CSE 590
DATA SCIENCE FUNDAMENTALS

DATA PREPARATION AND REDUCTION |

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT
STONY BROOK UNIVERSITY AND SUNY KOREA



Lecture
1

O NV A~AWN

NINNNNNNNRRRRRRRRRR
N bhWNROWOO®NOGOOGOVDIMWNIERO

Topic
Intro, schedule, and logistics
Data Science components and tasks
Data types
Introduction to R, statistics foundations
Introduction to D3, visual analytics
Data preparation and reduction
Data preparation and reduction
Similarity and distances
Similarity and distances
Cluster analysis
Cluster analysis
Pattern miming
Pattern mining
Outlier analysis
Outlier analysis
Classifiers
Midterm
Classifiers
Optimization and model fitting
Optimization and model fitting
Causal modeling
Streaming data
Text data
Time series data
Graph data
Scalability and data engineering
Data journalism
Final project presentation

Projects

Project #1 out

Project #1 due
Project #2 out

Project #2 due

Final Project proposal due

Final Project preliminary report due

Final Project slides and final report due



DATA PREPARATION [ ASKS

Data cleaning
= fill in missing values
= smooth noisy data
= identify or remove outliers
= resolve inconsistencies

Data reduction
= obtain reduced volume, but get same/similar analytical results
= data discretization (for numerical data)
» data aggregation (summarization)
= data transformation/normalization
= dimensionality reduction
» data compression/generalization



DIMENSIONALITY REDUCTION

By axis rotation
= determine a more efficient basis
»  Principal Component Analysis (PCA)
= Singular value decomposition (SVD)
= Latent semantic analysis (LSA)

By type transformation
= determine a more efficient data type
= Fourier analysis and Wavelets for grids
= Multidimensional scaling (MSD) for graphs
» Locally Linear Embedding
= [somap
= Self Organizing Maps (SOM)
= Linear Discriminant Analysis (LDA)



PRINCIPAL COMPONENT ANALYSIS (PCA)




COVARIANCE MATRIX

Analytical: ~ Cov(X,Y)=E[(X =z )(Y — ,)]
Samples: o,, =cov,, => (X =X)(¥, - Y)
i=1

An n-D dataset has n variables x;, x,, ... x,
= define pairwise covariance among all of these variables
= construct a covariance matrix

E=Cov(X)= . . ) -




CORRELATION

Pearson’s correlation coefficient:
Cov(X,Y) _ E[(X =z )(Y — )]

0,0, 0,0,

Corr(X,Y) =

Sample correlation (n observations): izzll(xi ~X)(¥:i =)

r =
x-S0

Xy

Correlation rates between -1 and 1;




NO CORRELATION

Correlation and regression are not reliable here
= defined for linear relationships
= visualization can help here

None of these point distributions have correlations:
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CORRELATION MATRIX

MO FP MP IM IC FM FE FI SPC DSC DST
MO 1.00
FP 0.31° 1.00
Mp 0.32° 0.71% 1.00
M 0.36° 0.12¢ 0.14¢ 1.00
IC 0.39° 0.18 0.21° 0.62° 1.00
FM 0.26 0.217 0.14¢ 0.30° 0.27° 1.00
FE 0.47° 0.217 0.18° 0.38° 0.28° 0.24° 1.00
Fl 0.53° 0.26° 0.22° 0.36° 0.37° 0.29° 0.47° 1.00
SPC 0.32° 0.22* 0.31* 0.51° 0.47° 0.32° 0.37° 0.35° 1.00
DSC —-0.12¢ 0.03¢ 0.05° 0.17° 0.08° 0.18° —0.05¢ 0.06° 0.01¢ 1.00
DST -0.02¢ —-0.01¢ 0.05¢ 0.24 0.14¢ 0.05¢ —0.05¢ 0.05¢ 0.05¢ 0.56° 1.00
DM 0.05° 0.144 0.136¢ 0.199° 0.169° 0.247° 0.08° 0.11° 0.14° 0.46° 0.71°
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PRINCIPAL COMPONENT ANALYSIS

Ultimate goal:

= find a coordinate system that can represent the variance in the
data with as few axes as possible

