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Ideal Assumptions 

 

Dense and regular sampling of the 
Fourier domain  many projections 

 

 

Noise free projections 

 

 

Straight rays 

 

 

 

 



Non-Ideal Scenarios 

Projections might be: 

• sparse 

• acquired over less than 180 

• noisy 

 

 

 

 

 

 

 

 

 

 

Rays might be non-linear (curved, refracted, scattered,…) 

• for example: refraction in ultrasound imaging 
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Dealing With Non-Ideal Scenarios 

Iterative methods are advantageous in these cases 

They can handle: 

• limited number of projections 

• irregularly-spaced and -angled projections 

• non-straight ray paths (example: refraction in ultrasound imaging) 

• corrective measures during reconstruction (example: metal artifacts) 

• presence of statistical (Poisson) noise and scatter (mainly in 
functional imaging: SPECT, PET) 

 



Specifics 

In medical imaging: 

• M unknown voxels (depending on desired object resolution) 

• N known measurements (pixels in the projection images) 

• represent voxels and pixels as vectors V and P, respectively 

 

 

 

 

 

 

 

• this gives rise to a system WV=P 
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Solving for V 

The obvious solution is then: 

• compute V = W-1  P 

The main problem with this direct approach: 

• P is not be consistent due to noise  lines do not intersect in solution 

• This turns WV=P into an optimization problem  
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Optimization Algorithms 

Algebraic methods 

• Algebraic Reconstruction Technique (ART), SART, SIRT  

• Projection Onto Convex Sets (POCS) 

Sparse system solvers 

• Gradient Descent (GD), Conjugate Gradients (CG) 

• Gauss-Seidel 

Statistical methods 

• Expectation Maximization (EM) 

• Maximum Likelihood Estimation (MLE) 

 

 

 

All of these are iterative methods: 

• predict  compare  correct  predict  compare  correct … 

 



Big Picture: Iterative Reconstruction  

 

 

 

 

Before delving into details,  

let’s see an iterative scheme at work  



Iterative Reconstruction Demonstration: SART 



Iterative Reconstruction Demonstration: SART 



Foundations: Vectors 

Consider two vectors, a and b 
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Foundations: Scalar Projection 

Scalar projection of a onto b: 

 

 

 

 

The dot product: 

 

 

 

  the scalar projection is the dot product with |b| =1 (unit vector) 
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Foundations: Line Equation 

The vector a is the unit vector normal to the line la 

The length y is the perpendicular distance of la to the origin 

For any point x:  

• if x is on la then the scalar projection of x onto a will be:  
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Foundations: Distance From Line 

For any other point x’ not on la the scalar projection of x’ onto a 
will be:  
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Foundations: Closest Point 

The closest point to x’ on la is x’’, computed by: 
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Foundations: Solving an Equation System 

Assume you have two equations to solve for solution point 
xs=(x1,x2) 

• the intersection of the two lines 
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Foundations: Iterating to Solution 

Of course, you could solve this equation via Gaussian 
elimination 

• we shall take an iterative approach instead  

Start with some point x(0)=(x1,x2) 
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Foundations: Iterating to Solution 

Pick an equation (line, say l2) and find the closest point to x(0) 

• use the approach outlined before 

• this gives a new point x(1) 
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Foundations: Iterating to Solution 

Iteratively 

• pick alternate equations (lines) and project   

• the solution will converge towards xs 

• the more iterations the closer the convergence  
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Foundations: Extension to Higher Dimensions  

Three dimensions: 

• 3 equations with 3 unknowns 

 

 

 

N dimensions: 

• N equations with M unknowns 

• M can be less or greater than N 

• inconsistent (most often) or not 

 



Specifics to Medical Imaging 

In medical imaging: 

• M unknown voxels (depending on desired object resolution) 

• N known measurements (pixels in the projection images) 

• represent voxels and pixels as vectors V and P, respectively 

 

 

 

 

 

 

 

• this gives rise to a system WV=P 

Iterate either by  

• ray by ray (Algebraic Reconstruction Technique, ART) 

