
© NVIDIA Corporation 2012

GPU Programming

with CUDA and OpenACC
Axel Koehler – NVIDIA

© NVIDIA Corporation 2012

CPUs: designed to

run a few tasks

quickly.

GPUs: designed

to run many tasks

efficiently.

Heterogeneous Computing

Add GPUs: Accelerate Applications

© NVIDIA Corporation 2012

Minimum Change, Big Speed-up

Application Code

+

GPU CPU
Compute-Intensive Functions

Rest of Sequential
CPU Code

© NVIDIA Corporation 2012

Ways to Accelerate Applications

Libraries Directives
Programming

Languages

(CUDA, ..)

Applications

Easiest Approach Maximum

Performance

High Level

Languages

(Matlab, ..)

No Need for

Programming

Expertise

© NVIDIA Corporation 2012

GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra

Building-block
Algorithms for CUDA IMSL Library

http://code.google.com/p/thrust/downloads/list

© NVIDIA Corporation 2012

OpenACC Directives

Program myscience

 ... serial code ...

!$acc region

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end region

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Easy, Open, Powerful

• Simple Compiler hints

• Works on multicore CPUs & many core

GPUs

• Compiler Parallelizes code

• Future Integration into OpenMP

standard planned

OpenACC

Compiler

Hint

http://www.openacc-standard.org

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

© NVIDIA Corporation 2012

OpenACC

Compiler directives to specify parallel regions in C, C++, Fortran

OpenACC compilers offload parallel regions from host to accelerator

Portable across OSes, host CPUs and accelerators

Create high-level heterogeneous programs

Without explicit accelerator initialization,

Without explicit data or program transfers between host and accelerator

Programming model allows programmers to start simple

Enhance with additional guidance for compiler on loop mappings, data

location, and other performance details

© NVIDIA Corporation 2012

Basic Concepts

CPU

CPU Memory

GPU

GPU Memory

PCI Bus

Transfer data

Offload computation

For efficiency, decouple data movement and compute off-load

© NVIDIA Corporation 2012

Directive Syntax

Fortran

!$acc directive [clause [,] clause] …]
Often paired with a matching end directive surrounding a structured code

block

!$acc end directive

C

#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

© NVIDIA Corporation 2012

OpenACC Directive Set

Parallel Constructs

#pragma acc parallel [clause [[,] clause]…] new-line

Data Constructs

#pragma acc data [clause [[,] clause]…] new-line

Loop Constructs

#pragma acc loop [clause [[,] clause]...]new-line

Runtime Library Routines

Cache Directives

And few others…

© NVIDIA Corporation 2012

Jacobi Relaxation

iter = 0

do while (err .gt tol .and. iter .gt. iter_max)

 iter = iter + 1

 err = 0.0

 do j=1,m

 do i=1,n

 Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) + A(i,j-1) + A(i, j+1)

 err = max(err, abs(Anew(i,j)-A(i,j)))

 end do

 end do

 if(mod(iter,100).eq.0 .or. iter.eq.1) print*, iter, err

 A = Anew

end do

Iterate until

converged

Iterate across

elements of matrix

Calculate new value

from neighbours

© NVIDIA Corporation 2012

OpenMP CPU Implementation

iter = 0

do while (err .gt tol .and. iter .gt. iter_max)

 iter = iter + 1

 err = 0.0

!$omp parallel do shared(m,n,Anew,A) reduction(max:err)

 do j=1,m

 do i=1,n

 Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) + A(i,j-1) + A(i, j+1)

 err = max(err, abs(Anew(i,j)-A(i,j)))

 end do

 end do

!$omp end parallel do

 if(mod(iter,100).eq.0) print*, iter, err

 A = Anew

end do

Parallelise code

inside region

Close off region

© NVIDIA Corporation 2012

OpenACC GPU Implementation

!$acc data copy(A,Anew)

iter = 0

do while (err .gt tol .and. iter .gt. iter_max)

 iter = iter + 1

 err = 0.0

!$acc parallel reduction(max:err)

 do j=1,m

 do i=1,n

 Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) + A(i,j-1) + A(i,j+1)

 err = max(err, abs(Anew(i,j)-A(i,j)))

 end do

 end do

!$acc end parallel

 if(mod(iter,100).eq.0) print*, iter, err

 A = Anew

end do

!$acc end data

Parallelise code

inside region

Close off data region,

copy data back

Copy arrays into GPU

memory within region

Close off parallel

region

© NVIDIA Corporation 2012

Improved OpenACC GPU Implementation

!$acc data copyin(A), copyout(Anew)

iter = 0

do while (err .gt tol .and. iter .gt. iter_max)

 iter = iter + 1

 err = 0.0

!$acc parallel reduction(max:err)

 do j=1,m

 do i=1,n

 Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) &

 A(i, j-1) + A(i, j+1)

 err = max(err, abs(Anew(i,j)-A(i,j)))

