CSE 591: GPU Programming

Memories

Klaus Mueller

Computer Science Department

Stony Brook University

Importance of Memory Access Efficiency

Every loop iteration has

- two global memory accesses
- two floating point instructions
- →compute-to-global-memory-access ratio (CGMA) = 1

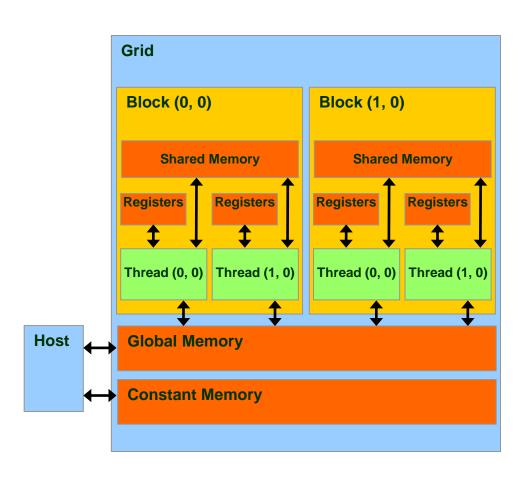
G80 supports 86.4 GB/s memory access bandwidth

- a 4-byte float data access limits bandwidth to 86.4/4=21.6 GB/s
- → get 21.6 GFlops (much lower than the peak 367 Gflops)

G80 Implementation of CUDA Memories

Each thread can:

- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read/only per-grid constant memory



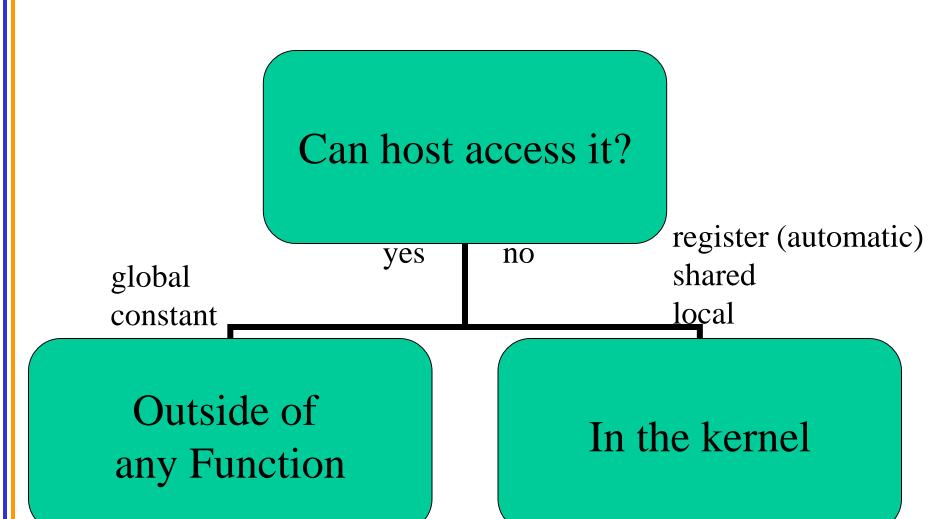
CUDA Variable Type Qualifiers

Variable dec	Memory	Scope	Lifetime	
devicelocal	<pre>int LocalVar;</pre>	local	thread	thread
deviceshared	int SharedVar;	shared	block	block
device	int GlobalVar;	global	grid	application
deviceconstant	int ConstantVar;	constant	grid	application

- __device__ is optional when used with
 _local__, __shared__, or __constant__
- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in local memory

Variable Memory Types

Where to Declare Variables?



Variable Type Restrictions

- Pointers can only point to memory allocated or declared in global memory:
 - Allocated in the host and passed to the kernel:

```
__global__ void KernelFunc(float* ptr)
```

– Obtained as the address of a global variable:

```
float* ptr = &GlobalVar;
```

A Common Programming Strategy

- Global memory resides in device memory (DRAM)
 - much slower access than shared memory (16kB)
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory

A Common Programming Strategy (Cont.)

- Constant memory also resides in device memory (DRAM) - much slower access than shared memory
 - But... cached!
 - Highly efficient access for read-only data
- Carefully divide data according to access patterns
 - R/Only → constant memory (very fast if in cache)
 - R/W shared within Block → shared memory (very fast)
 - R/W within each thread → registers (very fast)
 - R/W inputs/results → global memory (very slow)

For texture memory usage, see NVIDIA document.

