CSE 332
INTRO TO VISUALIZATION

VISUALIZING VOLUMETRIC DATA

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT
STONY BROOK UNIVERSITY



VOLUME DATA GENERATION

Often obtained by scanning
= for example, X-ray CT




VOLUME DATA — 2D SLICE VIEW




VOLUME DATA - 3D RENDERED VIEW

aneurism broken jaw

Which do you prefer: 2D or 3D carotid arteries




RAYCASTING CONCEPT

Data Set

® Numerical Integration

® Resampling

REAL-TIME VOLUME GRAPHICS
(6( Christof Rezk Salama
CG‘ 2)) Computer Graphics and Multimedia Group, University of Siegen, Germany



SAMPLING ALONG THE RAY

Image Plane

Eye

| 4 i
\ !
! )
§ i
U il
i |
1 |
{ \
K’r »,t
A 4
N v oy \
QOO0 0000000 OO0
., i
i i
\
¢ A
\ !
| |
!

Estimate sample values via interpolation




SAMPLING VIA TRILINEAR INTERPOLATION

resampled points

fh=H0-p)A-qA-7)+f(pA—-q@)(1—-1)+
)@QA-7r)+f,1-p)(@A—-71)+
fs(—p)A-—q)@) + fe(p)(1—q)(r) +
f7(0)(@ () + fe(1 —p)(q)(r)



WHAT DOES THIS EXACTLY MEAN?

Here is what it looks like in 2D for bi-linear interpolation

weightia

weight

(x
(x

)

weights

Color 1: Color 2:
Red: 255 = 1.0f Red: 255 = 1.0f
reen: 0 = 0.0f Green: 255

Color 3: Color 4:
Red: 0 = 0.0f Red: 0 = 0.0f
een: = een:

interpolation result within one cell



TRANSPARENCY AND OPACITY

We learned about RGB o

There is one more channel — opacity (A)
= gives RGBA color
= opacity (A) = 1 —transparency (T)
= range [0.0 ... 1.0]

T00%

Opacity (A) multiplied by RGB creates a weighting effect

opacity
0.4




OPACITY AND COLOR BLENDING

Cmix — Cback Aback (1_ Afront) + C front Afront
Crix = CrAR(—Ag) +C A

T, = 0.00, A; = 1.00
C = R0.75+B-0.25

T, = 0.75




COMPOSITING — MERGING THE SAMPLES

Back-to-front rendering

previous samples = current sample next samples

C’ ., A » C' b

Cil =CA +(1-A )Ci'_l

Front-to-back rendering

next samples  current sample  previous samples

C.

C=C,+1-A,)C A
A=A+1-A)A

A: Opacity = 1- Transparency =1 -T

C: Color



TRANSFER FUNCTION

Determines what color & opacity a sample value should have
= input: an interpolated density value

= output: a color and opacity (RGBA) rendering l
v PORUse In trf - [Visualizer No. 0]
":”': = "*o‘l O« 11 O i

transfer function

\

[tosd7r |  [oadwstaled TF| [ SaveTF

Bits per yorel 16 ¥ Histoscale 1
[ Lighting On [ Pre-ntegration on

Region Moda: To modify bax in scene, grab handie with left mouse to Fanslate, right mouse o stretch




RAYCASTING SPECIFICS

screen 1n world space

Eye (Camera)
7 |

i

A pomt Pon aray is given by:
P = Eyve+t-r. .
: i,
t: parametric variable

W N _H
Ni—1 S T N—

Ai =

Ni, Nj: image dims. in pixels

Spacing of pixels on image plane:

A ray 1s specified by:
- eye position (Eye)
- screen pixel location P ;
— ray direction vector (1;;) of unit length

P. .—Eve
i, j

i g P, ~Eve

Image-order projection:
- scan the 1mage row by row, column by column:

Pi,j = P010+i-1f-£j+j-u-i_\.£

-P; & Location of image pixel (i, j) in world space
0<1<N1 0Z)<Nj
- Py - Image (=screen) origin in world space

- u, v, n: orthonormal image plane vectors (n=v xu)




VOLUME RENDERING MODES

[so-surface:
rays look for the object
surfaces, defined by a cer-
tain volume value