• image by image (Simultaneous ART, SART) 

• all data at once (SIRT) 
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Iterative Update Schedule: ART 

Project 

Correct 

Backproject 

one pixel at a time 



Project 

Correct 

Backproject 

one projection at a time 

Iterative Update Schedule: SART 



Project 

Correct 

Backproject 

all projections 

Iterative Update Schedule: SIRT 



Iterative Reconstruction Demonstration: SART 



Iterative Reconstruction Demonstration: SART 
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Iteratively solves WV=P 

SART 
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Projection (into pixel) 

Projection 

vj 
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SART 
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Projection (into pixel) 

Normalization 

at pixel i 

Scanned pixel 

Correction factor  

computation 

C 

SART 
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Projection (into pixel) 

Normalization 

at pixel i 

Backprojection 

(into voxel) 

Scanned pixel 

Backprojection 

vj 

C 

SART 
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Projection (into pixel) 

Normalization 

at pixel i 

Normalization at voxel j 

Backprojection 

(into voxel) 

Scanned pixel 

Voxel normalization 

vj 

SART 
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Projection (into pixel) 

Normalization 

at pixel i 

Normalization at voxel j 

Backprojection 

(into voxel) 

Scanned pixel 

New (k+1) and previous (k)  

values of voxel j 

Voxel update 

vj 

SART 
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Next projection 

SART 



Gradient Descent 

Quadratic form of a vector: 

 

• this equation is minimized when Ax=b 

• this occurs when f’(x)=0 

• thus, minimizing the quadratic form will solve the reconstruction 
problem 
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Steepest Descent 

Start at an arbitrary point and slide down to the bottom of the 
parabola 

• in practice this will be a hyper-parabola since x, b are high-dimensional 

• choose the direction in which f decreases most quickly 

 

 

                    where x(i) is the current (predicted) solution 

 

• similar to ART but now looks at all equations simultaneously 
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Figures from J. Shewchuk, UC Berkeley 



Steepest Descent 

Start at some initial guess x(0) 

• this will likely not find the solution 

• need to follow f’(x(0)) some ways and                                                              
then change directions 

• question is where do we change directions 

 

Some basics: 

• error: how far are we away from the solution 

 

 

• residual: how far are we away from the correct value of b 
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Steepest Descent 

Finding the right place to turn directions is called line search 

 

 

To find a we can use the following requirements: 

• the new direction of r must be orthogonal to the                                 
previous: 

 

 

• the residual at x(1) 

 

 

 

• after some math: 
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Steepest Descent: Summary 

 

 

 

 

 

 

Shortcoming: 

• sub-optimal since some directions might be taken more than once 

• this can be fixed by the method of Conjugant Gradients 
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Conjugant Gradients 

Picks a set of orthogonal search directions d(0), d(1), d(2), …  

• take exactly one step along each 

• stop at exactly the right length for each to line up evenly with x   

 

 

 

• to determine a(i) use the fact that e(i+1) should be orthogonal to d(i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

• however, this requires knowledge of e(i) which we do not have 
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Conjugant Gradients 

Solution: 

• make the search direction A-orthogonal (or, conjugate) 

 

 

 

 

• A transforms a coordinate system such that two vectors are 
orthogonal  
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Conjugant Gradients 

All directions taken are mutually orthogonal  

• each new residual is orthogonal to all the previous residuals and 
search directions 

• each new search direction is constructed (from the residual) to be A-
orthogonal to all the previous residuals and search directions 

Each new search direction adds a new dimension to the 
traversed sub-space 

• the solution is a projection into the sub-space explored so far 

• so after n steps the full space is built and the solution has been 
reached 

 

 
solution 



Conjugant Gradients: Summary 



Statistical Techniques 

Algebraic/gradient methods do not model 
statistical effects in the underlying data 

• this is OK for CT (within reason) 

