width; ++j) { 

            double sum = 0; 

            for (int k = 0; k < Width; ++k) { 

                double a = M[i * width + k]; 

                double b = N[k * width + j]; 

                sum += a * b; 

            } 

            P[i * Width + j] = sum; 

        } 

} 

 

i 

k 

k 

j 
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd; 

   … 

1. // Allocate and Load M, N to device memory  

    cudaMalloc(&Md, size); 

    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

 

     cudaMalloc(&Nd, size); 

     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

 

     // Allocate P on the device 

    cudaMalloc(&Pd, size); 

 

Step 2: Input Matrix Data Transfer 
(Host-side Code)‏ 
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Step 3: Output Matrix Data Transfer 
(Host-side Code)‏ 

2.   / /  Kernel invocation code – to be shown later 

     … 

 

3.    / /  Read  P from the device 

      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

 

       / /  Free device matrices 

      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 

     } 
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Step 4: Kernel Function 

// Matrix multiplication kernel – per thread code 
 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 

{ 

     

    // Pvalue is used to store the element of the matrix 

    // that is computed by the thread 

    float Pvalue = 0; 
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Nd 

Md Pd 
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WIDTH WIDTH 

Step 4: Kernel Function  (cont.)‏ 
 

   for (int k = 0; k < Width; ++k)‏ { 

       float Melement = Md[threadIdx.y*Width+k]; 

       float Nelement = Nd[k*Width+threadIdx.x]; 

       Pvalue += Melement * Nelement; 

   } 

 

  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 

} 

 ty 

tx 

ty 

tx 

k 

k 
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    // Setup the execution configuration 

       dim3 dimGrid(1, 1); 

       dim3 dimBlock(Width, Width); 

 

 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Step 5: Kernel Invocation 

(Host-side Code)  
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Only One Thread Block Used 

• One Block of threads computes 
matrix Pd 

– Each thread computes one 
element of Pd 

• Each thread 

– Loads a row of matrix Md 

– Loads a column of matrix Nd 

– Performs one multiply and 
addition for each pair of Md 
and Nd elements 

– Compute to off-chip memory 
access ratio close to 1:1 (not 
very high)‏ 

• Size of matrix limited by the 
number of threads allowed in a 
thread block 

 

 Grid 1 
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   WIDTH 
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Next: Handling Arbitrary Sized Square 

Matrices 

• Have each 2D thread block to 

compute a (TILE_WIDTH)2 sub-

matrix (tile) of the result matrix 

– Each has (TILE_WIDTH)2 threads 

• Generate a 2D Grid of 

(WIDTH/TILE_WIDTH)2 blocks 

 

 

Md 

Nd 

Pd 
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WIDTH WIDTH 

ty 

tx 

by 

bx 

You still need  to put a loop 

around the kernel call for 

cases where 

WIDTH/ TILE_WIDTH is 

greater than max grid  size 

(64K)! 

TILE_WIDTH 
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Matrix Multiplication Using 

Multiple Blocks 

• Break-up Pd into tiles 

• Each block calculates one 

tile 

– Each thread calculates one 

element 

– Block size equal tile size 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Block(0,0) Block(1,0) 

Block(1,1) Block(0,1) 

TILE_WIDTH = 2 

A Small Example 
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Pd 1,0 

A Small Example: Multiplication 

Md 2,0 

Md 1,1 

Md 1,0 Md 0,0 

Md 0,1 

Md 3,0 

Md 2,1 

Pd 0,0 

Md 3,1 Pd 0,1 

Pd 2,0 Pd 3,0 

Nd 0,3 Nd 1,3 

Nd 1,2 

Nd 1,1 

Nd 1,0 Nd 0,0 

Nd 0,1 

Nd 0,2 

Pd 1,1 

Pd 0,2 Pd 2,2 Pd 3,2 Pd 1,2 

Pd 3,1 Pd 2,1 

Pd 0,3 Pd 2,3 Pd 3,3 Pd 1,3 
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Revised Matrix Multiplication 

Kernel using Multiple Blocks 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 

{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 

  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

 

Pd[Row*Width+Col] = Pvalue; 

} 
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CUDA Thread Block 

• All threads in a block execute the same 
kernel program (SPMD) 

• Programmer declares block: 

– Block size 1 to 512 concurrent threads 

– Block shape 1D, 2D, or 3D 

– Block dimensions in threads 

• Threads have thread id numbers within block 

– Thread program uses thread id to select 
work and address shared data 

 

• Threads in the same block share data and 
synchronize while doing their share of the 
work 

• Threads in different blocks cannot cooperate 

– Each block can execute in any order relative 
to other blocs! 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, 

NVIDIA 
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Transparent Scalability 

• Hardware is free to assign blocks to any processor at any time, given 

the resources 

– A kernel scales across any number of parallel processors 

– When less resources are available, hardware will reduce the 

number of blocks run in parallel (compare right with left block 

assignment below) 

Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative 

to other blocks.  

time 
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G80 Example: Executing Thread Blocks 

• Threads are assigned to Streaming 

Multiprocessors in block granularity 

– Up to 8 blocks to each SM as 

resource allows 

– SM in G80 can take up to 768 threads 

• Could be 256 (threads/block) * 3 

blocks  

• Or 128 (threads/block) * 6 blocks, etc. 

