
Truthful Multi-unit Procurements with Budgets

Hau Chan Jing Chen
Department of Computer Science, Stony Brook University

{hauchan, jingchen}@cs.stonybrook.edu

September 26, 2014

Abstract

We study procurement games where each seller supplies multiple units of his item, with a
cost per unit known only to him. The buyer can purchase any number of units from each seller,
values different combinations of the items differently, and has a budget for his total payment.

For a special class of procurement games, the bounded knapsack problem, we show that no
universally truthful budget-feasible mechanism can approximate the optimal value of the buyer
within lnn, where n is the total number of units of all items available. We then construct a
polynomial-time mechanism that gives a 4(1+ lnn)-approximation for procurement games with
concave additive valuations, which include bounded knapsack as a special case. Our mechanism
is thus optimal up to a constant factor. Moreover, for the bounded knapsack problem, given the
well-known FPTAS, our results imply there is a provable gap between the optimization domain
and the mechanism design domain.

Finally, for procurement games with sub-additive valuations, we construct a universally truth-
ful budget-feasible mechanism that gives an O(log2 n

log logn)-approximation in polynomial time with
a demand oracle.

Keywords: procurement auction, budget-feasible mechanism, optimal mechanism, approxima-
tion

1 Introduction

In a procurement game/auction, m sellers compete for providing their items (referred to as products
or services in some scenarios) to the buyer. Each seller i has one item and can provide at most ni
units of it, with a fixed cost ci per unit which is known only to him. The buyer may purchase any
number of units from each seller. For example, a local government may buy 50 displays from Dell,
20 laptops from Lenovo, and 30 printers from HP.1 The buyer has a valuation function for possible
combinations of the items, and a budget B for the total payment he can make. We consider
universally truthful mechanisms that (approximately) maximize the buyer’s value subject to the
budget constraint.

Procurement games with budgets have been studied in the framework of budget-feasible mech-
anisms (see, e.g., [35, 18, 16, 10]). Yet most studies focus on settings where each seller has only one
unit of his item. Thus there are only two possible allocations for a seller: either his item is taken or
it is not.2 When a seller has multiple units and may benefit from selling any number of them, there

1In reality Dell also sells laptops and Lenovo also sells displays. But for the purpose of this paper we consider
settings where each seller has one item to supply, but has many units of it. However, we allow cases where different
sellers have the same item, just as one can buy the same laptops from Best Buy and/or Walmart.

2In the coverage problem a player has a set of elements, but still the allocation is bimodal for him: either his
whole set is taken or none of the elements is taken.

1

are more possibilities for him to deviate into and it becomes harder to provide incentives for him
to be truthful. To the best of our knowledge, this is the first time where multi-unit budget-feasible
mechanisms are systematically studied.

Multi-unit procurements with budgets can be used to model many interesting problems. For
example, in the classic bounded knapsack problem the buyer has a value vi for one unit of item i,
and his total value is the sum of his value for each unit he buys. In job scheduling, the planner
may assign multiple jobs to a machine, with different values for different assignments. As another
example, in the Provision-after-Wait problem in healthcare [11], the government needs to serve n
patients at m hospitals. Each patient has his own value for being served at each hospital, and the
value of the government is the social welfare.

1.1 Our main results

We present our main results in three parts, with most of the proofs provided in the appendix.

An impossibility result. Although budget-feasible mechanisms with constant approximation
ratios have been constructed for single-unit procurements [35, 16], our first result, formally stated
and proved in Section 3, shows that this is impossible in multi-unit settings, even for the special
case of bounded knapsack.
Theorem 1. (rephrased) No universally truthful, budget-feasible mechanism can do better than a
lnn-approximation for bounded knapsack, where n is the total number of units of all items available.

This theorem applies to all classes of multi-unit procurement games considered in this paper,
since they all contain bounded knapsack as a special case.

An optimal mechanism for concave additive valuations. A concave additive valuation func-
tion is specified by the buyer’s marginal values for getting the j-th unit of each item i, vij , which are
non-increasing in j. The following theorem is formally stated in Section 4 and proved in Appendix A.
Theorem 2. (rephrased) There is a polynomial-time mechanism which is a 4(1+lnn)-approximation
for concave additive valuations.

Our mechanism is very simple. The central part is a greedy algorithm, which yields a monotone
allocation rule. However, one needs to be careful about how to compute the payments, and new
ideas are needed for proving budget-feasibility.

Since bounded knapsack is a special case of concave additive valuations, our mechanism is opti-
mal within a constant factor. More interestingly, given that bounded knapsack has an FPTAS when
there is no strategic considerations, our results show that there is a gap between the optimization
domain and the mechanism design domain for what one can expect when solving bounded knapsack.

Beyond concave additive valuations. We do not know how to use greedy algorithms to con-
struct budget-feasible mechanisms for larger classes of valuations. The reason is that they may not be
monotone: if a player lowers his cost, he might actually sell fewer units. This is demonstrated by our
example in Section 5.1. Thus we turn to a different approach, random sampling [10, 23, 17, 15, 6, 7].
The following theorem is formally stated in Section 5.3 and proved in Appendix B.
Theorem 5. (rephrased) Given a demand oracle, there is a polynomial-time mechanism which is
an O(log2 n

log logn)-approximation for sub-additive valuations.
A demand oracle is a standard assumption for handling sub-additive valuations [18, 10, 8], since

such a valuation function takes exponentially many numbers to specify. Notice that for bounded

2

knapsack and concave additive valuations our results are presented using the natural logarithm,
since those are the precise bounds we achieve; while for sub-additive valuations we present our
asymptotic bound under base-2 logarithm, to be consistent with the literature.

Our mechanism generalizes that of [10], which gives an O(logn
log logn)-approximation for single-unit

sub-additive valuations. Several new issues arise in the multi-unit setting. For example, we must
distinguish between an item and a unit of that item, and in both our mechanism and our analysis
we need to be careful about which one to deal with. Also, we have constructed, as a sub-routine,
a mechanism for approximating the optimal single-item outcome: namely, an outcome that only
takes units from a single seller. We believe that this mechanism will be a useful building block for
budget-feasible mechanisms in multi-unit settings.

1.2 Related work

Various procurement games have been studied [30, 33, 32, 20, 21], but without budget considerations.
In particular, frugal mechanisms [5, 13, 19, 26, 36, 14, 27] aim at finding mechanisms that minimize
the total payment. As a “dual” problem to procurement games, auctions where the buyers have
budget constraints have also been studied [2, 22], but the models are very different from ours.

