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Dense and regular sampling of the
Fourier domain — many projections

Noise free projections

Straight rays




Non-ldeal Scenarios

Projections might be:

* sparse
* acquired over less than 180°
* Noisy

20 projections SNR=10
low-dose CT high-dose CT

Rays might be non-linear (curved, refracted, scattered,...)
e for example: refraction in ultrasound imaging



Dealing With Non-Ideal Scenarios

Iterative methods are advantageous in these cases

They can handle:

* limited number of projections

* irregularly-spaced and -angled projections

* non-straight ray paths (example: refraction in ultrasound imaging)

* corrective measures during reconstruction (example: metal artifacts)

* presence of statistical (Poisson) noise and scatter (mainly in
functional imaging: SPECT, PET)



In medical imaging:
* M unknown voxels (depending on desired object resolution)

* N known measurements (pixels in the projection images)
* represent voxels and pixels as vectors V and P, respectively

Wi Vi + W, Vy 0 Wy, Vy = Py
Wy Vy + WooVy +. Wo Vi = 1,
Wiy Yy + W,V + Wiy Vg = By

* this gives rise to a system W-V=P



Solving for V

The obvious solution iIs then:
* computeV=W1.P

The main problem with this direct approach:

* P is not be consistent due to noise — lines do not intersect in solution
* This turns W-V=P into an optimization problem
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W,y +Wo,V, = g




Optimization Algorithms

Algebraic methods
* Algebraic Reconstruction Technique (ART), SART, SIRT
* Projection Onto Convex Sets (POCS)
Sparse system solvers
* Gradient Descent (GD), Conjugate Gradients (CG)
* Gauss-Seidel
Statistical methods

* Expectation Maximization (EM)
* Maximum Likelihood Estimation (MLE)

All of these are iterative methods:
* predict -» compare — correct — predict — compare — correct ...



Big Picture: Iterative Reconstruction

Before delving into details,

let’'s see an iterative scheme at work



lterative Reconstruction Demonstration: SART




lterative Reconstruction Demonstration: SART




Foundations: Vectors

Consider two vectors, aand b X

a=a=[a a,], ‘a‘:\/aiz"'azz
p=B=[o,b],  [p]= b7+



Foundations: Scalar Projection

Scalar projection of a onto b: X,
b
alcosa=a-—
b ;
— X1

a|COS o
The dot product: ‘ ‘

a-b=a-b" =[a a,]-[b b]' =ab +a,
=|a|-|b|cosa
—> the scalar projection is the dot product with |b| =1 (unit vector)

b|= (b7 +b7 =1



Foundations: Line Equation

a X +ad, X =Y
\a\:\/aera,f:l \ X

The vector a Is the unit vector normal to the line |,
The length y is the perpendicular distance of |, to the origin

For any point x:
* if X is on | then the scalar projection of x onto a will be:

X-a=Yy



Foundations: Distance From Line

For any other point x’ not on |, the scalar projection of x” onto a
will be:

X-a=Yy =y+Ay



Foundations: Closest Point

The closest point to x’ on | Is x”, computed by:
X"=X-Ay
=x'~(x"a-Y)
=X'+(y-x"a)



Foundations: Solving an Equation System

Assume you have two equations to solve for solution point
Xs=(X1,X7)
* the intersection of the two lines

Xy

X +apX, =Y
dy Xy + 35X, =Y, L N




Foundations: Iterating to Solution

Of course, you could solve this equation via Gaussian
elimination

* we shall take an iterative approach instead

Start with some point x©=(x,x,)

Xy

Il\




Foundations: Iterating to Solution

Pick an equation (line, say l,) and find the closest point to x(©

* use the approach outlined before
* this gives a new point x(!