X-ray:
rays sum volume cor
tributions along their
linear paths

Maximum Intensity Pro
jection (MIP):
a pixel value stores th
largest volume value
along its ray

Full volume rendering:
rays composite volume
contributions along their
linear paths




PRACTICAL IMPLEMENTATION

® Everything handled in the fragment shader

® Procedural ray / bounding box intersection ,

/
p i s |
f J
/ /

@ Ray is given by camera position
and volume entry position

@® Exit criterion needed

@ Pro: simple and self-contained

® Con: full load on the fragment shader



// Cg fragment shader code for single-pass ray casting
floatd main(VS_OUTPUT IN, float4 TexCoord0 : TEXCOCURDO,
uniform sampler3D SamplerDataVolume,
uniform sampleriD SamplerTransferFunction,
uniform float3 camera,
uniform float stepsize,
uniform float3 volExtentMin,
uniform float3 volExtentMax
) : COLOR

GPU PROGRAM

y floatd4d value;
@ Rasterize tront taces float scalar | |
nitialize accumulated color and opacity
. float4 dst = £loat4(0,0,0,0);
Of VOlume bOU nd | ng box // Determine volume entry position
float3 position = TexCoord(.xyz;
// Compute ray direction
float3 direction = TexCoord0.xyz - camera;
direction = normalize(direction);
// Loop for ray traversal

® Texcoords are volume e e

— . // Data accass to scalar value in 3D voalume terture
pOSI‘I'lon |n [O -l ] value = tex3D(SamplerDataVolume, position);
/ scalar = value.a;

// Apply transfer function

Q S U b-l-ro C-I- CO m e rO pos H-io n float4 src = tex1D(SamplerTransferFuncticn, scalar);
// Front-to-back compositing
dst = (1.0-dst.a) * src + dst;
// Advance ray position along ray direction
position = position + direction * stepsize;
// Ray termination: Test if outside volumae ...
float3 templ = sign(position - volExtentMin);

Q Re peOTGd |y CheCk for float3 temp2 = sign(volExtentMax - position);

float inside = dot(templ, temp2);

exit of bounding box s = e
brezk;

}

return dst;



OUESTIONS

Why is front-to-back rendering better?
= early ray termination — terminate a ray when A>0.90

= empty-space skipping — jump across empty space quickly

/. /
s
/

I, r
;*7 y
/

l’ A
v V4
]’xrs

'/

l/

y R
£ P =
/ iy - ,~’,r

i

-

e s




ISO-SURFACE RENDERING

A closed surface separates ‘outside’ from ‘inside’ (Jordan theorem)

* In iso-surface rendering we say that all voxels with values > some threshold are ‘inside’, and the
others are “outside’

* The boundary between “outside’ and “inside’ is the iso-surface

* All voxels near the iso-surface have a value close to the iso-threshold or iso-value

* Example:

1so-boundary

cross-section of a smooth sphere iso-value = 50 iso-value = 200
will render a large sphere  will render a small sphere



ISO-SURFACE RENDERING

1so-value = 30 1so-value = 80 iso-value = 200



|ISO-SURFACE RENDERING — DETAILS

* To render an iso-surface we cast the rays as usual...

but we stop, once we have interpolated a value iso-threshold

@ voxel value = iso-threshold

() voxel value < iso-threshold

p
ray // ./C)’ T \ stop here

* We would like to illuminate (shade) the 1so-surface based on its orientation to the light source
* Recall that we need a normal vector for shading

* The normal vector N is the local gradient, normalized



THE GRADIENT VECTOR

The gradient vector g=(gy. gy, gz_)T at the sample position (X, y, z) is usually computed via central-

differencing (for example, g, is the volume density gradient in the x-direction):

gx:_f(x—]._l-‘,z}—f(x+l.,l-',z} o _ S y-1.2)-f(x, y+1,2) < _ Sz =[x, y,z+1)

2 y 2 z 2
x-1 X x+1
‘ the x and y component
R of the gradient vector
”f 0. 105) 0 for the smooth sphere
y+1 -0.5 0.5
y 0 1]-0.5 0
§
y-1 o 2D central difference mask
ray / :
interpolated volume

. voxel value = 1so-threshold

density f(x+1,y, z) y

O voxel value < 1so-threshold

o)

extra sample points interpolated to estimate gradient



SHADING THE ISO-SURFACE

* The normal vector is the normalized gradient vector g

N =g/lgl (normal vector always has unit length)