60

40}

20+

0F

=20}

—40t

—60 . . . . L
-60 -40 =20 0 20 40 60

= rank these axes by the amount of variance (blue, red)
= drop the axes that have the least variance (red)



PRINCIPAL COMPONENTS

2nd P'rincipal|

Component, y, : 1st Principal
Al | Component, y,
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PCA - How TO DO

Find the principal components by Eigen decomposition of
= covariance matrix Cov
= correlation matrix Corr
= JetscallitC

= solve the Eigen value problem (C—A41)x; =0

= do this via QR factorization or LU decomposition to get

C=QAQ"

Q: matrix with Eigenvectors
A: diagonal matrix with Eigenvalues A

= now order the Eigenvectors in terms of their Eigenvalues A



EIGENVECTORS AND VALUES

4.0 4.5 5.0 5.5 6.0



COVARIANCE VS. CORRELATION

When to use what?
= yse the covariance matrix when the variable scales are similar

= yse the correlation matrix when the variables are on different
scales

= the correlation matrix standardizes the data

= in general they give different results, especially when the scales
are different



- XAMPLE

Before PCA

Variable X,

Variable X;




- XAMPLE

A1 =9.8783 4, =3.0308 Trace = 12.9091
= PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance




PCA APPLIED TO FACES

Some familiar faces...
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PCA APPLIED TO FACES

We can reconstruct each face as a linear combination of
“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)]

Average Face
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RECONSTRUCTION USING PCA

original image reconstructed with 50 eigenfaces

90% variance is
captured by the first
50 eigenvectors

Reconstruct existing
faces using only 50
basis images

We can also generate o
new faces by j:;/ | 4 B . @
combining ° MV\MMW . E 3 B2
eigenvectors with -t LI
different weights =




SINGULAR VALUE DECOMPOSITION (SVD)

The same as PCA when the mean of each attribute is zero

SVD does not subtract the mean
= appropriate if values close to zero should not be influential
=  PCA puts them at in the extreme negative side

SVD often used for text analysis
= values close to zero are frequent and should not affect the analysis



SINGULAR VALUE DECOMPOSITION (SVD)

Decomposes C into the matrix:

LATENT
DIMEMNSIOMNS COMPOMENTS

d > — ks LATENT
N COMPOMNENTS DIMENSIONS
T E |l E o k—s n < d
Ell 2
Qk Ek PFQ E ORIGINAL T =2 e 21| 7ok BaAsIS
an = 2| @S XK ZZk X Z Zk VECTORS OF
: PATA <|xe8| &2 22| rowsorD
= 5|8 & s gl
8 a E 8 8 P
Wi ¥ %,: IMPORTANCE OF
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g, and p; are two column vectors with significance ¢;
QkEkPE:ZﬁﬂPz ZEH D)
=1

Example: in a user-item ratings matrix we wish to determine:
= areduced representation of the users
= areduced representation of the items
= SVD has the basis vectors for both of these reductions



LATENT SEMANTIC ANALYSIS

Create an occurrence matrix (term-document matrix)

words (terms t) are the rows

paragraphs (documents d) are the columns

uses the term frequency—inverse document frequency (tf-idf) metric
tf(t,d) = simplest form is frequency of t in d = f(t,d)

. . N
idf(t,d) idf(t,D) =1log {deD:ted)

N = number of docs = |D|, D is the corpus of documents
idf is @ measure of term rareness, it's 0 when term occurs in all of D
important terms get a higher tf-idf

Use SVD to reduce the number of rows

preserves similarity of columns



CO-OCCURRENCE TF-IDT MATRIX

Tl 0.00060 0.00012  0.00003 0.00003 0.00333 0.00048 -+ d,;, )
TZ 0 0 0 0 0 0 L/ 5
T3 0 2.98862 0 0 0 149431 -+ A3,
T4 0 0 0 13.32555 0 0 o Ay
TS 0 0 0 0 0 0 wor. Qg
T6 1.03442 1.03442 0 0 0 3.10326 -+ dg,
T, m \, ) ) A3 A4 s A6 e Ay J




