Introduction to Medical Imaging

Iterative Reconstruction Methods

Klaus Mueller

Computer Science Department
Stony Brook University

Ideal Assumptions

Dense and regular sampling of the Fourier domain \rightarrow many projections

Noise free projections

Straight rays

Non-Ideal Scenarios

Projections might be:

- sparse
- acquired over less than 180°
- noisy

20 projections low-dose CT

SNR=10

\uparrow

Rays might be non-linear (curved, refracted, scattered,...)

- for example: refraction in ultrasound imaging

Dealing With Non-Ideal Scenarios

Iterative methods are advantageous in these cases
They can handle:

- limited number of projections
- irregularly-spaced and -angled projections
- non-straight ray paths (example: refraction in ultrasound imaging)
- corrective measures during reconstruction (example: metal artifacts)
- presence of statistical (Poisson) noise and scatter (mainly in functional imaging: SPECT, PET)

Specifics

In medical imaging:

- Munknown voxels (depending on desired object resolution)
- N known measurements (pixels in the projection images)
- represent voxels and pixels as vectors V and P, respectively

$$
\begin{gathered}
w_{11} v_{1}+w_{12} v_{2}+\ldots w_{1 M} v_{M}=p_{1} \\
w_{21} v_{1}+w_{22} v_{2}+\ldots w_{2 M} v_{M}=p_{2} \\
\ldots \\
w_{N 1} v_{1}+w_{N 2} v_{2}+\ldots w_{N M} v_{M}=p_{N}
\end{gathered}
$$

- this gives rise to a system $W \cdot V=P$

Solving for V

The obvious solution is then:

- compute $V=W^{-1} \cdot P$

The main problem with this direct approach:

- P is not be consistent due to noise \rightarrow lines do not intersect in solution
- This turns $W \cdot V=P$ into an optimization problem

2D case

$$
\begin{aligned}
& w_{11} v_{1}+w_{12} v_{2}=p_{1} \\
& w_{21} v_{1}+w_{22} v_{2}=p_{2} \\
& w_{31} v_{1}+w_{32} v_{2}=p_{3}
\end{aligned}
$$

Optimization Algorithms

Algebraic methods

- Algebraic Reconstruction Technique (ART), SART, SIRT
- Projection Onto Convex Sets (POCS)

Sparse system solvers

- Gradient Descent (GD), Conjugate Gradients (CG)
- Gauss-Seidel

Statistical methods

- Expectation Maximization (EM)
- Maximum Likelihood Estimation (MLE)

All of these are iterative methods:

- predict \rightarrow compare \rightarrow correct \rightarrow predict \rightarrow compare \rightarrow correct \ldots

Big Picture: Iterative Reconstruction

Before delving into details,

let's see an iterative scheme at work

Iterative Reconstruction Demonstration: SART

Iterative Reconstruction Demonstration: SART

Foundations: Vectors

Consider two vectors, a and b

$$
\begin{array}{ll}
a=\vec{a}=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right], \quad|a|=\sqrt{a_{1}^{2}+a_{2}^{2}} \\
b=\vec{b}=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right], \quad|b|=\sqrt{b_{1}^{2}+b_{2}^{2}}
\end{array}
$$

Foundations: Scalar Projection

Scalar projection of a onto b :

$$
|a| \cos \alpha=a \cdot \frac{b}{|b|}
$$

The dot product:

$$
\begin{aligned}
a \cdot b & =\vec{a} \cdot \vec{b}^{T}=\left[a_{1} a_{2}\right] \cdot\left[b_{1} b_{2}\right]^{T}=a_{1} b_{1}+a_{2} b_{2} \\
& =|a| \cdot|b| \cos \alpha
\end{aligned}
$$

\rightarrow the scalar projection is the dot product with $\mid b /=1$ (unit vector)

$$
|b|=\sqrt{b_{1}^{2}+b_{2}^{2}}=1
$$

Foundations: Line Equation

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}=y \\
& |a|=\sqrt{a_{1}^{2}+a_{2}^{2}}=1
\end{aligned}
$$

The vector a is the unit vector normal to the line l_{a}
The length y is the perpendicular distance of l_{a} to the origin
For any point x :