 end do

 end do

!$acc end parallel

 if(mod(iter,100).eq.0) print*, iter, err

 A = Anew

end do

!$acc end data

Reduced data

movement

© NVIDIA Corporation 2012

More Parallelism

!$acc data copyin(A), create(Anew)

iter = 0

do while (err .gt. tol .and. iter .gt. iter_max)

 iter = iter + 1

 err = 0.0

!$acc parallel reduction(max:err)

 do j=1,m

 do i=1,n

 Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) &

 A(i, j-1) + A(i, j+1))

 err = max(err, abs(Anew(i,j)-A(i,j)))

 end do

 end do

!$acc end parallel

 if(mod(iter,100).eq.0) print*, iter, err

!$acc parallel

 A = Anew

!$acc end parallel

end do

!$acc end data

Add second parallel region

inside data region

Anew now only

exists on GPU

Find maximum over

all iterations

© NVIDIA Corporation 2012

More Performance

!$acc data copyin(A), create(Anew)

iter = 0

do while (err .gt. tol .and. iter .gt. iter_max)

 iter = iter + 1

 err = 0.0

!$acc kernels loop reduction(max:err), gang(32), worker(8)

 do j=1,m

 do i=1,n

 Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) &

 A(i, j-1) + A(i, j+1))

 err = max(err, abs(Anew(i,j)-A(i,j)))

 end do

 end do

!$acc end kernels loop

 if(mod(iter,100).eq.0) print*, iter, err

!$acc parallel

 A = Anew

!$acc end parallel

end do

!$acc end data

30% faster than

default schedule

© NVIDIA Corporation 2012

OpenACC: Small Effort, Real Impact

Large Oil Company

3x in 7 days

Solving billions of

equations iteratively for

oil production at

world’s largest

petroleum reservoirs

Univ. of Houston

Prof. M.A. Kayali

20x in 2 days

Studying magnetic

systems for

innovations in

magnetic storage

media and memory,

field sensors, and

biomagnetism

Ufa State Aviation

Prof. Arthur

Yuldashev

7x in 4 Weeks

Generating stochastic

geological models of

oilfield reservoirs with

borehole data

Uni. Of Melbourne

Prof. Kerry Black

65x in 2 days

Better understand

complex reasons by

lifecycles of snapper

fish in Port Phillip Bay

GAMESS-UK

Dr. Wilkinson,

Prof. Naidoo

10x

Used for various fields

such as investigating

biofuel production and

molecular sensors.

© NVIDIA Corporation 2012

CUDA 4.1 Highlights

 Advanced Application

Development

New & Improved

Developer Tools

GPU-Accelerated

Libraries

• New LLVM-based compiler

• 3D surfaces & cube maps

• Peer-to-Peer between processes

• GPU reset with nvidia-smi

• New GrabCut sample shows

interactive foreground extraction

• New code samples for optical flow,

volume filtering and more…

• 1000+ new imaging functions

• Tri-diagonal solver 10x faster vs. MKL

• MRG32k3a & MTGP11213 RNGs

• New Bessell functions in Math lib

• 2x faster matrix-vector w/ HYB-ELL

• Boost-style placeholders in Thrust

• Batched GEMM for small matrices

• Re-Designed Visual Profiler

• Parallel Nsight 2.1

• Multi-context debugging

• assert() in device code

• Enhanced CUDA-MEMCHECK

© NVIDIA Corporation 2012

New LLVM-based CUDA Compiler

Delivers up to 10% faster application performance

Faster compilation for increased developer productivity

Modern compiler with broad support

Will bring more languages to the GPU

Easier to support CUDA to more platforms

© NVIDIA Corporation 2012

NVIDIA Opens Up CUDA Platform

CUDA Compiler Source for

Researchers & Tools Vendors

Enables

New Language Support

New Processor Support

CUDA Compiler
LLVM

C C++ Fortran

New Language
Support

PGI NVIDIA

New Processor
Support

x86
CPUs

NVIDIA
GPUs

Apply for early access at

http://developer.nvidia.com/cuda-source

http://www.nvidia.com/2xin4weeks
http://developer.nvidia.com/cuda-source
http://developer.nvidia.com/cuda-source
http://developer.nvidia.com/cuda-source

GPU Technology Conference 2012
May 14-17 | San Jose, CA
 The one event you can’t afford to miss

 Learn about leading-edge advances in GPU computing

 Explore the research as well as the commercial applications

 Discover advances in computational visualization

 Take a deep dive into parallel programming

Ways to participate

 Speak – share your work and gain exposure as a thought leader

 Register – learn from the experts and network with your peers

 Exhibit/Sponsor – promote your company as a key player in the GPU ecosystem

 www.gputechconf.com

© NVIDIA Corporation 2012

Summary

Heterogeneous/hybrid Computing is the future

OpenACC Directives provide a standardized way to hybrid

computing

Easy , Open and Powerful

Use highly optimized GPU libraries

Use CUDA for maximum performance

Don’t wait and start today !!

© NVIDIA Corporation 2012

GPU Programming

with CUDA and OpenACC
Axel Koehler – NVIDIA (akoehler@nvidia.com)

