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Strange Effects 

Ever tried to reduce the size of an image and you got this?  

We call this effect ‘aliasing’ 



Better 

But what you really wanted is this: 

We call this ‘anti-aliasing’ 



Why Is This Happening? 

The smaller image resolution cannot represent the image 
detail captured at the higher resolution  

• skipping this small detail leads to these undesired artifacts 

 

 

 

 

 

 

 

 

 

 

 

 

  



Overview 

So how do we get the nice image? 

For this you need to understand: 

• Fourier theory 

• Sampling theory 

• Digital filters 

Don’t be scared, we’ll cover these topics gently 



Periodic Signals 

A signal is periodic if s(t+T) = s(t) 

• we call T the period of the signal 

• if there is no such T then the signal 
is aperiodic 

Sinusoids are periodic functions 

• sinusoids play an important role 

Write as: 

 

• where jt is the phase shift and A is 
the amplitude 

Alternatively: 

 

• where f=1/T is the frequency  

• we may write ω = 2f 
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Fourier Theory 

Jean Baptiste Joseph Fourier (1768-1830) 

His idea (1807): 

• Any periodic function can be rewritten                                                     
as a weighted sum of sines and cosines                                              
of different frequencies. 

Don’t believe it? 

• neither did Lagrange, Laplace, Poisson and                                         
other major mathematicians of his time 

• in fact, the theory was not translated into English until 1878 

But it’s true! 

• it is called the Fourier Series 

 



Example 

Consider the function: 

           g(t) = sin(2f t) + (1/3)sin(2(3f) t) 



Frequency Spectrum 

Consider the function: 

           g(t) = sin(2f t) + (1/3)sin(2(3f) t) 
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the function’s frequency spectrum 



Further Example (1) 

+ = 



Further Example (2) 

+ = 



Further Example (3) 

+ = 



Further Example (4) 

+ = 



The Importance of the Frequency Spectrum 

We observe: 

• oscillations of different frequencies add to form the signal  

• there is a characteristic frequency spectrum to any signal 

• sharp edges can only be represented (generated) by high frequencies 

 

signal  

(approximate square/box function) 
its frequency spectrum 



The DC Component 

The first component of the spectrum is the signal average DC 

‘DC component’ = signal average 



The Math… 

The example just seen has the following Fourier Series: 

 

 

• most of the time the phase is not interesting, so we shall omit it 

In fact, this is an interesting series: the sinc function 

• we shall see more of it soon 

We can convert any discrete signal into its Fourier Series (and 
back) 

• this is called the Fourier Transform (Inverse Fourier Transform) 
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Fourier Transform 

s(t) S(k) 
Inverse Fourier Transform 



Fourier Transform of Discrete Signals: DFT 

Discrete Fourier Transform (DFT) 

• assumes that the signal is discrete and finite 

 

 

 

 

• we have N samples, from which we can calculate N frequencies 

• the frequency spectrum is discrete and it is periodic in N 
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Periodicity 

Images are discrete signals 

• so their frequency spectra are finite and periodic (see last slide) 

• and therefore they have an upper limit (a maximum frequency) 

Images are also finite (in size) 

• the DFT assumes that they are also periodic 

• as odd as this may sound, this is the underlying assumption 

Therefore: 

• frequency spectra are finite and periodic 

• images are also finite and periodic 

Keep this in mind for now 

• it will help explain the strange resizing effects presented before 



Now, What About the Complex Exponential… 

It is Fourier’s way to encode phase and amplitude into one 
representation 

• to understand it better, let’s first review complex numbers 

• and then see what it means in the Fourier context 

Note, we only discuss this to illustrate the full picture 

• essential for this class is only to know the concept of frequency 
spectrum discussed thus far 



Recall: Complex Numbers 

A complex number c has a real and an imaginary part: 

• c = Re{c} + i Im{c}  (cartesian representation) 

• here, i always denotes the complex part 

 We can also use a polar representation: 
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Application: Complex Sinusoids 

Exponential exp 

 

• when a > 0 then exp increases 
with increasing x 

• when a < 0 then exp 
approximates 0 with increasing x   

Complex exponential / sinusoid: 

 

As before 

• the cos term is the signal’s real 
part 

• the sin term is the signal’s 
imaginary part 

• A is the amplitude, j  the phase 
shift, k determines the frequency  
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Two-Dimensional Fourier Spectrum 

u-axis 

v-axis 
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Some Example Spectra 
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Effects of Missing Spectra Portions: Axial  

(a) Spectrum along u determines detail along spatial x 

(b) Spectrum along v determines detail along spatial y 

 

(a) 

(b) 
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Effects of Missing Spectra Portions: Radial 

(a) Lower frequencies (close to origin) give overall structure 

(b) Higher frequencies (periphery) give detail (sharp edges) 

(a) 

(b) 
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The Math… 2D DFT 

The 2D transform: 

 

 

 

 

Separability: 

 

 

 

 

 

• if M=N, complexity is 2·O(2N3) 
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Fast Fourier Transform (FFT) 

Recursively breaks up the FT sum into odd and even terms: 

 

 

 

 

 

 

Results in an O(n·log(n)) algorithm (in 1D) 

• O(n2·log(n)) for 2D (and so on) 
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Fast Fourier Transform (FFT) 

Gives rise to the well-known butterfly Divide + Conquer 
architecture 

• invented by Cooley-Tuckey, 1965) 

 

 

 

 

 

 

 

 


