


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern miming  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Data cleaning 

 fill in missing values 

 smooth noisy data 

 identify or remove outliers 

 resolve inconsistencies 

 

Data reduction 

 obtain reduced volume, but get same/similar analytical results 

 data discretization (for numerical data) 

 data aggregation (summarization) 

 data transformation/normalization 

 dimensionality reduction 

 data compression/generalization 

 

 

 



By axis rotation 
 determine a more efficient basis  

 Principal Component Analysis (PCA) 

 Singular value decomposition (SVD) 

 Latent semantic analysis (LSA) 

 

By type transformation 
 determine a more efficient data type 

 Fourier analysis and Wavelets for grids 

 Multidimensional scaling (MSD) for graphs 

 Locally Linear Embedding 

 Isomap 

 Self Organizing Maps (SOM) 

 Linear Discriminant Analysis (LDA) 

 





Analytical: 

 

Samples: 

 

An n-D dataset has n variables x1, x2, … xn  

 define pairwise covariance among all of these variables  

 construct a covariance matrix  
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Pearson’s correlation coefficient: 

 

 

 

Sample correlation (n observations): 

 

 

Correlation rates between -1 and 1: 
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Correlation and regression are not reliable here 

 defined for linear relationships 

 visualization can help here 

 

None of these point distributions have correlations: 



just value distribution (scatterplot matrix) 



Ultimate goal:  

 find a coordinate system that can represent the variance in the 

data with as few axes as possible  

 

 

 

 

 

 

 

 

 rank these axes by the amount of variance (blue, red) 

 drop the axes that have the least variance (red)  
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Find the principal components by Eigen decomposition of  
 covariance matrix Cov 

 correlation matrix Corr 

 lets call it C 

 

 solve the Eigen value problem 

 

 do this via QR factorization or LU decomposition to get 

 

 

                     Q: matrix with Eigenvectors 

                     : diagonal matrix with Eigenvalues l 

 

 now order the Eigenvectors in terms of their Eigenvalues l 
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When to use what? 

 use the covariance matrix when the variable scales are similar  

 use the correlation matrix when the variables are on different 

scales 

 the correlation matrix standardizes the data 

 in general they give different results, especially when the scales 

are different 

 

 

 



Before PCA 

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10 12

Variable X1

V
a
ri

a
b

le
 X

2

PC 1 

PC 2 



l1 = 9.8783  l2 = 3.0308  Trace = 12.9091 

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance 
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Some familiar faces… 

 



We can reconstruct each face as a linear combination of 

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)] 

 

+ 

Average Face 

Eigenfaces 



90% variance is 

captured by the first 

50 eigenvectors 

Reconstruct existing 

faces using only 50 

basis images 

We can also generate 

new faces by 

combining 

eigenvectors with 

different weights 

V0 

x ∑ 



The same as PCA when the mean of each attribute is zero 

 

SVD does not subtract the mean 

 appropriate if values close to zero should not be influential 

 PCA puts them at in the extreme negative side 

 

SVD often used for text analysis 

 values close to zero are frequent and should not affect the analysis  



Decomposes C into the matrix: 

 

 

 

 

qi and pi are two column vectors with significance i 

 

 

 

Example: in a user-item ratings matrix we wish to determine: 

 a reduced representation of the users 

 a reduced representation of the items 

 SVD has the basis vectors for both of these reductions   



Create an occurrence matrix (term-document matrix) 

 words (terms t) are the rows 

 paragraphs (documents d) are the columns 

 uses the term frequency–inverse document frequency (tf-idf) metric 

 tf(t,d) = simplest form is frequency of t in d = f(t,d) 

 

 idf(t,d)                                           

 

 N = number of docs = |D| , D is the corpus of documents 

 idf is a measure of term rareness, it’s 0 when term occurs in all of D 

 important terms get a higher tf-idf 

Use SVD to reduce the number of rows 

 preserves similarity of columns    

 

 





U = term-concept matrix 
              concept = latent (hidden) topic 

V = concept-document matrix 

sort and keep the k  
most significant rows/columns 



How many concepts to use when approximating the matrix? 

 if too few, important patterns are left out 

 if too many, noise caused by random word choices will creep in 

 can use the elbow method in the scree plot 

 

Throw out the 1st dimension in U and V 

 in U it is correlates with document length 

 in V it correlates with the number of times a term was mentioned 

 