Single-unit budget-feasible mechanisms were introduced by [35], where the author achieved a
constant approximation for sub-modular valuations. In [16] the approximation ratio was improved
and variants of knapsack problems were studied, but still in single-unit settings. In [18] the authors
considered single-unit sub-additive valuations and constructed a randomized mechanism that is an
O(log2 n)-approximation and a deterministic mechanism that is an O(log3 n)-approximation. We
notice that their randomized mechanism can be generalized to multi-unit settings, resulting in an
O(log3 n)-approximation. In [10] the authors consider both prior-free and Bayesian models. For the
former, they provide a constant approximation for XOS valuations and an O(logn

log logn)-approximation
for sub-additive valuations; and for the latter, they provide a constant approximation for the sub-
additive case. As mentioned we generalize their prior-free mechanism, but we need to give up a log n
factor in the approximation ratio. It is nice to see that the framework of budget-feasible mechanism
design generalizes to multi-unit settings.

In [24] the author considered settings where each seller has multiple items. Although it was
discussed why such settings are harder than single-item settings, no explicit upper bound on the
approximation ratio was given. Instead, the focus there was a different benchmark. The author
provided a constant approximation of his benchmark for sub-modular valuations, but the mechanism
does not run in polynomial time. Also, budget-feasible mechanisms where each seller has one unit of
an infinitely divisible item have been considered in [3], under the large-market assumption: that is,
the cost of buying each item completely is much smaller than the budget. The authors constructed
a deterministic mechanism which is a 1− 1/e approximation for additive valuations and which they
also prove to be optimal. In our study we do not impose any assumption about the sellers costs,
and the cost of buying all units of an item may or may not exceed the budget. Moreover, in [9] the
authors studied online procurements and provided a randomized posted-price mechanism that is an
O(log n)-approximation for sub-modular valuations under the random ordering assumption.

Finally, knapsack auctions have been studied by [1], where the underlying optimization problem
is the knapsack problem, but a seller’s private information is the value of his item, instead of the
cost. Thus the model is very different from ours and from those studied in the budget-feasibility
framework in general.

3

1.3 Open problems

Many questions can be asked about multi-unit procurements with budgets and are worth studying
in the future. Below we mention a few of them.

First, it would be interesting to close the gap between the upper bound in Theorem 1 and
the lower bound in Theorem 5, even for subclasses such as sub-modular or diminishing-return
valuations, as defined in Section 2. A related problem is whether the upper bound can be bypassed
under other solution concepts. For example, is there a mechanism with price of anarchy [28, 34]
better than lnn? How about a mechanism with a unique equilibrium? Solution concepts that
are not equilibrium-based are also worth considering, such as undominated strategies and iterated
elimination of dominated strategies. Another problem is whether a better approximation can be
achieved for other benchmarks, such as the one considered in [24], by truthful mechanisms that run
in polynomial time.

Second, online procurements with budget constraints have been studied in both optimization
settings [25] and strategic settings [9]. But only single-unit scenarios are considered in the latter.
It is natural to ask, what if a seller with multiple units of the same item can show up at different
time points, and the buyer needs to decide how many units he wants to buy each time.

Finally, the buyer may have different budgets for different sellers, a seller’s cost for one unit of
his item may decrease as he sells more, or the number of units each seller has may not be publicly
known3. However, the last two cases are not single-parameter settings and presumably need very
different approaches.

2 Procurement Games

Now let us define our model. In a procurement game there are m sellers who are the players, and
one buyer. There are m items and they may or may not be different. Each player i can provide
ni units of item i, where each unit is indivisible. The total number of units of all the items is
n ,

∑
i ni. The true cost for providing one unit of item i is ci ≥ 0, and c = (c1, . . . , cm). The value

of ci is player i’s private information. All other information is public.
An allocation A is a profile of integers, A = (a1, . . . , am). For each i ∈ [m], ai ∈ {0, 1, . . . , ni}

and ai denotes the number of units bought from player i. An outcome ω is a pair, ω = (A,P),
where A is an allocation and P is the payment profile: a profile of non-negative reals with Pi being
the payment to player i. Player i’s utility at ω is ui(ω) = Pi − aici.

The buyer has a valuation function V , mapping allocations to non-negative reals, such that
V (0, . . . , 0) = 0. For allocations A = (a1, . . . , am) and A′ = (a′1, . . . , a

′
m) with ai ≤ a′i for each i,

V (A) ≤ V (A′) —namely, V is monotone.4 The buyer has a budget B and wants to implement an
optimal allocation,

A∗ ∈ argmax
A:

∑
i∈[m] ciai≤B

V (A),

while keeping the total payment within the budget. An outcome ω = (A,P) is budget-feasible if∑
i∈[m] Pi ≤ B.

3In many real-life scenarios the numbers of available units are public information, including procurements of digital
products, procurements of cars, some arms trades, etc. Here procurement auctions are powerful tools and may result
in big differences in prices, just like in the car market. However, there are also scenarios where the sellers can hide
the numbers of units they have, particularly in a seller’s market. In such cases they may manipulate the supply level,
hoping to affect the prices.

4Monotonicity is a standard assumption for single-unit budget-feasible mechanisms.

4

The solution concept. A deterministic revealing mechanism is dominant-strategy truthful (DST)
if for each player i, announcing ci is a dominant strategy:

ui(ci, c
′
−i) ≥ ui(c′i, c′−i) ∀c′i, c′−i.

A deterministic mechanism is individually rational if ui(c) ≥ 0 for each i. A randomized mechanism
is universally truthful (respectively, individually rational) if it is a probabilistic distribution over
deterministic mechanisms that are DST (respectively, individually rational).

A deterministic DST mechanism is budget-feasible if its outcome under c is budget-feasible. A
universally truthful mechanism is budget-feasible (in expectation) if the expected payment under c
is at most B.

Definition 1. Let C be a class of procurement games and f(n) ≥ 0. A universally truthful
mechanism is an f(n)-approximation for class C if, for any game in C, the mechanism is individually
rational and budget-feasible, and the outcome under the true cost profile c has expected value at
least V (A∗)

f(n) .

Remark 1. One can trade truthfulness for budget-feasibility: given a universally truthful budget-
feasible mechanism, by paying each player the expected payment he would have received, we get
a mechanism that is truthful in expectation and meets the budget constraint with probability 1. As
implied by Theorem 1, no universally truthful mechanism that meets the budget constraint with
probability 1 can do better than a lnn-approximation. Thus there has to be some trade-off.

Remark 2. We allow different players to have identical items, just like different dealers may carry
the same products, with or without the same cost. But we require the same player’s units have the
same cost. In the future, one may consider cases where one player has units of different items with
different costs: that is, a multi-parameter setting instead of single-parameter.

Below we define several classes of valuation functions for procurement games.