* Once the normal vector has been calculated we shade the iso-surface at the sample point
* The color so obtained is then written to the pixel that is due to the ray

detected iso-surface portion rendered cube (light from the front)

Light I = specular highlight
- shaded point
)
T

Ar* The color is calculated with the standard shading equation:

C=C, (kI +ky 1] N-L)+k I (HN)™

obj

Copi 1s obtained by indexing the color transfer function with the interpolated sample value



FULL VOLUME RENDERING

When hitting a surface set A< 1.0
= ray marches on
= nner structures can be seen




CLASSIFICATION

@ During Classification the user defines the ,Look”
of the data.

® Which parts are transparent?
@ Which parts have which color?

S REAL-TIME VOLUME GRAFHICS
Klaus Engel

Siemens AG, Erlangen, Germany




CLASSIFICATION

@ During Classitication the user defines the , Look”
of the data.

@® Which parts are transparent?
@ Which parts have which color?

@® The user defines a Transferfunction.

> Emission RGB

scalar S

>
I Transfer
l,, E

unction _ Absorption A

REAL-TIME VOLUME GRAPHICS
JE! Klaus Engel
: Siemens AG, Erlangen. Germany



Classification




Classification




Classification

REAL-TIME VOLUME GRAPHICS

Klaus Engel

Siemens AG, Erlangen, Germany



Classification

REAL-TIME VOLUME GRAFPHICS
Klaus Engel

Siemens AG, Erlangen, Germany




Classification

REAL-TIME VOLUME GRAPHICS
Klaus Engel
Siemens AG, Erlangen, Germany




Classification

Real-Time update of the transfer function

necessary!!!

REAL-TIME VOLUME GRAPHICS
Klaus Engel
Siemens AG, Erlangen, Germany




Classification

B MultiTF




Transfer Functions: Multi-Dimensional \VAR

2006

BALTIMORE-MARYLAND-USA

gradient
magnitude

> data (CT) value
Boundaries in volume create

arches in (value,gradient)
domain [Kindlmann 98]

Arches guide placement of
opacity to emphasize material

Interfaces [kniss 01]

IEEE Visualization 2006 Tutorial 2



Transfer Functions: Multi-Dimensional g\ SN

2006

BALTIMORE-MARYLAND-USA

 Boundaries can be
described In terms of:

— maximum in 1st
derivative

— Zero-crossing in 2nd
derivative

* Semi-automatic
classification possible
In clean data

IEEE Visualization 2006



Dual-domain Make features

interaction: opaque by
[Kniss 01] pointing at them
New Actions In
Rendering spatial
domain
Changes to New
transfer
transfer .
function

function

IEEE Visualization 2006



Multi-Dimensional Transfer Functions \V‘

AAAAAAAAAAAAAAAAAAAA

IEEE Visualization 2006



Multi-Dimensional Transfer Functions \V‘

AAAAAAAAAAAAAAAAAAAA

IEEE Visualization 2006



Transfer Functions: Clinical Practice J\ S
2006

BALTIMORE-MARYLAND-USA

A single slider bar is most appreciated [rezk-salama visos]

Enables doctors to quickly fine-tune the transfer function for
specific objects
e works since in CT usually only small deviations exist

* but these require complex interactions in the transfer
function domain

IEEE Visualization 2006 Tutorial 2



Parameter Mapping Approach (1) 2006h

BALTIMORE-MA

Typical transfer function parameterization:

el |
Datasets typically only deviate modestly from this

* but in complex ways

* meaning, lots of tweaking Is required
[Rezk-Salama Vis06]

o0 oo

IEEE Visualization 2006 Tutorial 2



Parameter Mapping Approach (2)

We can learn these deviations by
observing a few datasets

* encode the parameters into an N-
D vector

* find the principal component of the
vectors (the main Eigenvector)

* project all other vectors onto this
Eigenvector

* the min and max then represent
the min and max of the slider

/)] A

,)] A

O/,"O
o 0g ©
o o
OO\ O o
(@) /,o o) T
o, O
0/ 0
Po
QQ

Po

[Rezk-Salama Vis06]

IEEE Visualization 2006 Tutorial 2