GPU Atomic Integer Operations

- Atomic operations on integers in global memory:
 - Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap
- Requires hardware with compute capability 1.1 and above.

Matrix Multiplication using Shared Memory

Review: Matrix Multiplication Kernel using Multiple Blocks

```
_global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE WIDTH + threadIdx.x;
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
Pd[Row*Width+Col] = Pvalue;
```

Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal tile size



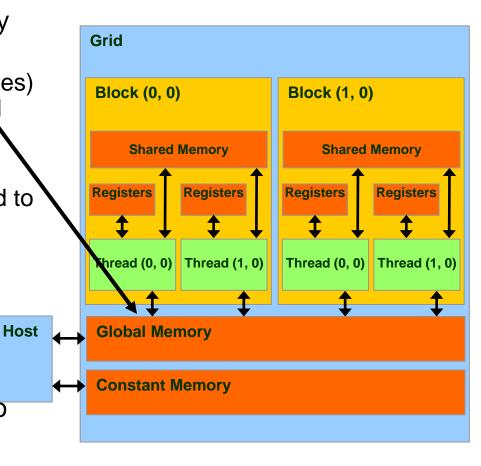
012 TILE WIDTH-1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE498AL, University of Illinois, Urbana-Champaign

How about performance on G80?

 All threads access global memory for their input matrix elements

- Two memory accesses (8 bytes) per floating point multiply-add
- 4B/s of memory bandwidth/FLOPS
- 4*346.5 = 1386 GB/s required to achieve peak FLOP rating
- 86.4 GB/s limits the code at 21.6 GFLOPS
- The actual code runs at about 15 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS



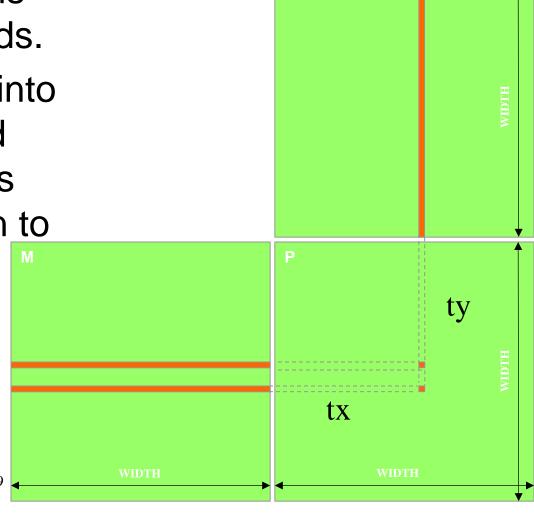
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by Width threads.
- Load each element into Shared Memory and have several threads use the local version to

reduce the memory

bandwidth

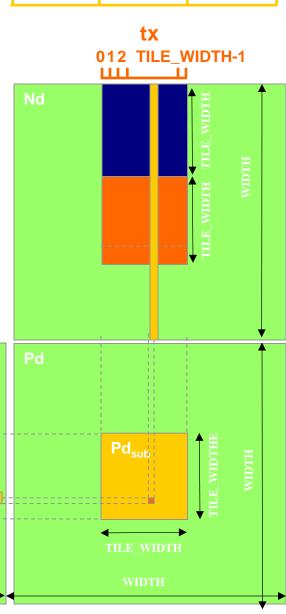
Tiled algorithms



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE498AL, University of Illinois, Urbana Champaign