• Threads run concurrently 

– SM maintains thread/block id #s 

– SM manages/schedules thread 

execution 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 
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G80 Example: Thread Scheduling 

  
• Each Block is executed as 

32-thread Warps 

– An implementation decision, 

not part of the CUDA 

programming model 

– Warps are scheduling units 

in SM 

• If 3 blocks are assigned to an 

SM and each block has 256 

threads, how many Warps are 

there in an SM? 

– Each Block is divided into 

256/32 = 8 Warps 

– There are 8 * 3 = 24 Warps  

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… Block 1 Warps Block 2 Warps 

SP 

SP 

SP 

SP 

SFU 

SP 

SP 

SP 

SP 

SFU 

Instruction Fetch/Dispatch 

Instruction L1 

Streaming Multiprocessor 

Shared Memory 

… 
t0 t1 t2 … t31 

… Block 1 Warps 
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G80 Example: Thread Scheduling 

(Cont.) 

• SM implements zero-overhead warp scheduling 
– Effectively provides for latency hiding (memory waits, etc.) 

– At any time, only one of the warps is executed by SM 

– Warps whose next instruction has its operands ready for 

consumption are eligible for execution 

– Eligible Warps are selected for execution on a prioritized 

scheduling policy 

– All threads in a warp execute the same instruction when selected 

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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G80 Block Granularity Considerations 

• For Matrix Multiplication using multiple blocks, should I 

use 8X8, 16X16 or 32X32 blocks? 

 

– For 8X8, we have 64 threads per Block. Since each SM can take 

up to 768 threads, there are 12 Blocks. However, each SM can 

only take up to 8 Blocks, only 512 threads will go into each SM! 

This will lead to under-utilization (bad for latency hiding).  

 

– For 16X16, we have 256 threads per Block. Since each SM can 

take up to 768 threads, it can take up to 3 Blocks and achieve full 

capacity unless other resource considerations overrule. 

 

– For 32X32, we have 1024 threads per Block. Not even one can fit 

into an SM! 

 



Number of Threads 

• All threads on an SM must run in lock-step 

– if one thread is delayed because of memory load then 

all threads in a warp must wait 

– a new warp is scheduled  

– so it is good to have more threads per block 

– however, there is a limit on the number of threads per 

SM 

– 768, 1024, 1536, 2048 depending on compute 

capability 

– this is a function of the maximum number of warps 

(24, 32, 48, 64) of 32 threads each 



Number of Blocks 

• Workload of threads is not always uniform 

– all threads must complete before a new block can be 

scheduled 

– if the slow thread is part of a large block the idle time 

is high 

– so it is better to have smaller blocks 

– however, there is a limit on the number of blocks per 

SM (8 or less, depending on compute capability)  



GPU Utilization 

• Goal is to allocate as many threads per SM as 

maximum limit 

• Here take into account: 

– max number of blocks 

– modulus of warps 

• So to achieve 100 % utilization depends on 

compute capability and threads/block 

 



GPU Utilization 

• So 256 threads per block is safest across all 

compute capabilities  

Shane‏Cook‏“CUDA‏Programming”‏ 



Practical Example 

• Histogram computation 

 

 for (unsigned int i=0; i< max; i++) 

 {   

  bin[array[i]]++; 

 } 



CPU Algorithm 

1. Read the value from the array into a register 

2. Work out the base address and offset to the correct bin 

element 

3. Fetch the existing bin value 

4. Increment the bin value by one 

5. Write the new bin value back to the bin in memory 

 

Steps 3, 4, 5 are not atomic 

- OK for CPU since serial but not for GPU 

- use atomicAdd(&value) on the GPU 



GPU Algorithm 1 

Shane‏Cook‏“CUDA‏Programming”‏ 



GPU Algorithm 1 

• Not overly fast 

• Why? 

– each thread only fetches 1 byte 

– half warp fetches 16 bytes 

– maximal supported size is 128 bytes 

– hence memory bandwidth is heavily underused  



GPU Algorithm 2 



GPU Algorithm 2 

• In fact, achieves zero speedup 

– no improvements in memory bandwidth 

– advanced compute capability already does good 

coalescing 

– need to look for other culprit 



GPU Algorithm 2 

• In fact, achieves zero speedup 

– no improvements in memory bandwidth 

– advanced compute capability already does good 

coalescing 

– need to look for other culprit 

 

– maybe reduce the amount of global number of atomic 

writes? 



GPU Algorithm 3 

Shane‏Cook‏“CUDA‏Programming”‏ 



GPU Algorithm 3 

Shane‏Cook‏“CUDA‏Programming”‏ 



GPU Algorithm 3 

• results in a 6 fold speedup 

• but could still reduce global memory traffic 

• what can we do? 



GPU Algorithm 3 

• results in a 6 fold speedup 

• but could still reduce global memory traffic 

• what can we do? 

 

 

• compute more than one histogram per thread 



GPU Algorithm 3 

Shane‏Cook‏“CUDA‏Programming”‏ 



GPU Algorithm 3 

Shane‏Cook‏“CUDA‏Programming”‏ 



GPU Algorithm 3 

Shane‏Cook‏“CUDA‏Programming”‏ 



GPU Algorithm 3 

Shane‏Cook‏“CUDA‏Programming”‏ 

not much growth in bandwidth after N=32 due to other factors impeding growth  

(atomics adds in this case) 