Now we have a k-D concept space                                                     

shared by both terms and documents 

 

concept 2 

concept 1 

concept 3 

document 

term 



Project the k-D concept space into 2D and visualize as a map 

 can cluster the map 

 the cluster of documents are then labeled by the terms 

 provides map semantics  

 

 



LSA assumes a Gaussian distribution and Frobenius norm  

 this may not fit all problems 

 

LSA cannot handle polysemy effectively 

 need LDA (Latent Dirichlet Allocation) for this 

 

LSA depends heavily on SVD  

 computationally intensive 

 hard to update as new documents appear 

 but faster algorithms have emerged recently  





A sequence of multi-scale square-shaped functions  

 together they form a wavelet family or basis 

 each has half the size than the one before 



Two basis function each level of scale 

 wavelet = extract the detail at that level (HP) 

 scaling = remove the detail and return what’s left for the next  

                      level (LP) 

 

 

 

 

 

 

 



Goal 

 decompose the signal into 

wavelet coefficients  

 eliminate the coefficients with 

magnitude < threshold 

 keep the others 

 the higher the threshold the 

more the compression 

 

 



2D case 



Wavelets are for regular grids 

MDS is for irregular structures 

 scattered points in high-dimensions (N-D) 

 adjacency matrices 

 

Maps the distances between observations from N-D into low-

D (say 2D) 

 attempts to ensure that differences between pairs of points in this 

reduced space match as closely as possible 



MDS turns a distance matrix into a network or point cloud  
 correlation, cosine, Euclidian, and so on 

 

Suppose you know a matrix of distances among cities 

 

 

 

 

 

 

 

Chicago Raleigh Boston Seattle S.F. Austin Orlando 

Chicago 0 

Raleigh 641 0 

Boston 851 608 0 

Seattle 1733 2363 2488 0 

S.F. 1855 2406 2696 684 0 

Austin 972 1167 1691 1764 1495 0 

Orlando 994 520 1105 2565 2458 1015 0 
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Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000 

 

 

 

 

 

 

Tries to unwrap a high-dimensional surface (A)  manifold 
 noisy points could be averaged first and projected onto the manifold 

 

Algorithm 
 construct neighborhood graph G  (B) 

 for each pair of points in G compute the shortest path distances  
geodesic distances 

 fill similarity matrix with these geodesic distances 

 embed (layout) in low-D (2D) with MDS  (C) 

 



by: S. Roweis, L. Saul, Science, 2000 

Based on simple geometric intuitions. 

 suppose the data consist of N real-valued vectors Xi, each of 

dimensionality D 

 each data point and its neighbors are expected to lie on or close 

to a locally linear patch of the manifold 

 

 

 

Low dimensional Manifold High dimensional Manifold 





Steps: 

 assign K neighbors to each data point  

 compute the weights Wij that best linearly reconstruct the data 

point from its K neighbors, solving the  constrained least-squares 

problem 

 

         έ(W) =  

 

 compute the low-dimensional embedding vectors       best 

reconstructed by Wij 

 

 

 

iX


iY


 
j

jij

i

i XWX 2||


 
i j

jijYWYY 2||)(




Introduced by Teuvo Kohonen 

 unsupervised learning and clustering algorithm 

 has advantages compared to hierarchical clustering 

 often realized as an artificial neural network 

 

SOMs group the data  

 perform a nonlinear projection from N-dimensional input space 

onto two-dimensional visualization space 

 provide a useful topological arrangement of information objects 

in order to display clusters of similar objects in information space 

 



Map a dataset of 3D color vectors into a 2D plane 

 assume you have an image with 5 colors  

 want to see how many there are of each 

 compute a SOM of the color vectors  

 

SOM 



Create array and connect all elements to the N 
input vector dimensions  

 shown here: 2D vector with 44 elements   

 initialize weights  

 

For each input vector chosen at random 
 find node with weights most like the input vector 

 call that node the Best Matching Unit (BMU) 

 find nodes within neighborhood radius r of BMU  

• initially r is chosen as the radius of the lattice 

• diminishes at each time step 

 adjust the weights of the neighboring nodes to 
make them more like the input vector 

• the closer a node is to the BMU, the more its 
weights get altered 



Height represents density or number of documents in the region 

Invented at Pacific Northwest National Lab (PNNL) 





 

 

LDA was proposed by Ronald Fisher in 1936 

 

  

 

 

See separate slides  

 by Ricardo Gutierrez-Osuna (Texas A&M University) 

 

 