Foundations: Iterating to Solution

Iteratively

* pick alternate equations (lines) and project
* the solution will converge towards X,
* the more iterations the closer the convergence




Foundations: Extension to Higher Dimensions

Three dimensions:
* 3 equations with 3 unknowns

N dimensions:

* N equations with M unknowns
* M can be less or greater than N
* inconsistent (most often) or not



Specifics to Medical Imaging

In medical imaging:
* M unknown voxels (depending on desired object resolution)
* N known measurements (pixels in the projection images)
* represent voxels and pixels as vectors V and P, respectively
Wi Vp + Wi Vy . Wiy Vy = Py
Wo, Vy + WopVy .. Wy Vy = 1,

Wiy Yy + W,V + Wiy Vg = By

* this gives rise to a system W-V=P

Iterate either by

* ray by ray (Algebraic Reconstruction Technique, ART)
* image by image (Simultaneous ART, SART)
* all data at once (SIRT)



lterative Update Schedule: ART

l one pixel at a time

Project

l

Correct

l

Backproject




lterative Update Schedule: SART

l one projection at a time

Project

l

Correct

l

Backproject




lterative Update Schedule: SIRT

N l all projections

Project

l

Correct

l

Backproject

__________________________________



lterative Reconstruction Demonstration: SART




lterative Reconstruction Demonstration: SART
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Iteratively solves W V=P
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Projection

Projection (into pixel)
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Correction factor

computation L . .
Projection (into pixel)
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Backprojection
Projection (into pixel) Backprojection
(into voxel)
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YA

Voxel normalization

Projection (into pixel) Backprojection

(into voxel)
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YA

Voxel update

Projection (into pixel) Backprojection
(into voxel)

Scanned pixel .
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Next projection




Gradient Descent
1

Quadratic form of a vector: f (x) :EXT Ax—b'x +C

* this equation is minimized when A-x=Db

* this occurs when f(x)=0
* thus, minimizing the quadratic form will solve the reconstruction

problem
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Gradient plot

Contour plot

Graph plot



Steepest Descent

Start at an arbitrary point and slide down to the bottom of the
parabola
* in practice this will be a hyper-parabola since x, b are high-dimensional
* choose the direction in which f decreases most quickly

-1(x;) =b—Ax;,

where X Is the current (predicted) solution

* similar to ART but now looks at all equations simultaneously
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Figures from J. Shewchuk, UC Berkeley



Steepest Descent

Start at some initial guess X,

* this will likely not find the solution

* need to follow f(x) some ways and
then change directions

* guestion is where do we change directions

Some basics:
* error: how far are we away from the solution

Ci) = Xp — X
* residual: how far are we away from the correct value of b
= 0—AX;

[y = Ae(i) A transforms e into the space of b

hy =T (X))



Steepest Descent

Finding the right place to turn directions is called line search

Koy = Xo) Tl

To find o we can use the following requirements:

* the new direction of r must be orthogonal to the ‘j_jjfi.,f”iz‘j:"J_:‘i:'\-é\..:.;{g:
previous:

T,
oy Yoy =0

* the residual at X(l) f '(X(l)) — _r(]-)

e after some math: o =



Steepest Descent: Summary

Shortcoming:

* sub-optimal since some directions might be taken more than once
* this can be fixed by the method of Conjugant Gradients



Conjugant Gradients

Picks a set of orthogonal search directions dg, d ;) d) -

* take exactly one step along each
* stop at exactly the right length for each to line up evenly with x

Xy = Xy T %0

* to determine ¢ use the fact that e, ;, should be orthogonal to d;
T _
d €y = 0

()
iy (&) +adg) =0

i
_ G &

20!

* however, this requires knowledge of e, which we do not have



Conjugant Gradients

Solution:
* make the search direction A-orthogonal (or, conjugate)

T T
Cdgy Aey  dy T

iy =77 =T
dgy Adgy dg Ady

* A transforms a coordinate system such that two vectors are
orthogonal




Conjugant Gradients

All directions taken are mutually orthogonal

* each new residual is orthogonal to all the previous residuals and
search directions

* each new search direction is constructed (from the residual) to be A-
orthogonal to all the previous residuals and search directions

Each new search direction adds a new dimension to the
traversed sub-space

* the solution is a projection into the sub-space explored so far

* so after n steps the full space is built and the solution has been
reached

solution




Conjugant Gradients: Summary




Statistical Techniques

Algebraic/gradient methods do not model

statistical effects in the underlying data radionuclides (£) o

* this is OK for CT (within reason) \,\ ;
However, the emission of radiation from P'“"‘“'“

radionuclides is highly statistical \ d

* the direction is chosen at random attenuating .;,bw W)