- if x is on I_{a} then the scalar projection of x onto a will be:

$$
x \cdot a=y
$$

Foundations: Distance From Line

For any other point x^{\prime} not on I_{a} the scalar projection of x^{\prime} onto a will be:

$$
x^{\prime} \cdot a=y^{\prime}=y+\Delta y
$$

Foundations: Closest Point

The closest point to x^{\prime} on I_{a} is $x^{\prime \prime}$, computed by:

$$
\begin{aligned}
x^{\prime \prime} & =x^{\prime}-\Delta y \\
& =x^{\prime}-\left(x^{\prime} \cdot a-y\right) \\
& =x^{\prime}+\left(y-x^{\prime} \cdot a\right)
\end{aligned}
$$

Foundations: Solving an Equation System

Assume you have two equations to solve for solution point $x_{s}=\left(x_{1}, x_{2}\right)$

- the intersection of the two lines

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=y_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=y_{2}
\end{aligned}
$$

Foundations: Iterating to Solution

Of course, you could solve this equation via Gaussian elimination

- we shall take an iterative approach instead

Start with some point $\mathrm{x}^{(0)}=\left(x_{1}, x_{2}\right)$

Foundations: Iterating to Solution

Pick an equation (line, say I_{2}) and find the closest point to $x^{(0)}$

- use the approach outlined before
- this gives a new point $x^{(1)}$

Foundations: Iterating to Solution

Iteratively

- pick alternate equations (lines) and project
- the solution will converge towards x_{s}
- the more iterations the closer the convergence

Foundations: Extension to Higher Dimensions

Three dimensions:

- 3 equations with 3 unknowns
N dimensions:
- N equations with M unknowns
- M can be less or greater than N
- inconsistent (most often) or not

Specifics to Medical Imaging

In medical imaging:

- M unknown voxels (depending on desired object resolution)
- N known measurements (pixels in the projection images)
- represent voxels and pixels as vectors V and P, respectively

$$
\begin{gathered}
w_{11} v_{1}+w_{12} v_{2}+\ldots w_{1 M} v_{M}=p_{1} \\
w_{21} v_{1}+w_{22} v_{2}+\ldots v_{2 M} v_{M}=p_{2} \\
\ldots \\
w_{N 1} v_{1}+w_{N 2} v_{2}+\ldots w_{N M} v_{M}=p_{N}
\end{gathered}
$$

- this gives rise to a system $W \cdot V=P$

Iterate either by

- ray by ray (Algebraic Reconstruction Technique, ART)
- image by image (Simultaneous ART, SART)
- all data at once (SIRT)

Iterative Update Schedule: ART

one pixel at a time

Iterative Update Schedule: SART

one projection at a time

Iterative Update Schedule: SIRT

all projections

Backproject

Iterative Reconstruction Demonstration: SART

Iterative Reconstruction Demonstration: SART

SART

Iteratively solves $W \cdot V=P$

$$
v_{j}^{k+1}=v_{j}^{k}+\lambda \frac{\sum_{i} \frac{p_{i}-\sum_{j} v_{j}^{k} w_{i j}}{\sum_{j} w_{i j}} w_{i j}}{\sum_{i} w_{i j}}
$$

SART

Projection

Projection (into pixel)

SART

Correction factor

computation

Projection (into pixel)

Normalization at pixel i
Scanned pixel

$$
v_{j}^{k+1}=v_{j}^{k}+\lambda \frac{\sum_{i} w_{i j}}{}
$$

SART

Backprojection

Projection (into pixel)
Backprojection (into voxel)

Normalization at pixel i

$$
v_{j}^{k+1}=v_{j}^{k}+\lambda \frac{\sum_{i} w_{i j}}{\underset{\sum_{i}}{ }}
$$

SART

Voxel normalization

SART

Voxel update

Projection (into pixel)

Backprojection (into voxel)

Normalization at pixel i

New ($k+1$) and previous (k) values of voxel j

Normalization at voxel j

SART

Next projection

Gradient Descent

Quadratic form of a vector:

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x+c
$$

- this equation is minimized when $A \cdot x=b$
- this occurs when $f^{\prime}(x)=0$
- thus, minimizing the quadratic form will solve the reconstruction problem