However, the emission of radiation from 
radionuclides is highly statistical 

• the direction is chosen at random 

• similar metabolic activities may not emit the 
same radiation 

• not all radiation is actually collected 
(collimators reject many photons) 

• in low-dose CT, noise is also a significant 
problem  

Need a reconstruction method that can 
accounts for these statistical effects 

• Maximum Likelihood – Expectation 
Maximization (ML-EM)  is one such method 



Foundations: The Poisson Distribution 

Also called the law of rare events 

• it is the binomial distribution of k as the number of trials n goes to infinity 

 

 

 

• with p = / n 

 

 

 : expected number of events (the mean)                                                                      

     in a given time interval 

 

Some examples for Poisson-distributed events: 

• the number of phone calls at a call center per minute 

• the number of spelling errors a secretary makes while typing a single page 

• the number of soldiers killed by horse-kicks each year in each corps in the 
Prussian cavalry 

• the number of positron emissions in a radio nucleotide in PET and SPECT 

• the number of annihilation events in PET and SPECT 

k 



Overall Concept of ML-EM 

There are three types of variables 

#1: The observed data y(d): 

• the detector readings 

#2: The unobserved (latent) data x(b): 

• the photon emission activities in the pixels (the tissue), x(b) 

• these give rise to the detector readings 

• they follow a Poisson distribution 

#3: The model parameters (b): 

• these cause the emissions 

• they are the metabolic activities (state) of interest 

• the emissions only approximate those    

 they represent the expectations (means,  ) of the resulting Poisson 
distribution causing the readings at the detectors 

 



Overall Concept of ML-EM 

There is a many-to-one mapping of parameters  data  

Since there is a many-to-one mapping, many objects are 
probable to have produced the observed data 

• the object reconstruction (the image) having the highest such 
probability is the maximum likelihood estimate of the original object 

 

Goal: 

• estimate the model parameters using the observed data 

Solution: 

• EM will converge to a solution of maximum likelihood (but not 
necessarily the global maximum)  

 

 



Overall Concept of ML-EM 

Initialization step: choose an initial setting of the model 
parameters 

Then proceed to EM, which has two steps, executed 
iteratively: 

• E (expectation) step: estimate the unobserved data from the current 
estimate of the model parameters and the observed data 

• M (maximization) step: compute the maximum-likelihood estimate of 
the model parameters using the estimated unobserved data 

Stop when converged    

Initialize model parameters p 

E-Step: estimate unobserved data x using p and observed data y  

M-Step: compute ML-estimate of p using x 

return if converged 



Maximum Likelihood Expectation Maximization (ML-EM) 
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After combining the E-step and the ML-step: 



Maximum Likelihood Expectation Maximization (ML-EM) 
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Projection (into pixel i) 

Backprojection 

(into voxel j) 

Normalization at voxel j 

New (k+1) and previous (k)  

values of voxel j 

Maximizes the likelihood of the values of (object) voxels j, 

given values at (detector) pixels i 



Algorithm Comparison 

SART: 

• projection ordering important 

• ensure that consecutively selected projections are approximately 
orthogonal 

• random selection works well in practice 

CG: 

• much depends on the condition number of the (system) matrix A 

• various pre-conditioning methods exist in the literature 

• also, line search can be expensive and inaccurate 

• various methods and heuristics for line search have been described 
in the literature  

EM:  

• convergence slow if all projections are applied before voxel update 

• use OS-EM (Ordered Subsets EM): only a subset of projections are 
applied per iteration   



Inconsistent Equations 

Real life data (as mentioned earlier) 

• typically equations (the data) are not consistent 

• you may have more equations (data) than unknowns or not enough 

• solution falls within a convex shape spanned by the intersection set 

• need further criteria to determine the true solution (some prior model)   
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Determining the True Solution 

Need further criteria to determine the true solution  

Use some prior model 

• smoothness, approximate shape, sharp edges, … 

• incorporate this model into the reconstruction procedure 

Example:  

• enforce smoothness by intermittent blurring 

• but at the same time preserve edges    

smooth, good edges streak artifacts, good edges 