* similar metabolic activities may not emit the
same radiation

* not all radiation is actually collected
(collimators reject many photons)

* in low-dose CT, noise is also a significant
problem

Need a reconstruction method that can

accounts for these statistical effects

* Maximum Likelihood — Expectation
Maximization (ML-EM) is one such method




Foundations: The Poisson Distribution

Also called the law of rare events
* it is the binomial distribution of k as the number of trials n goes to infinity

o4—————F————— -
lim Pr(X = k) = lim (z)pm_pjn_k g
0.3;— ° ﬁ:i _
* ithp=4/n : o A=10 E
with p o=\ k : §
flfk, )\1] = k' 02— _
L. expected number of events (the mean) "'t :
in a given time interval N
' 0 ] 5 1:) T 15
> K

Some examples for Poisson-distributed events:

* the number of phone calls at a call center per minute
* the number of spelling errors a secretary makes while typing a single page

* the number of soldiers killed by horse-kicks each year in each corps in the
Prussian cavalry

* the number of positron emissions in a radio nucleotide in PET and SPECT
* the number of annihilation events in PET and SPECT

20



Overall Concept of ML-EM

There are three types of variables

#1:. The observed data y(d):

* the detector readings

#2 The unObserved (Iatent) data X(b) attcnuatillgob.iCEt(.Lll

* the photon emission activities in the pixels (the tissue), x(b)
* these give rise to the detector readings
* they follow a Poisson distribution

#3: The model parameters A(b):

* these cause the emissions
* they are the metabolic activities (state) of interest
* the emissions only approximate those

—> they represent the expectations (means, A) of the resulting Poisson
distribution causing the readings at the detectors



Overall Concept of ML-EM

There is a many-to-one mapping of parameters — data

Since there is a many-to-one mapping, many objects are
probable to have produced the observed data

* the object reconstruction (the image) having the highest such
probability is the maximum likelihood estimate of the original object

Goal:
* estimate the model parameters using the observed data

Solution:

* EM will converge to a solution of maximum likelihood (but not
necessarily the global maximum)



Overall Concept of ML-EM

Initialization step: choose an initial setting of the model
parameters

Then proceed to EM, which has two steps, executed
iteratively:

* E (expectation) step: estimate the unobserved data from the current
estimate of the model parameters and the observed data

* M (maximization) step: compute the maximum-likelihood estimate of
the model parameters using the estimated unobserved data

Stop when converged

Initialize model parameters p

l

— > E-Step: estimate unobserved data x using p and observed data y

|

M-Step: compute ML-estimate of p using X

return if converged



Maximum Likelihood Expectation Maximization (ML-EM)

After combining the E-step and the ML-step:

k+1

’ szz




Maximum Likelihood Expectation Maximization (ML-EM)

Maximizes the likelihood of the values of (object) voxels |,
given values at (detector) pixels i

New (k+1) and previous (k)

values of voxel | Backprojection
\ /(into voxel |)
K
\V v
Vl-<+1 .

L
L 2w 2w
gl

Normalization at voxel | Projection (into pixel i)




Algorithm Comparison

SART:

* projection ordering important

* ensure that consecutively selected projections are approximately
orthogonal

* random selection works well in practice

CG:

* much depends on the condition number of the (system) matrix A
* various pre-conditioning methods exist in the literature
* also, line search can be expensive and inaccurate

* various methods and heuristics for line search have been described
in the literature

EM:

* convergence slow if all projections are applied before voxel update

* use OS-EM (Ordered Subsets EM): only a subset of projections are
applied per iteration



Inconsistent Equations

Real life data (as mentioned earlier)

* typically equations (the data) are not consistent

* you may have more equations (data) than unknowns or not enough

* solution falls within a convex shape spanned by the intersection set

* need further criteria to determine the true solution (some prior model)

X3
Ay X T A% =Y |1
Ay X T 80X =Y \
Ay % T Xy = Y5




Determining the True Solution

Need further criteria to determine the true solution

Use some prior model

* smoothness, approximate shape, sharp edges, ...

* incorporate this model into the reconstruction procedure
Example:

* enforce smoothness by intermittent blurring
* but at the same time preserve edges

streak artifacts, good edges smooth, good edges