Tiled Multiply

 Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd



by 1

TILE_WIDTH

TILE_WIDTH

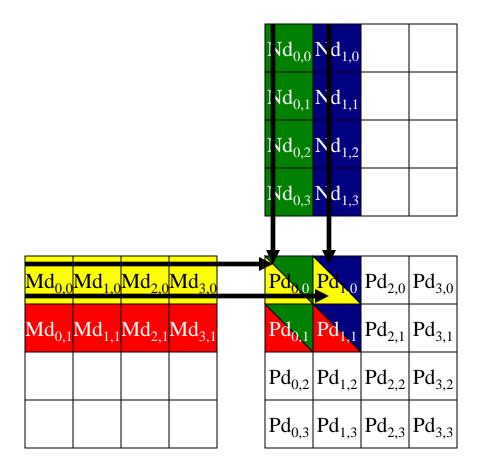
TILE_WIDTH

WIDTH

WIDTH

ECE498AL, University of Illinois, Urbana Champaign

A Small Example

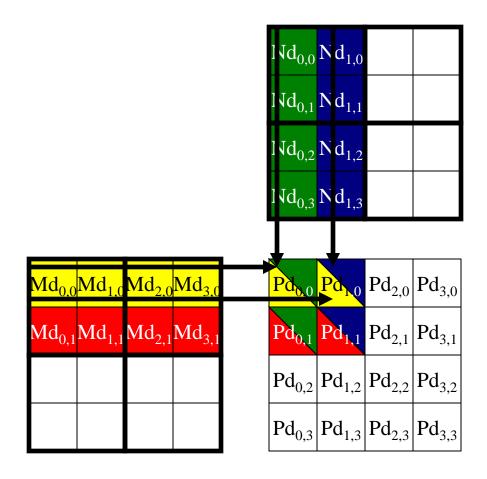


Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P

Access order

P _{0,0}	P _{1,0}	P _{0,1}	P _{1,1}
thread _{0,0}	thread _{1,0}	$thread_{0,1}$	thread _{1,1}
M _{0,0} * N _{0,0}	M _{0,0} * N ₁	M _{0,1} * N _{0,0}	M _{0,1} * N ₁
M ₁ * N _{0,1}	M ₁ ₀ * N _{1,1}	M _{1,1} * N _{0,1}	M _{1,1} * N _{1,1}
M _{2,0} * N _{0,2}	M _{2,0} * N _{1,2}	M _{2,1} * N _{0,2}	M _{2,1} * N _{1,2}
M _{3,0} * N _{0,3}	M _{3,0} * N _{1,3}	M _{3,1} * N _{0,3}	M _{3,1} * N _{1,3}

Breaking Md and Nd into Tiles



Each phase of a Thread Block uses one tile from Md and one from Nd

		Phase 1	1	F	Phase 2	1
T _{0,0}	Md_{0,0} ↓ Mds _{0,0}	Nd_{0,0} ↓ Nds _{0,0}	PValue _{0,0} += Mds _{0,0} *Nds _{0,0} + Mds _{1,0} *Nds _{0,1}	Md_{2,0} ↓ Mds _{0,0}	Nd_{0,2} ↓ Nds _{0,0}	PValue _{0,0} += Mds _{0,0} *Nds _{0,0} + Mds _{1,0} *Nds _{0,1}
T _{1,0}	Md _{1,0} ↓ Mds _{1,0}	Nd _{1,0} ↓ Nds _{1,0}	PValue _{1,0} += Mds _{0,0} *Nds _{1,0} + Mds _{1,0} *Nds _{1,1}	Md _{3,0} ↓ Mds _{1,0}	Nd _{1,2} ↓ Nds _{1,0}	PValue _{1,0} += Mds _{0,0} *Nds _{1,0} + Mds _{1,0} *Nds _{1,1}
T _{0,1}	Md _{0,1} ↓ Mds _{0,1}	$Nd_{0,1}$ \downarrow $Nds_{0,1}$	PdValue _{0,1} += Mds _{0,1} *Nds _{0,0} + Mds _{1,1} *Nds _{0,1}	Md_{2,1} ↓ Mds _{0,1}	Nd_{0,3} ↓ Nds _{0,1}	PdValue _{0,1} += Mds _{0,1} *Nds _{0,0} + Mds _{1,1} *Nds _{0,1}
T _{1,1}	Md _{1,1} ↓ Mds _{1,1}	Nd _{1,1} ↓ Nds _{1,1}	PdValue _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}	Md _{3,1} ↓ Mds _{1,1}	Nd _{1,3} ↓ Nds _{1,1}	PdValue _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}

First-order Size Considerations in G80

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
- There should be many thread blocks
 - A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
- Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 - Memory bandwidth no longer a limiting factor

Locality

- This scheme enforces locality
 - focus of computation on a subset of data elements
 - allows one to use small but high-speed memory for fast computation
 - this exploit matches fast processors with high memory bandwidth and so maximizes the performance
 - locality useful in any multi-core configurations

