

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Data Science components and tasks
3 Data types Project #1 out
4 Introduction to R, statistics foundations
5 Introduction to D3, visual analytics
6 Data preparation and reduction
7 Data preparation and reduction Project #1 due
8 Similarity and distances Project #2 out
9 Similarity and distances

10 Cluster analysis
11 Cluster analysis
12 Pattern miming Project #2 due
13 Pattern mining
14 Outlier analysis
15 Outlier analysis Final Project proposal due
16 Classifiers
17 Midterm
18 Classifiers
19 Optimization and model fitting
20 Optimization and model fitting
21 Causal modeling
22 Streaming data Final Project preliminary report due
23 Text data
24 Time series data
25 Graph data
26 Scalability and data engineering
27 Data journalism
 Final project presentation Final Project slides and final report due

Data cleaning

 fill in missing values

 smooth noisy data

 identify or remove outliers

 resolve inconsistencies

Data reduction

 obtain reduced volume, but get same/similar analytical results

 data discretization (for numerical data)

 data aggregation (summarization)

 data transformation/normalization

 dimensionality reduction

 data compression/generalization

By axis rotation
 determine a more efficient basis

 Principal Component Analysis (PCA)

 Singular value decomposition (SVD)

 Latent semantic analysis (LSA)

By type transformation
 determine a more efficient data type

 Fourier analysis and Wavelets for grids

 Multidimensional scaling (MSD) for graphs

 Locally Linear Embedding

 Isomap

 Self Organizing Maps (SOM)

 Linear Discriminant Analysis (LDA)

Analytical:

Samples:

An n-D dataset has n variables x1, x2, … xn

 define pairwise covariance among all of these variables

 construct a covariance matrix

(,) [()()]x yCov X Y E X Y   

1

cov ()()
n

xy xy i i

i

x x y y


   

Pearson’s correlation coefficient:

Sample correlation (n observations):

Correlation rates between -1 and 1:

[()()](,)
(,)

x y

x y x y

E X YCov X Y
Corr X Y

 

   

 
 

1

2 2

1 1

()()

() ()

n

i i

i
xy

n n

i i

i i

x x y y

r

x x y x



 

 



 



 

Correlation and regression are not reliable here

 defined for linear relationships

 visualization can help here

None of these point distributions have correlations:

just value distribution (scatterplot matrix)

Ultimate goal:

 find a coordinate system that can represent the variance in the

data with as few axes as possible

 rank these axes by the amount of variance (blue, red)

 drop the axes that have the least variance (red)

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal

Component, y1

2nd Principal

Component, y2

Find the principal components by Eigen decomposition of
 covariance matrix Cov

 correlation matrix Corr

 lets call it C

 solve the Eigen value problem

 do this via QR factorization or LU decomposition to get

 Q: matrix with Eigenvectors

 : diagonal matrix with Eigenvalues l

 now order the Eigenvectors in terms of their Eigenvalues l

() 0il C I ix

1Q Q C

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1
λ2

When to use what?

 use the covariance matrix when the variable scales are similar

 use the correlation matrix when the variables are on different

scales

 the correlation matrix standardizes the data

 in general they give different results, especially when the scales

are different

Before PCA

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10 12

Variable X1

V
a
ri

a
b

le
 X

2

PC 1

PC 2

l1 = 9.8783 l2 = 3.0308 Trace = 12.9091

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10 12

PC 1

P
C

 2

Some familiar faces…

We can reconstruct each face as a linear combination of

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)]

+

Average Face

Eigenfaces

90% variance is

captured by the first

50 eigenvectors

Reconstruct existing

faces using only 50

basis images

We can also generate

new faces by

combining

eigenvectors with

different weights

V0

x ∑

The same as PCA when the mean of each attribute is zero

SVD does not subtract the mean

 appropriate if values close to zero should not be influential

 PCA puts them at in the extreme negative side

SVD often used for text analysis

 values close to zero are frequent and should not affect the analysis

Decomposes C into the matrix:

qi and pi are two column vectors with significance i

Example: in a user-item ratings matrix we wish to determine:

 a reduced representation of the users

 a reduced representation of the items

 SVD has the basis vectors for both of these reductions

Create an occurrence matrix (term-document matrix)

 words (terms t) are the rows

 paragraphs (documents d) are the columns

 uses the term frequency–inverse document frequency (tf-idf) metric

 tf(t,d) = simplest form is frequency of t in d = f(t,d)

 idf(t,d)

 N = number of docs = |D| , D is the corpus of documents

 idf is a measure of term rareness, it’s 0 when term occurs in all of D

 important terms get a higher tf-idf

Use SVD to reduce the number of rows

 preserves similarity of columns

U = term-concept matrix
 concept = latent (hidden) topic

V = concept-document matrix

sort and keep the k
most significant rows/columns

How many concepts to use when approximating the matrix?