U=

o By e Bep g g <

f

\

D, D,
0.00060 0.00012
0 0
0 2.98862

0 0
0 0

1.03442  1.03442

am |

a

m2

a

D D, D Dy -+ D,
0.00003  0.00003 0.00333  0.00048 -+ d;, 3
0 0 0 0 e @,

0 0 0 1.49431 -+ d3,

0 13.32555 0 0 oo Qyy,

0 0 0 0 woe. Axy
0 0 0 310326+ dg,

m3 A4 s A6 e Ay J

U = term-concept matrix

[ S R A S S

Csl... Cqu

@m \

Q2m

A3m
Ay
Qnm

Qem

e a mm /

concept = latent (hidden) topic

sort and keep the k

> most significant rows/columns
k

Dy D, Ds)... D,
: ( CUl o) V= concept-document matrix
Tt . o VT
T,,L 0 (:) 0 a Dy D, 1 '
:.1 ' 1
Vi = (C'.1 Qg Qg2 Q43 ... (;.,,.
%‘,. \":.1 ":.-., 0;3 (1:,,,)



VISUALIZING THE CONCEPT SPACE

How many concepts to use when approximating the matrix?
= if too few, important patterns are left out
= if too many, noise caused by random word choices will creep in
= can use the elbow method in the scree plot

Throw out the 1st dimension in U and V
= in U itis correlates with document length T il T
= inV it correlates with the number of times a term was mentioned

concept 2
4 concept 3
Now we have a k-D concept space °. P
shared by both terms and documents ® o o0
® document ®

® term concept 1



VISUALIZING THE CONCEPT SPACE

Project the k-D concept space into 2D and visualize as a map
= can cluster the map

= the cluster of documents are then labeled by the terms
= provides map semantics

0.6 XY Plot of Words and Titles
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L SA DISADVANTAGES

LSA assumes a Gaussian distribution and Frobenius norm
= this may not fit all problems

LSA cannot handle polysemy effectively
= need LDA (Latent Dirichlet Allocation) for this

LSA depends heavily on SVD

= computationally intensive
» hard to update as new documents appear
=  but faster algorithms have emerged recently



TYPE TRANSFORMATIONS



HAAR WAVELETS

A sequence of multi-scale square-shaped functions
= together they form a wavelet family or basis
= each has half the size than the one before

o = dix)
LT
Yo =92 by =92x-1)
-1 _1 ij
trapn = g x) Yo =idx—1) i.ﬁfzz— (4 x—2) i.ﬂf:a— widx —3)

b= = =



DISCRETE WAVELET TRANSFORM

Two basis function each level of scale
= wavelet = extract the detail at that level (HP)

= scaling = remove the detail and return what's left for the next
level (LP)

\£ A
| /\ P HP
>< \; /\ 415
. /\ LP HP
>< >< \; /\ 215 et
u/\ LP HP ’_‘

wavelet scaling



WAVELET COMPRESSION

40F

Goal g J\ |
» decompose the signal into ° _~ == pr— 200
wavelet coefficients g o | | | ]
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= keep the others % z | Mp‘ —
u the hlgher the threshold the 500 1000 1500 2000
more the compression : = | ¥ o 1
20 560 10IOO 1500 20I0_0
@ @ B - | |
@ _.,_ I;:':;;liems o 5(IJO 10,00 15?0 20,00
ol — e[l | )— Rl : . * |

500 1000 1500 2000



WORKS IN HIGHER DIMENSIONS

2D case

LEH LH®Y

output" =

HL® HH®




MULTIDIMENSIONAL SCALING (MDS)

Wavelets are for regular grids
MDS is for irregular structures

= scattered points in high-dimensions (N-D)
= adjacency matrices

Maps the distances between observations from N-D into low-
D (say 2D)

= attempts to ensure that differences between pairs of points in this
reduced space match as closely as possible



DISTANCE MATRIX

MDS turns a distance matrix into a network or point cloud
= correlation, cosine, Euclidian, and so on

Suppose you know a matrix of distances among cities

Chicago Raleigh Boston Seattle S.F. Austin Orlando
Chicago 0
Raleigh 641 0
Boston 851 608 0
Seattle 1733 2363 2488 0
S.F. 1855 2406 2696 684 0
Austin 972 1167 1691 1764 1495 0