Graph plot

Contour plot

Gradient plot

Steepest Descent

Start at an arbitrary point and slide down to the bottom of the parabola

- in practice this will be a hyper-parabola since x, b are high-dimensional
- choose the direction in which f decreases most quickly

$$
-f^{\prime}\left(x_{(i)}\right)=b-A x_{(i)}
$$

where $x_{(i)}$ is the current (predicted) solution

- similar to ART but now looks at all equations simultaneously

Steepest Descent

Start at some initial guess $x_{(0)}$

- this will likely not find the solution
- need to follow $f^{\prime}\left(x_{(0)}\right)$ some ways and then change directions
- question is where do we change directions

Some basics:

- error: how far are we away from the solution

$$
e_{(i)}=x_{(i)}-x
$$

- residual: how far are we away from the correct value of b

$$
\begin{aligned}
& \mathrm{r}_{(i)}=b-A x_{(i)} \\
& \mathrm{r}_{(i)}=A e_{(i)} \quad A \text { transforms } e \text { into the space of } b \\
& \mathrm{r}_{(i)}=-f^{\prime}\left(x_{(i)}\right)
\end{aligned}
$$

Steepest Descent

Finding the right place to turn directions is called line search

$$
x_{(1)}=x_{(0)}+\alpha r_{(0)}
$$

To find α we can use the following requirements:

- the new direction of r must be orthogonal to the previous:

$$
r_{(1)}{ }^{T} r_{(0)}=0
$$

- the residual at $x_{(1)} \quad f^{\prime}\left(x_{(1)}\right)=-r_{(1)}$

Steepest Descent: Summary

$$
\begin{aligned}
& r_{(i)}=b-A x_{(i)} \\
& \alpha=\frac{r_{(i)}^{T} r_{(i)}}{r_{(i)}^{T} A r_{(i)}} \\
& x_{(i+1)}=x_{(i)}+\alpha r_{(i)}
\end{aligned}
$$

Shortcoming:

- sub-optimal since some directions might be taken more than once
- this can be fixed by the method of Conjugant Gradients

Conjugant Gradients

Picks a set of orthogonal search directions $d_{(0)}, d_{(1)}, d_{(2)}, \cdots$

- take exactly one step along each
- stop at exactly the right length for each to line up evenly with x

$$
x_{(i+1)}=x_{(i)}+\alpha_{(i)} d_{(i)}
$$

- to determine $\alpha_{(i)}$ use the fact that $e_{(i+1)}$ should be orthogonal to $d_{(i)}$

$$
\begin{aligned}
& d_{(i)}^{T} e_{(i+1)}=0 \\
& d_{(i)}{ }^{T}\left(e_{(i)}+\alpha d_{(i)}\right)=0 \\
& \alpha_{(i)}=\frac{d_{(i)}{ }^{T} e_{(i)}}{d_{(i)}{ }^{T} d_{(i)}}
\end{aligned}
$$

- however, this requires knowledge of $e_{(i)}$ which we do not have

Conjugant Gradients

Solution:

- make the search direction A-orthogonal (or, conjugate)

$$
\alpha_{(i)}=\frac{d_{(i)}^{T} A e_{(i)}}{d_{(i)}{ }^{T} A d_{(i)}}=\frac{d_{(i)}{ }^{T} r_{(i)}}{d_{(i)}{ }^{T} A d_{(i)}}
$$

- A transforms a coordinate system such that two vectors are orthogonal

$$
d_{(i)}{ }^{T} A d_{(j)}=0 \quad i \neq j
$$

Conjugant Gradients

All directions taken are mutually orthogonal

- each new residual is orthogonal to all the previous residuals and search directions
- each new search direction is constructed (from the residual) to be A orthogonal to all the previous residuals and search directions
Each new search direction adds a new dimension to the traversed sub-space
- the solution is a projection into the sub-space explored so far
- so after n steps the full space is built and the solution has been reached
solution

Conjugant Gradients: Summary

$$
\begin{gathered}
d_{(0)}=r_{(0)}=b-A x_{(0)}, \\
\alpha_{(i)}=\frac{r_{(i)}^{T} r_{(i)}}{d_{(i)}^{T} A d_{(i)}} \\
x_{(i+1)}=x_{(i)}+\alpha_{(i)} d_{(i)}, \\
r_{(i+1)}=r_{(i)}-\alpha_{(i)} A d_{(i)}, \\
\beta_{(i+1)}=\frac{r_{(i+1)}^{T} r_{(i+1)}}{r_{(i)}^{T} r_{(i)}}, \\
d_{(i+1)}=r_{(i+1)}+\beta_{(i+1)} d_{(i)} .
\end{gathered}
$$