Concave additive valuations and the bounded knapsack problem. An important class of
valuation functions are the additive ones. For such a function V , there exists a value vik for each
item i and each k ∈ [ni] such that, V (A) =

∑
i∈[m]

∑
k∈[ai] vik for any A = (a1, . . . , am). Indeed,

vik is the marginal value from the k-th unit of item i given that the buyer has already gotten
k − 1 units, no matter how many units he has gotten for other items. V is concave if for each i,
vi1 ≥ vi2 ≥ · · · ≥ vini ; namely, the margins for the same item are non-increasing.

A special case of concave additive valuations is the bounded knapsack problem, one of the most
classical problems in computational complexity. Here, all units of an item i have the same value vi:
that is, vi1 = vi2 = · · · = vini = vi.

Sub-additive valuations. A much larger class is the sub-additive valuations. Here a valuation
V is such that, for any A = (a1, . . . , am) and A′ = (a′1, . . . , a

′
m),

V (A ∨A′) ≤ V (A) + V (A′),

where ∨ is the item-wise max operation: A ∨A′ = (max{a1, a′1}, . . . ,max{am, a′m}).
Notice that the requirement of sub-additivity is imposed only across different players, and values

can change arbitrarily across units of the same player. Indeed, when A and A′ differ at a single
player, sub-additivity does not impose any constraint on V (A) and V (A′), not even that there are
decreasing margins. Thus this definition is more general than requiring sub-additivity also across
units of the same player. Following the literature, we stick to the more general notion.

5

Between concave additivity and sub-additivity, two classes of valuations have been defined, as
recalled below.5 To the best of our knowledge, no budget-feasible mechanisms were considered for
either of them in multi-unit settings.

• Diminishing return: for any A and A′ such that ai ≤ a′i for each i, and for any item j,
V (A+ ej)− V (A) ≥ V (A′ + ej)− V (A′), where A+ ej means adding one extra unit of item
j to A unless aj = nj , in which case A+ ej = A.

• Sub-modularity: for any A and A′, V (A ∨ A′) + V (A ∧ A′) ≤ V (A) + V (A′), where ∧ is the
item-wise min operation.6

Diminishing return implies sub-modularity, and both collapse to sub-modularity in single-unit
settings. The reason for diminishing return to be considered separately is that multi-unit sub-
modularity is a very weak condition: when A and A′ differ at a single player, it does not impose
any constraint, as sub-additivity. Diminishing return better reflects the idea behind single-unit
sub-modularity: the buyer’s value for one extra unit of any item gets smaller as he buys more.

Since the valuation classes defined above are nested:

bounded knapsack ⊆ concave additivity ⊆ diminishing return
⊆ sub-modularity ⊆ sub-additivity,

any impossibility result for one class applies to all classes above it, and any positive result for one
class applies to all classes below it. Moreover, since sub-additivity contains additivity, any positive
result for the former also applies to the latter.

Demand oracle. A sub-additive valuation function V may take exponentially many numbers to
specify. Thus following the studies of single-unit sub-additive valuations [35, 10], we consider a
demand oracle, which takes as input a set of players {1, . . . ,m}, a profile of costs (p1, . . . , pm) and
a profile of numbers of units (n1, . . . , nm),7 and returns, regardless of the budget, an allocation

Â ∈ argmax
A=(a1,...,am):ai≤ni∀i

V (A)−
∑
i∈[m]

aipi.

It is well known that a demand oracle can simulate in polynomial time a value oracle, which returns
V (A) given A. Thus we also have access to a value oracle.

Our goal. We shall construct universally truthful mechanisms that are individually rational,
budget-feasible, and approximate the optimal value of the buyer. Our mechanisms run in polynomial
time for concave additive valuations, and in polynomial time given the demand oracle for sub-
additive valuations.

5The literature of multi-unit procurements has been particularly interested in valuations with some forms of “non-
increasing margins”, thus has considered classes that contain all concave additive valuations but not necessarily all
additive ones.

6The item-wise max and min operations when defining sub-additivity and sub-modularity follow directly from the
set-union and set-intersection operations when defining them in general settings, and have been widely adopted in the
literature (see, e.g., [12] and [25]). One may consider alternative definitions where, for example, ∨ represents item-
wise sum rather than item-wise max. However, we are not aware of existing studies where the alternative definitions
are used.

7In single-unit settings a demand oracle takes as input a set of players and the costs. For multi-unit settings it is
natural to also include the numbers of units.

6

Single-parameter settings with budgets. Since the cost ci is player i’s only private infor-
mation, we are considering single-parameter settings [4]. Following Myerson’s lemma [31] or the
characterization in [4], the only truthful mechanisms are those with a monotone allocation rule and
threshold payments. In multi-unit settings, each unit of an item i has its own threshold and the
total payment to i will be the sum of the thresholds for all of his units bought by the mechanism.

With a budget constraint, this characterization still holds, but the problem becomes harder: the
monotone allocation rule must be such that, not only (1) it provides good approximation to the
optimal value, but also (2) the unique total payment that it induces must satisfy the budget con-
straint. Therefore, similar to single-unit budget-feasible mechanisms, we shall construct monotone
allocation rules while keeping an eye on the structure of the threshold payments. We need to make
sure that when the two are combined, both (1) and (2) are satisfied.

3 Impossibility results for bounded knapsack

The following observation for bounded knapsack is immediate.

Observation 1.. No deterministic DST budget-feasible mechanism can be an n-approximation for
bounded knapsack.

Proof. When m = 1, n1 = n, v1 = 1 and c1 = B, a DST mechanism, being an n-approximation,
must buy 1 unit and pay the player B. When c1 = B/n, the mechanism must still buy 1 unit and
pay B, otherwise the player will bid B instead. Thus the mechanism’s value is 1, while the optimal
value is n.

Clearly, buying 1 unit from a player i ∈ argmaxj vj and paying him B is an n-approximation.
For randomized mechanisms we have the following.

Theorem 1. No universally truthful mechanism can be an f(n)-approximation for bounded knapsack
with f(n) < lnn.

Proof. Consider the case where m = 1, n1 = n, and v1 = 1. For any b, c ∈ [0, B], let u1(b; c) be the
player’s expected utility by bidding b when c1 = c. For each k ∈ [n], consider the bid B

k : let P
k be

the expected payment and, for each j ∈ [n], let pkj be the probability for the mechanism to buy j
units. When c1 = B

k , the optimal value is k and∑
j∈[n]

pkj · j ≥
k

f(n)
∀k ∈ [n], (1)

as the mechanism is an f(n)-approximation. By universal truthfulness and individual rationality,
u1(

B
k ;

B
k) ≥ u1(

B
k−1 ;

B
k) ∀k > 1 and u1(B;B) ≥ 0. Namely,

P k − B

k

∑
j∈[n]

pkj · j ≥ P k−1 −
B

k

∑
j∈[n]

pk−1j · j ∀k > 1, and

P 1 −B
∑
j∈[n]

p1j · j ≥ 0.