 if too few, important patterns are left out

 if too many, noise caused by random word choices will creep in

 can use the elbow method in the scree plot

Throw out the 1st dimension in U and V

 in U it is correlates with document length

 in V it correlates with the number of times a term was mentioned

Now we have a k-D concept space

shared by both terms and documents

concept 2

concept 1

concept 3

document

term

Project the k-D concept space into 2D and visualize as a map

 can cluster the map

 the cluster of documents are then labeled by the terms

 provides map semantics

LSA assumes a Gaussian distribution and Frobenius norm

 this may not fit all problems

LSA cannot handle polysemy effectively

 need LDA (Latent Dirichlet Allocation) for this

LSA depends heavily on SVD

 computationally intensive

 hard to update as new documents appear

 but faster algorithms have emerged recently

A sequence of multi-scale square-shaped functions

 together they form a wavelet family or basis

 each has half the size than the one before

Two basis function each level of scale

 wavelet = extract the detail at that level (HP)

 scaling = remove the detail and return what’s left for the next

 level (LP)

Goal

 decompose the signal into

wavelet coefficients

 eliminate the coefficients with

magnitude < threshold

 keep the others

 the higher the threshold the

more the compression

2D case

Wavelets are for regular grids

MDS is for irregular structures

 scattered points in high-dimensions (N-D)

 adjacency matrices

Maps the distances between observations from N-D into low-

D (say 2D)

 attempts to ensure that differences between pairs of points in this

reduced space match as closely as possible

MDS turns a distance matrix into a network or point cloud
 correlation, cosine, Euclidian, and so on

Suppose you know a matrix of distances among cities

Chicago Raleigh Boston Seattle S.F. Austin Orlando

Chicago 0

Raleigh 641 0

Boston 851 608 0

Seattle 1733 2363 2488 0

S.F. 1855 2406 2696 684 0

Austin 972 1167 1691 1764 1495 0

Orlando 994 520 1105 2565 2458 1015 0

𝐸 = 𝐷𝑖𝑗 − 𝑑𝑖𝑗
2

𝑖<𝑗

Spring-like system

 insert springs within each node

 the length of the spring encodes the desired node distance

 start at an initial configuration

 iteratively move nodes until an energy minimum is reached

Spring-like system

 insert springs within each node

 the length of the spring encodes the desired node distance

 start at an initial configuration

 iteratively move nodes until an energy minimum is reached

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000

Tries to unwrap a high-dimensional surface (A)  manifold
 noisy points could be averaged first and projected onto the manifold

Algorithm
 construct neighborhood graph G  (B)

 for each pair of points in G compute the shortest path distances 
geodesic distances

 fill similarity matrix with these geodesic distances

 embed (layout) in low-D (2D) with MDS  (C)

by: S. Roweis, L. Saul, Science, 2000

Based on simple geometric intuitions.

 suppose the data consist of N real-valued vectors Xi, each of

dimensionality D

 each data point and its neighbors are expected to lie on or close

to a locally linear patch of the manifold

Low dimensional Manifold High dimensional Manifold

Steps:

 assign K neighbors to each data point

 compute the weights Wij that best linearly reconstruct the data

point from its K neighbors, solving the constrained least-squares

problem

 έ(W) =

 compute the low-dimensional embedding vectors best

reconstructed by Wij

iX


iY


 
j

jij

i

i XWX 2||


 
i j

jijYWYY 2||)(


Introduced by Teuvo Kohonen

 unsupervised learning and clustering algorithm

 has advantages compared to hierarchical clustering

 often realized as an artificial neural network

SOMs group the data

 perform a nonlinear projection from N-dimensional input space

onto two-dimensional visualization space

 provide a useful topological arrangement of information objects

in order to display clusters of similar objects in information space

Map a dataset of 3D color vectors into a 2D plane

 assume you have an image with 5 colors

 want to see how many there are of each

 compute a SOM of the color vectors

SOM

Create array and connect all elements to the N
input vector dimensions

 shown here: 2D vector with 44 elements

 initialize weights

For each input vector chosen at random
 find node with weights most like the input vector

 call that node the Best Matching Unit (BMU)

 find nodes within neighborhood radius r of BMU

• initially r is chosen as the radius of the lattice

• diminishes at each time step

 adjust the weights of the neighboring nodes to
make them more like the input vector

• the closer a node is to the BMU, the more its
weights get altered

Height represents density or number of documents in the region

Invented at Pacific Northwest National Lab (PNNL)

LDA was proposed by Ronald Fisher in 1936

See separate slides

 by Ricardo Gutierrez-Osuna (Texas A&M University)