Orlando 994 520 1105 2565 2458 1015 0
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COMPARE WITH REAL MAP
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MDS ALGORITHM

e TJask:

Find that configuration of image
points whose pairwise distances

are most similar to the original
inter-point distances !!!
e Formally:
Define: D, =llx; -x; Il d;=lly; -y,

Claim: Dij = dij 7i, je [1,n] X D.

e In general: an exact solution is not
possible !!!

e Inter Point distances = invariance
features




MDS ALGORITHM

Strategy (of metric MDS):
& iterative procedure to find a good configuration of image points

1) Initialization
- Begin with some (arbitrary) initial configuration

2) Alter the image points and try to find a configuration of points
that minimizes the following sum-of-squares error function:



MDS ALGORITHM

Strategy (of metric MDS):
& iterative procedure to find a good configuration of image points

1) Initialization
- Begin with some (arbitrary) initial configuration

2) Alter the image points and try to find a configuration of points
that minimizes the following sum-of-squares error function:

E = Z(Du —dy)’

i<j



FORCE-DIRECTED ALGORITHM

Spring-like system
» insert springs within each node
= the length of the spring encodes the desired node distance
= start at an initial configuration
= jteratively move nodes until an energy minimum is reached

S



FORCE-DIRECTED ALGORITHM

Spring-like system
» insert springs within each node
= the length of the spring encodes the desired node distance
= start at an initial configuration
= jteratively move nodes until an energy minimum is reached
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MANIFOLD LEARNING: ISOMAP

by: J. Tenenbaum, V. de Silva, J. Langford, Science, 2000

A B C

Tries to unwrap a high-dimensional surface (A) = manifold
= noisy points could be averaged first and projected onto the manifold

Algorlthm
construct neighborhood graph G = (B)

= for each pair of points in G compute the shortest path distances >
geodesic distances

= fill similarity matrix with these geodesic distances
= embed (layout) in low-D (2D) with MDS - (C)



MANIFOLD LEARNING: LOCALLY LINEAR

EMBEDDING (LLE)

by: S. Roweis, L. Saul, Science, 2000

Based on simple geometric intuitions.

= suppose the data consist of N real-valued vectors X;, each of
dimensionality D

» each data point and its neighbors are expected to lie on or close
to a locally linear patch of the manifold
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LLE OVERVIEW

(o] .
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L LE DETAILS

—_

assign K neighbors to each data point X;

= compute the weights W; that best linearly reconstruct the data
point from its K neighbors, solving the constrained least-squares
problem

Steps:

| J
= compute the low-dimensional embedding vectors Y best
reconstructed by W;

DY) =D IY =2 Wy I
| J



SELF-ORGANIZING MAPS (SOM)

Introduced by Teuvo Kohonen
= unsupervised learning and clustering algorithm
» has advantages compared to hierarchical clustering
= often realized as an artificial neural network

SOMs group the data

= perform a nonlinear projection from N-dimensional input space
onto two-dimensional visualization space

= provide a useful topological arrangement of information objects
in order to display clusters of similar objects in information space



SOM EXAMPLE

Map a dataset of 3D color vectors into a 2D plane
= assume you have an image with 5 colors
= want to see how many there are of each
= compute a SOM of the color vectors

SOM




SOM ALGORITHM

Create array and connect all elements to the N
input vector dimensions

= shown here: 2D vector with 4x4 elements

= |nitialize weights

For each input vector chosen at random
= find node with weights most like the input vector
= call that node the Best Matching Unit (BMU)
= find nodes within neighborhood radius r of BMU
« initially ris chosen as the radius of the lattice
« diminishes at each time step

= adjust the weights of the neighboring nodes to
make them more like the input vector

* the closer a node is to the BMU, the more its
weights get altered




SOM EXAMPLE: THEMESCAPE

Height represents density or number of documents in the region
Invented at Pacific Northwest National Lab (PNNL)



SOM / MDS EXAMPLE:
VXINSIGHT (SANDIA)
|

e




L INEAR DISCRIMINANT ANALYSIS (LDA)

LDA was proposed by Ronald Fisher in 1936

See separate slides
» by Ricardo Gutierrez-Osuna (Texas A&M University)