Summing up these n inequalities, we have∑
k∈[n]

P k −
∑
k∈[n]

B

k

∑
j∈[n]

pkj · j ≥
∑

1≤k<n
P k −

∑
1≤k<n

B

k + 1

∑
j∈[n]

pkj · j,

7

which implies

Pn ≥ B

n

∑
j∈[n]

pnj · j +
∑

1≤k<n

B

k(k + 1)

∑
j∈[n]

pkj · j.

By Equation 1, we have

Pn ≥ B

f(n)
+
∑

1≤k<n

B

(k + 1)f(n)
=

B

f(n)

∑
k∈[n]

1

k
≥ B lnn

f(n)
.

By budget-feasibility, Pn ≤ B. Thus f(n) ≥ lnn, implying Theorem 1.

Remark 3. Notice that as long as the mechanism is truthful in expectation and individually rational
in expectation (namely, with respect to the players’ expected utilities), the analysis of Theorem 1
implies that it cannot do better than a lnn-approximation. Also notice that the impossibility result
does not impose any constraint on the running time of the mechanism.
Remark 4. When there is a single player, that player has a monopoly and it is not too surprising
that no mechanism can do better than a lnn-approximation. For example, in frugality mechanism
design in procurement games, it has been explicitly assumed that there is no monopoly. However,
when monopoly might actually exist, it is interesting to see that there is a tight bound (by Theorems
1 and 2) on the power of budget-feasible mechanisms in multi-unit settings.

4 An optimal mechanism for concave additive valuations

We construct a polynomial-time universally truthful mechanismMAdd that is a 4(1+lnn)-approximation
for procurement games with concave additive valuations. Our mechanism is very simple, and the
basic idea is a greedy algorithm with proportional cost sharing, as has been used for single-unit
settings [16, 35]. However, the key here is to understand the structure of the threshold payments
and to show that the mechanism is budget-feasible, which requires ideas not seen before. Moreover,
given our impossibility result, this mechanism is optimal up to a constant factor. In particular, it
achieves the optimal approximation ratio for bounded knapsack. The simplicity and the optimality
of our mechanism make it attractive to be actually implemented in real-life scenarios.

Notations and Conventions. Without loss of generality, we assume vij > 0 for each item i and
j ∈ [ni], since otherwise the mechanism can first remove the units with value 0 from consideration.
Because we shall show that MAdd is universally truthful, we describe it only with respect to the
truthful bid (c1, . . . , cn). Also, we describe the allocation rule only, since it uniquely determines
the threshold payments. An algorithm for computing the thresholds will be given in the analysis.
Finally, let i∗ ∈ argmaxi vi1 be the player with the highest marginal value, ei∗ be the allocation
with 1 unit of item i∗ and 0 unit of others, and A⊥ = (0, . . . , 0) be the allocation where nothing is
bought. We have the following.

Theorem 2. Mechanism MAdd runs in polynomial time, is universally truthful, and is a 4(1+lnn)-
approximation for procurement games with concave additive valuations.

Theorem 2 is proved in Appendix A. Combining Theorems 1 and 2 we immediately have the
following.

Corollary 1. Mechanism MAdd is optimal up to a constant factor among all universally truthful,
individually rational, and budget-feasible mechanisms for multi-unit procurement games with concave
additive valuations.

8

Mechanism MAdd for Concave Additive Valuations

1. With probability 1
2(1+lnn) , go to Step 2; with probability 1

2 , output ei∗ and stop; and with the
remaining probability, output A⊥ and stop.

2. For each i ∈ [m] and j ∈ [ni], let the value-rate rij = vij/ci.

(a) Order the n pairs (i, j) according to rij decreasingly, with ties broken lexicographically,
first by i and then by j.
For any ` ∈ [n], denote by (i`, j`) the `-th pair in the ordered list.

(b) Let k be the largest number in [n] satisfying cik
vikjk

≤ B∑
`≤k vi`j`

.

(c) Pick up the first k pairs in the list: that is, output allocation A = (a1, . . . , an) where
ai = |{` : ` ≤ k and i` = i}|.

Remark 5. Theorems 1 and 2 show that multi-unit settings are very different from single-unit
settings. In single-unit settings various constant-approximation mechanisms have been constructed,
while in multi-unit settings an O(log n)-approximation is the best, and our mechanism provides
such an approximation.

Furthermore, for bounded knapsack, without strategic considerations there is an FPTAS, while
with strategic considerations the best is a lnn-approximation. Thus we have shown that bound
knapsack is a problem for which provably there is a gap between the optimization domain and the
mechanism design domain.

Finally, it would be interesting to see how the constant gap between Theorems 1 and 2 can be
closed, and whether there is a mechanism that meets the budget constraint with probability 1 and
achieves an O(log n)-approximation.

An optimal mechanism for symmetric valuations. A closely related class of valuations
are the symmetric ones: there exists v1, . . . , vn such that, for any allocation A with k units,
V (A) =

∑
`≤k v`. In general, symmetric valuations are not concave additive, nor are concave

additive valuations necessarily symmetric. But they are equivalent with a single seller. Thus the
proof of Theorem 1 implies no mechanism can do better than a lnn-approximation for symmetric
valuations, as stated in the first part of the theorem below. Similar to our analysis of Theorem 2,
one can verify that the following mechanism is a 4(1+lnn)-approximation for symmetric valuations:
it is the same as MAdd except in Step 2, where k is set to be the largest number in [n] satisfying
cik ≤ B

k . We omit the analysis since it is very similar to that ofMAdd, and only present the following
theorem.

Theorem 3. For symmetric valuations, no universally truthful mechanism can be an f(n)-approximation
with f(n) < lnn, and there exists a polynomial-time universally truthful mechanism which is a
4(1 + lnn)-approximation.

5 Truthful mechanisms for sub-additive valuations

5.1 The non-monotonicity of the greedy algorithm

Although the greedy algorithm with proportional cost-sharing played an important role in budget-
feasible mechanisms, we do not know how to use it for multi-unit sub-additive valuations, since it
is not monotone. Indeed, by lowering his cost, a player i will still sell his first unit as in the old
allocation. But once the rank of his first unit changes, all units after that will be re-ranked according

9

to their new marginal value-rates. Under the new ordering there is no guarantee whether player i
will sell any of his remaining units. Below we give an example demonstrating this phenomenon in
settings with diminishing returns.
Example 1. There are 3 players, n1 = 1, n2 = n3 = 2, c1 = c3 = 1, c2 = 1 + ε for some arbitrarily
small ε > 0, and B = 3 + 2ε. To highlight the non-monotonicity of the greedy algorithm, we work
through the algorithm and define the marginal values on the way. The valuation function will be
defined accordingly.