Statistical Techniques

Algebraic/gradient methods do not model statistical effects in the underlying data

- this is OK for CT (within reason)

However, the emission of radiation from radionuclides is highly statistical

- the direction is chosen at random
- similar metabolic activities may not emit the same radiation
- not all radiation is actually collected (collimators reject many photons)
- in low-dose CT, noise is also a significant problem
Need a reconstruction method that can accounts for these statistical effects
- Maximum Likelihood - Expectation Maximization (ML-EM) is one such method

Foundations: The Poisson Distribution

Also called the law of rare events

- it is the binomial distribution of k as the number of trials n goes to infinity

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(X=k)=\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- with $p=\lambda / n$

$$
f(k ; \lambda)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

λ : expected number of events (the mean) in a given time interval

Some examples for Poisson-distributed events:

- the number of phone calls at a call center per minute
- the number of spelling errors a secretary makes while typing a single page
- the number of soldiers killed by horse-kicks each year in each corps in the Prussian cavalry
- the number of positron emissions in a radio nucleotide in PET and SPECT
- the number of annihilation events in PET and SPECT

Overall Concept of ML-EM

There are three types of variables
\#1: The observed data $\mathrm{y}(\mathrm{d})$:

- the detector readings
\#2: The unobserved (latent) data $\times(b)$:

- the photon emission activities in the pixels (the tissue), $x(b)$
- these give rise to the detector readings
- they follow a Poisson distribution
\#3: The model parameters λ (b):
- these cause the emissions
- they are the metabolic activities (state) of interest
- the emissions only approximate those
\rightarrow they represent the expectations (means, λ) of the resulting Poisson distribution causing the readings at the detectors

Overall Concept of ML-EM

There is a many-to-one mapping of parameters \rightarrow data
Since there is a many-to-one mapping, many objects are probable to have produced the observed data

- the object reconstruction (the image) having the highest such probability is the maximum likelihood estimate of the original object

Goal:

- estimate the model parameters using the observed data

Solution:

- EM will converge to a solution of maximum likelihood (but not necessarily the global maximum)

Overall Concept of ML-EM

Initialization step: choose an initial setting of the model parameters

Then proceed to EM, which has two steps, executed iteratively:

- E (expectation) step: estimate the unobserved data from the current estimate of the model parameters and the observed data
- M (maximization) step: compute the maximum-likelihood estimate of the model parameters using the estimated unobserved data
Stop when converged
Initialize model parameters p

Maximum Likelihood Expectation Maximization (ML-EM)

After combining the E-step and the ML-step:

$$
v_{j}^{k+1}=\frac{v_{j}^{k}}{\sum_{i} w_{i j}} \sum_{i} \frac{p_{i}}{\sum_{j} v_{j}^{k} w_{i j}}
$$

Maximum Likelihood Expectation Maximization (ML-EM)

Maximizes the likelihood of the values of (object) voxels j, given values at (detector) pixels i

New ($k+1$) and previous (k)

Normalization at voxel j
Projection (into pixel i)

Algorithm Comparison

SART:

- projection ordering important
- ensure that consecutively selected projections are approximately orthogonal
- random selection works well in practice

CG:

- much depends on the condition number of the (system) matrix A
- various pre-conditioning methods exist in the literature
- also, line search can be expensive and inaccurate
- various methods and heuristics for line search have been described in the literature

EM:

- convergence slow if all projections are applied before voxel update
- use OS-EM (Ordered Subsets EM): only a subset of projections are applied per iteration

Inconsistent Equations

Real life data (as mentioned earlier)

- typically equations (the data) are not consistent
- you may have more equations (data) than unknowns or not enough
- solution falls within a convex shape spanned by the intersection set
- need further criteria to determine the true solution (some prior model)

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=y_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=y_{2} \\
& a_{31} x_{1}+a_{32} x_{2}=y_{3}
\end{aligned}
$$

Determining the True Solution

Need further criteria to determine the true solution
Use some prior model

- smoothness, approximate shape, sharp edges, ...
- incorporate this model into the reconstruction procedure

Example:

- enforce smoothness by intermittent blurring
- but at the same time preserve edges

streak artifacts, good edges

smooth, good edges