CUDA Code – Kernel Execution Configuration

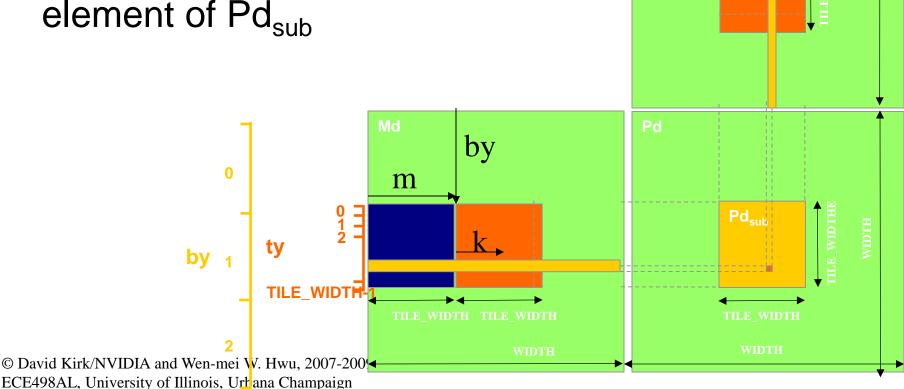
Tiled Matrix Multiplication Kernel

global void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) shared float Mds[TILE WIDTH][TILE WIDTH]; shared float Nds[TILE WIDTH][TILE WIDTH]; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; Identify the row and column of the Pd element to work on int Row = by * TILE WIDTH + ty; int Col = bx * TILE WIDTH + tx; float Pvalue = 0: Loop over the Md and Nd tiles required to compute the Pd element for (int m = 0; m < Width/TILE WIDTH; ++m) {</pre> Coolaborative loading of Md and Nd tiles into shared memory Mds[ty][tx] = Md[Row*Width + (m*TILE WIDTH + tx)]; 9. Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width]; 10. syncthreads(); 11. 11. for (int k = 0; k < TILE WIDTH; ++k) 12. Pvalue += Mds[ty][k] * Nds[k][tx]; 13. Synchthreads(); 14. 13. Pd[Row*Width+Col] = Pvalue; © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE498AL, University of Illinois, Urbana Champaign

Tiled Multiply

- Each block computes one square sub-matrix Pd_{sub} of size TILE_WIDTH
- Each thread computes one element of Pd_{sub}



012 TILE WIDTH-1

m

k

bx

View: G80 Registers

- Each SM has 8k (8192) registers (128k total)
 - each SM can have up to 768 threads
 - so each thread can use up to 8k/768 = 10 registers
- Now if each thread used 11 registers...
 - number of executable threads is reduced
 - done at the block level
 - $-256 \text{ threads/block} \rightarrow 768/256 = 3 \text{ blocks}$
 - reduction by 1 block gives 2 blocks → 512 threads
 - reduces number of warps by 1/3 and so reduces the ability for latency hiding

View: G80 Shared Memory

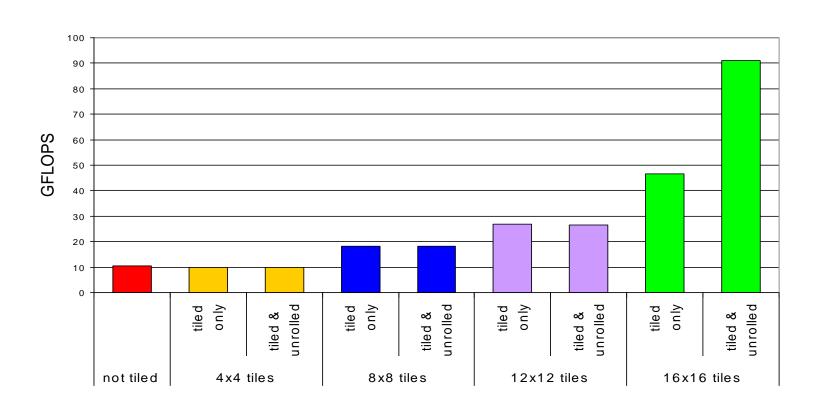
- G80 has 16kB shared memory per SM
- Each SM can have up to 8 blocks
 - so maximum shared memory per block is 2kB
 - if each block used 5kB could only have 3 blocks assigned to each SM

View: G80 Matrix Multiplication Example

- Each SM in G80 has 16KB shared memory
 - SM size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - So, can potentially have up to 8 Thread Blocks actively executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time
- Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 - The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!

Tiling Size Effects

(more on this later)



Summary- Typical Structure of a CUDA Program

- Global variables declaration host device ... _global _, _constant _, _texture __ Function prototypes __global__ void kernelOne(...) float handyFunction(...) Main () allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes) transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl...) execution configuration setup – kernel call – kernelOne<<execution configuration>>>(args...); repeat transfer results from device to host – cudaMemCpy(h_GlblVarPtr,...) as needed optional: compare against golden (host computed) solution Kernel – void kernelOne(type args,...) variables declaration - __local__, __shared__ automatic variables transparently assigned to registers or local memory
 - Other functions
 - float handyFunction(int inVar...);

syncthreads()...