Given any allocation A and player i, denote by V (i|A) the marginal value of item i, namely,
V (A+ ei)− V (A). The greedy algorithm works as follows.

• At the beginning, the allocation is A0 = (0, 0, 0).

• V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 1 has the largest marginal
value-rate, thus A1 = (1, 0, 0).

• V (1|A1) = 0 (item 1 is unavailable now), V (2|A1) = 5 + 5ε, and V (3|A1) = 5− ε. Item 2 has
the largest marginal value-rate, thus A2 = (1, 1, 0).

• V (1|A2) = 0, V (2|A2) = 1+ε, and V (3|A2) = 1−ε. Item 2 has the largest marginal value-rate,
thus A3 = (1, 2, 0).

• The budget is used up, the final allocation is A3, and player 2 sells 2 units.

Now let c′2 = 1− ε < c2. The greedy algorithm works as follows.
• A0 = (0, 0, 0).

• V (1|A0) = 10, V (2|A0) = 10 + ε, and V (3|A0) = 10 − ε. Item 2 has the largest marginal
value-rate, thus A′1 = (0, 1, 0).

Notice that player 2 sells his first unit earlier than before.

• V (1|A′1) = 5 + 4ε, V (2|A′1) = 5− 5ε, and V (3|A′1) = 5 + 5ε. Item 3 has the largest marginal
value-rate, thus A′2 = (0, 1, 1).

• V (1|A′2) = 1− 2ε, V (2|A′2) = 1− ε, and V (3|A′2) = 1 + ε, thus A′3 = (0, 1, 2).

• The remaining budget is 3ε, no further unit can be added, and the final allocation is A′3. But
player 2 only sells one unit, violating monotonicity.

Given the marginal values, the valuation function is defined as follows:

V (0, 0, 0) = 0, V (1, 0, 0) = 10, V (0, 1, 0) = 10 + ε, V (0, 0, 1) = 10− ε,
V (1, 1, 0) = 15 + 5ε, V (1, 0, 1) = 15− ε, V (0, 2, 0) = 15− 4ε, V (0, 1, 1) = 15 + 6ε,

V (0, 0, 2) = 15,

V (1, 2, 0) = 16 + 6ε, V (1, 1, 1) = 16 + 4ε, V (1, 0, 2) = 16, V (0, 2, 1) = 16 + 5ε,

V (0, 1, 2) = 16 + 7ε,

V (0, 2, 2) = V (1, 2, 1) = V (1, 1, 2) = 16 + 7ε, V (1, 2, 2) = 16 + 7ε.

One can verify that V is consistent with the marginal values and has diminishing returns. Indeed,
for any allocation with k units for k from 0 to 4, the marginal value of adding 1 more unit is roughly
10, 5, 1, ε, 0, and thus diminishing.

Given the non-monotonicity of the greedy algorithm, we turn to another approach for construct-
ing truthful mechanisms, namely, random sampling. We provide our main mechanism in Section
5.3. In Section 5.2 we first construct a mechanism that will be used as a subroutine.

10

5.2 Approximating the optimal single-item allocation

From the analysis of Theorem 1, we notice that part of the hardness in designing mechanisms for
multi-unit settings comes from cases where a single player’s item contributes a lot to the optimal
solution. In order to obtain a good approximation, we need to identify such a player and buy as
many units as possible from him. More precisely, given the true cost profile (c1, . . . , cn), let

i∗∗ ∈ argmax
i

V (min{ni, b
B

ci
c} · ei),

where for any λ ∈ [ni], λei is the allocation with λ units of item i and 0 unit of others. Ideally
we want to buy λ∗∗ , min{ni∗∗ , b B

ci∗∗
c} units from i∗∗ and pay him (at most) B. We shall refer to

(i∗∗, λ∗∗) as the optimal single-item allocation.
Notice that a similar scenario occurs in single-unit settings: part of the value approximation

comes from a single player i∗ with the highest marginal value. The problem is, although the
identity of player i∗ is publicly known, both i∗∗ and λ∗∗ depend on the players’ true costs and have
to be solved from their bids. Below we construct a universally truthful mechanism, MOne, which
is budget-feasible and approximates V (λ∗∗ei∗∗) within a 1 + lnn factor. We have the following
theorem, proved in Appendix B.

Mechanism MOne for Approximating the Optimal Single-item Allocation

With probability 1
1+lnn , do the following.

1. Let vi = V (min{ni, bBci c} · ei) and order the players according to the vi’s decreasingly, with
ties broken lexicographically.

Let i∗∗ be the first player in the list and λ∗∗ = min{ni∗∗ , b B
ci∗∗
c}.

2. Let k ∈ [λ∗∗] be the smallest number such that player i∗∗ is still ordered the first with cost
c′i∗∗ =

B
k .

3. Set θ` = B
k for each ` ≤ k and θ` = B

` for each k + 1 ≤ ` ≤ λ∗∗.

4. Output allocation λ∗∗ei∗∗ and pay
∑

`≤λ∗∗ θ` to player i∗∗.

Theorem 4. Mechanism MOne is universally truthful, individually rational, budget-feasible, and is
a (1 + lnn)-approximation for V (λ∗∗ei∗∗).

Since the impossibility result in Theorem 1 applies to settings with a single item, we have the
following corollary.

Corollary 2. Mechanism MOne is optimal for approximating V (λ∗∗ei∗∗) among all universally
truthful, individually rational, and budget-feasible mechanisms.

Remark 6. As it will become clear from the analysis, MOne does not require the valuation to be
sub-additive. The only thing it requires is that, for each player i, V (λei) is non-decreasing in λ.
Thus it can be used for valuations that are not even monotone, as long as they are monotone across
units of the same item.

Furthermore, given that (i∗∗, λ∗∗) is the multi-unit counterpart of player i∗ in single-unit settings,
and given the important role i∗ has played in single-unit budget-feasible mechanisms, we believe
mechanism MOne will be a useful building block in the design of budget-feasible mechanisms for
multi-unit settings.

11

5.3 A truthful mechanism for sub-additive valuations

Our mechanism for sub-additive valuations generalizes that of [10]. In particular, the algorithmAMax

and the mechanism MRand below are respectively variants of their algorithm SA-alg-max and
mechanism SA-random-sample. Several new issues arise in multi-unit settings. For example, we
must now distinguish between an item and a unit of that item. In the mechanism and its analysis,
we sometimes deal with an item —thus all of its units at the same time— and sometimes deal with
a single unit. Also, as discussed in Section 5.2, the role of player i∗ with the highest marginal value
is replaced by player i∗∗, and the way i∗∗ contributes to the value approximation has changed a
lot —this is where the extra log n factor comes. Indeed, to construct and analyze our mechanism
one need good understanding of the problem in multi-unit settings. Our mechanism MSub is a uni-
form distribution between MRand and the mechanism MOne of Section 5.2. We have the following
theorem, proved in Appendix B.

Algorithm AMax

Since this algorithm will be used multiple times with different inputs, we specify the inputs explicitly
to avoid confusion. Given players 1, . . . ,m, numbers of units n1, . . . , nm, costs c1, . . . , cm, budget
B, and a demand oracle for the valuation function V , do the following.

1. Let n′i = min{ni, bBci c} for each i, i∗∗ = argmaxi V (n′iei), v
∗ = V (n′i∗∗ei∗∗), and V =

{v∗, 2v∗, . . . ,mv∗}.

2. For v ∈ V from mv∗ to v∗,

(a) Set pi = v
2B · ci for each player i. Query the oracle with m players, number of units n′i

and cost pi for each i, to find
S = (s1, . . . , sm) ∈ argmaxA=(a1,...,am):ai≤n′i∀i V (A)−

∑
i∈[m] aipi.

(When there are multiple optimal solutions, the oracle always returns the same one
whenever queried with the same instance.)

(b) Set allocation Sv = A⊥. (Recall A⊥ = (0, . . . , 0) represents buying nothing.)

(c) If V (S) < v
2 , then continue to the next v.

(d) Else, order the players according to sici decreasingly with ties broken lexicographically,
and denote them by i1, . . . , im.
Let k be the largest number in [m] satisfying

∑
`≤k si`ci` ≤ B, and let Sv be S projected

on {i1, . . . , ik}: Sv =
∨
`≤k si`ei` , namely, Sv consists of taking si` units of item i` for

each ` ≤ k, and taking 0 unit of others.

3. Output SMax ∈ argmaxv∈V V (Sv).

(When there are several choices, the algorithm chooses one arbitrarily, but always outputs the
same one when executed multiple times with the same input.)

Theorem 5. MechanismMSub runs in polynomial time, is universally truthful, and is an O((logn)
2

log logn)-
approximation for procurement games with sub-additive valuations.

Since diminishing return, sub-modularity, and additivity all imply sub-additivity, we immedi-
ately have the following.

12

Mechanism MRand

1. Put each player independently at random with probability 1/2 into group T , and let T ′ =
[m] \ T .

2. Run AMax with the set of players T , number of units ni and cost ci for each i ∈ T , budget B,
and the demand oracle for valuation function V . Let v be the value of the returned allocation.

3. For k from 1 to
∑

i∈T ′ ni,

(a) Run AMax with the set of players Tk = {i : i ∈ T ′, ci ≤ B
k }, number of units ni and

cost B
k for each i ∈ Tk, budget B, and the demand oracle for V . Denote the returned

allocation by X = (x1, . . . , xm), where xi = 0 for each i /∈ Tk.
(b) If V (X) ≥ log logn

64 logn · v, then output allocation X, pay xi · Bk to each player i, and stop.

4. Output A⊥ and pay 0 to each player.

Corollary 3. MSub is an O((logn)
2

log logn)-approximation for procurement games with diminishing re-
turns, those with sub-modular valuations, and those with additive valuations.

Remark 7. The worst case of the approximation above comes from cases where V (λ∗∗ei∗∗) (and thus
MOne) is the main contribution to the final value. Unlike single-unit settings, we need an additional
log n factor because the optimal approximation ratio for V (λ∗∗ei∗∗) is O(log n). For scenarios where
the players’ costs are very small, in particular, where nici ≤ B for each i, the optimal single-item
allocation (i∗∗, λ∗∗) is publicly known, just as the player i∗ in single-unit settings. In such a small-
cost setting, which is very similar to the large-market setting considered by [3] except that the items
here are not infinitely divisible, the subroutine MOne in MSub can be replaced by “allocating ni∗∗
units of item i∗∗ and paying him B”, and the log n factor is avoided, resulting in an O(logn

log logn)-
approximation.

A small-cost setting is possible in some markets, but it is not realistic in many others. For
example, in the Provision-after-Wait problem in healthcare [11], it is very unlikely that all patients
can be served at the most expensive hospital within the government’s budget. Also, in many
procurement games, a seller, as the manufacture of his product, can be considered as having infinite
supply, and the total cost of all units he has will always exceed the buyer’s budget. Thus one need
to be careful about where the small-cost condition applies.

Acknowledgements

We thank several anonymous reviewers for their comments. The first author is supported by the
NSF Graduate Research Fellowship.

References

[1] Gagan Aggarwal and Jason D. Hartline. Knapsack auctions. In SODA, pages 1083–1092, 2006.

[2] Gagan Aggarwal, S. Muthukrishnan, Dávid Pál, and Martin Pál. General auction mechanism
for search advertising. In Proceedings of the 18th international conference on World Wide Web,
pages 241–250, 2009.

13

[3] Nima Anari, Gagan Goel, and Afshin Nikzad. Mechanisms design for crowdsourcing: An
optimal 1−1/e approximate budget-feasible mechanism for large markets. To appear at FOCS,
2014.

[4] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science, pages 482–491, 2001.

[5] Aaron Archer and Éva Tardos. Frugal path mechanisms. ACM Trans. Algorithms, 3(1):1–22,
2007.

[6] Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica, and Kunal Talwar. Sec-
retary problems: Weights and discounts. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1245–1254, 2009.

[7] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 434–443, 2007.

[8] Badanidiyuru, A., Dobzinski, S., Oren, S.: Optimization with demand oracles. In: EC. pp.
110–127 (2012)

[9] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a budget:
Posted price mechanisms for online procurement. In Proceedings of the 13th ACM Conference
on Electronic Commerce, pages 128–145, 2012.

[10] Xiaohui Bei, Ning Chen, Nick Gravin, and Pinyan Lu. Budget feasible mechanism design:
From prior-free to bayesian. In Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing, pages 449–458, 2012.

[11] Mark Braverman, Jing Chen, and Sampath Kannan. Optimal provision-after-wait in healthcare.
In Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pages
541–542, 2014.

[12] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SICOMP, special section on STOC’08, 40(6):1740–
1766, 2011.

[13] Matthew C. Cary, Abraham D. Flaxman, Jason D. Hartline, and Anna R. Karlin. Auctions
for structured procurement. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 304–313, 2008.

[14] Ning Chen, Edith Elkind, Nick Gravin, and Fedor Petrov. Frugal mechanism design via spectral
techniques. In FOCS, pages 755–764, 2010.

[15] Ning Chen, Nick Gravin, and Pinyan Lu. Mechanism design without money via stable matching.
CoRR, abs/1104.2872, 2011.

[16] Ning Chen, Nick Gravin, and Pinyan Lu. On the approximability of budget feasible mechanisms.
In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 685–699, 2011.

[17] Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In Proceedings of
APPROX’07/RANDOM’07, pages 89–103, 2007.

14

[18] Shahar Dobzinski, Christos H. Papadimitriou, and Yaron Singer. Mechanisms for complement-
free procurement. In Proceedings of the 12th ACM Conference on Electronic Commerce, pages
273–282, 2011.

[19] Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugality in path auctions. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 701–709, 2004.

[20] Joan Feigenbaum, Christos H. Papadimitriou, Rahul Sami, and Scott Shenker. A bgp-based
mechanism for lowest-cost routing. In PODC, pages 173–182, 2002.

[21] Joan Feigenbaum, Rahul Sami, and Scott Shenker. Mechanism design for policy routing. In
PODC, pages 11–20, 2004.

[22] Gagan Goel, Vahab Mirrokni, and Renato Paes Leme. Clinching auctions beyond hard budget
constraints. In EC, 2014.

[23] Andrew V. Goldberg, Jason D. Hartline, Anna R. Karlin, Andrew Wright, and Michael Saks.
Competitive auctions. In Games and Economic Behavior, pages 72–81, 2002.

[24] Nick Gravin. Incentive Compatible Design of Reverse Auctions, Section 5.2. PhD thesis,
Nanyang Technological University, 2013.

[25] Michael Kapralov, Ian Post, and Jan Vondrák. Online submodular welfare maximization:
Greedy is optimal. In Proceedings of SODA’13, pages 1216–1225, 2013.

[26] Anna R. Karlin, David Kempe, and Tami Tamir. Beyond vcg: Frugality of truthful mechanisms.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, pages
615–626, 2005.

[27] David Kempe, Mahyar Salek, and Cristopher Moore. Frugal and truthful auctions for vertex
covers, flows and cuts. In FOCS, pages 745–754, 2010.

[28] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th
annual conference on Theoretical Aspects of Computer Science (STACS’99), pages 404–413,
1999.

[29] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons, Inc., 1990.

[30] Debasis Mishra and Dharmaraj Veeramani. Vickrey-dutch procurement auction for multiple
items. European Journal of Operational Research, 180:617–629, 2006.

[31] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

[32] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35:166–196, 2001.

[33] David C. Parkes and Jayant Kalagnanam. Models for iterative multiattribute procurement
auctions. Management Science (Special Issue on Electronic Markets), 51:435–451, 2005.

[34] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–259,
2002.

15

[35] Yaron Singer. Budget feasible mechanisms. In Proceedings of the 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science, pages 765–774, 2010.

[36] Kunal Talwar. The price of truth: Frugality in truthful mechanisms. In Proceedings of the 20th
Annual Symposium on Theoretical Aspects of Computer Science (STACS’03), pages 608–619,
2003.

A Proof of Theorem 2

We break the proof of Theorem 2 into a sequence of lemmas.

Lemma 1. Mechanism MAdd is universally truthful and individually rational.

Proof. This mechanism is a probabilistic distribution over three deterministic sub-mechanisms: the
one outputs A⊥, the one outputs ei∗ , and the one in Step 2. Obviously the first two are monotone.

For the one in Step 2, notice that for any k′ ≤ k we have

cik′
vik′jk′

≤ cik
vikjk

≤ B∑
`≤k vi`j`

≤ B∑
`≤k′ vi`j`

,

and for any k′ ≥ k + 1 we have

cik′
vik′jk′

≥
cik+1

vik+1jk+1

>
B∑

`≤k+1 vi`j`
≥ B∑

`≤k′ vi`j`
.

Thus a pair (ik′ , jk′) is picked up —namely, the jk′-th unit of player ik′ is bought— if and only if

cik′
vik′jk′

≤ B∑
`≤k′ vi`j`

. (2)

For any player i and pair (i, j) picked up by the mechanism, when ci decreases, (i, j)’s rank is
smaller than or equal to its previous rank. Since (i, j) satisfied Inequality 2 before, it continues to
satisfy under the new ordering because the left-hand side becomes smaller and the right-hand side
can only become larger. Accordingly, (i, j) will still be picked up under the new ordering. Therefore
the number of units of player i bought by the mechanism will never decrease when i’s cost decreases.
Hence the mechanism is monotone.

Since each sub-mechanism pays the players according to the thresholds, we have that each one
of the sub-mechanisms is DST. Thus MAdd is universally truthful.

It is easy to see that MAdd is individually rational. Indeed, the sub-mechanism outputting A⊥
pays 0 to every player and the sub-mechanism outputting ei∗ pays B to player i∗ and 0 to others.
Thus the players get non-negative utilities in both of them. For the sub-mechanism in Step 2
and for any player i, even without giving the explicit formula of the threshold payments, by the
monotonicity of the allocation rule one can see that, any j-th unit of player i bought under i’s
true cost ci will still be bought under any cost c′i < ci, and thus the threshold for buying the j-th
unit of player i is at least ci. Accordingly, the total payment to i is at least ciai, giving player i a
non-negative utility. In sum, MAdd is individually rational and Lemma 1 holds.

Lemma 2. Mechanism MAdd runs in polynomial time.

16

Proof. The only thing that is not clear from the mechanism’s description is how to compute the
threshold payments for the sub-mechanism in Step 2. For each player i and each j ≤ ai, letting θij
be the threshold for the j-th unit of i, we compute θij using the following algorithm ATh.

Algorithm ATh for Computing the Threshold θij

1. Order the n− ni pairs (i′, j′) with i′ 6= i according to the value-rate ri′j′ ’s decreasingly, with
ties broken lexicographically. Denote by (i′`, j

′
`) the `-th pair in the list.

2. Set t′n−ni+1 = +∞.

3. For α from n − ni to 0, compute tα =
vijB∑

`≤j vi`+
∑
`≤α vi′

`
j′
`

and t′α =
vijci′α
vi′αj′α

, except for α = 0,

where t′0 = 0.

(a) If tα < t′α, continue to the next round.

(b) If t′α ≤ tα ≤ t′α+1, set θij = tα and stop.

(c) If tα > t′α+1, set θij = t′α+1 and stop.

Putting the tie-breaking rule of MAdd aside for a moment, let us first provide some intuition on
why ATh works. First notice that, for α from n−ni to 0, tα increases and t′α decreases. Thus there
is a unique value for α such that tα+1 < t′α+1 and tα ≥ t′α. This will be where algorithm ATh stops.
The final value of α represents the largest number of units of all the other players that can appear
before player i’s j-th unit, so that the latter can still be bought by MAdd. That is, at the end of
the algorithm, α + j represents the largest rank of i’s j-th unit so that it can be bought (the first
j − 1 units of i will always appear before his own j-th unit).

During the algorithm, for any α, t′α is the smallest cost player i can announce so that his j-th
unit appears after the α-th unit of all the other players in MAdd, and tα is the largest cost player
i can announce so that, when ranked α + j, his j-th unit will satisfy the condition in Step 2b of
MAdd. When tα < t′α, there is no way for i’s j-th unit to be bought by MAdd at rank α+ j. When
t′α ≤ tα ≤ t′α+1, by announcing anything in between t′α and t′α+1 player i has his j-th unit appearing
after the others’ α-th unit but before their α + 1st unit, and tα is the largest cost so that his j-th
unit will be bought. Finally, when tα > t′α+1, by announcing tα player i will not have his j-th unit
ranked α+ j: he must announce a smaller cost, and t′α+1 is the largest he can announce.

We formalize this intuition in the claim below.

Claim 1. The algorithm ATh computes the correct threshold θij.

Proof. Since t0 ≥ 0 = t′0, the algorithm will always end in Steps 3b or 3c for some α, and θij will
be set to some value. Below we first show that if player i bids c′i > θij then the mechanism will
not pick up pair (i, j). Indeed, if the algorithm stops in Step 3b, then θij = tα and c′i > tα ≥ t′α.
Accordingly,

c′i
vij

>
t′α
vij

=
ci′α
vi′αj′α

,

and pair (i, j) is ranked after pair (i′α, j′α) in the mechanism. Therefore Inequality 2 is violated for
pair (i, j), because

c′i
vij

>
tα
vij

=
B∑

`≤j vi` +
∑

`≤α vi′`j
′
`

.

17

Notice that pair (i, j) may be ranked after pair (i′α+1, j
′
α+1) and so on, but then Inequality 2

remains violated, since its right-hand side will only become smaller, with more terms added to the
denominator.

If the algorithm instead stops in Step 3c, then c′i > θij = t′α+1, which implies

c′i
vij

>
t′α+1

vij
=

ci′α+1

vi′α+1j
′
α+1

.

Accordingly, pair (i, j) is ranked after pair (i′α+1, j
′
α+1). But the algorithm did not stop at α + 1,

which means tα+1 < t′α+1. Again Inequality 2 is violated for pair (i, j), since

c′i
vij

>
t′α+1

vij
>
tα+1

vij
=

B∑
`≤j vi` +

∑
`≤α+1 vi′`j

′
`

.

Notice that pair (i, j) may be ranked even further down, but then Inequality 2 remains violated,
since its right-hand side will only become smaller.

In sum, pair (i, j) will not be picked up by the mechanism for any c′i > θij . Next, we show if
player i bids c′i < θij then the mechanism will pick up pair (i, j). To do so, notice that no matter
whether the algorithm stops in Step 3b or 3c, we have

c′i < θij = min{t′α+1, tα}.

Accordingly,
c′i
vij

<
t′α+1

vij
=

ci′α+1

vi′α+1j
′
α+1

and
c′i
vij

<
tα
vij

=
B∑

`≤j vi` +
∑

`≤α vi′`j
′
`

.

Thus (i, j) is ranked before (i′α+1, j
′
α+1), and Inequality 2 is satisfied for (i, j). Again, (i, j) may be

ranked even earlier on, but then the right-hand side of Inequality 2 will only become larger, with
some terms taken out from the denominator. Thus (i, j) will be picked up by the mechanism for
any c′i < θij .

Putting everything together, the claim holds.

The algorithm ATh clearly runs in polynomial time, thus the mechanism MAdd also runs in
polynomial time and Lemma 2 holds.

Lemma 3. Mechanism MAdd is budget-feasible.

Proof. We shall prove an upper bound for the total payment made by the sub-mechanism in Step
2 of MAdd, namely, ∑

i≤m

∑
j≤ai

θij ≤ (1 + lnn)B.

To do so, recall that the mechanism picks up the first k pairs in the ordered list according to the
value-rates rij ’s, denoted by (i1, j1) through (ik, jk). (By definition k =

∑
i≤m ai.)

Re-order these k pairs according to vij ’s decreasingly, with ties broken lexicographically. We
denote by (̂is, ĵs) the s-th pair in this new ordering. We have

vî1ĵ1 ≥ vî2ĵ2 ≥ · · · ≥ vîk ĵk (3)

18

and ∑
`≤k

vi`j` =
∑
`≤k

vî`ĵ` . (4)

Below we show θîsĵs ≤
B
s for any s ≤ k.

Assume for the sake of contradiction that there exists s ≤ k such that θîsĵs >
B
s . Consider the

pair (ik, jk) in the mechanism’s ordering. We have

cik
vikjk

≤ B∑
`≤k vi`j`

=
B∑

`≤k vî`ĵ`
≤ B∑

`≤s vî`ĵ`
≤ B

s · vîsĵs
<
θîsĵs
vîsĵs

,

where the first inequality is by the construction of the mechanism, the equality is by Equation 4,
the second inequality is because s ≤ k, the third inequality is by Equation 3, and the last inequality
is because θîsĵs >

B
s . Therefore when player îs bids some c′

îs
∈ (Bs , θîsĵs), we have

c′
îs

vîsĵs
>

B

s · vîsĵs
≥ cik
vikjk

.

Accordingly, for any ` < s such that î` 6= îs, the pair (̂i`, ĵ`) is ranked before (̂is, ĵs) by the mechanism
under player îs’s new bid c′

îs
, because

cî`
vî`ĵ`
≤ cik

vikjk
.

Moreover, for any ` < s such that î` = îs, the pair (̂i`, ĵ`) is also ranked before (̂is, ĵs) by the
mechanism under player îs’s new bid, because vî`ĵ` ≥ vîsĵs and the two pairs have the same cost.
(When vî`ĵ` = vîsĵs , it must be ĵ` < ĵs due to the lexicographic tie-breaking rule, and thus (̂i`, ĵ`) is
still ranked before (̂is, ĵs) by the mechanism under player îs’s new bid, due to the same tie-breaking
rule.)

Accordingly, when player îs bids c′
îs
, all s − 1 pairs (̂i1, ĵ1), . . . , (̂is−1, ĵs−1) are ranked be-

fore (̂is, ĵs) by the mechanism, and the total value of all pairs before or equal to (̂is, ĵs) is at
least

∑
`≤s vî`ĵ` . Because

c′
îs

vîsĵs
>

B

s · vîsĵs
≥ B∑

`≤s vî`ĵ`
,

the pair (̂is, ĵs) is not picked up by the mechanism under c′
îs
, contradicting the fact that c′

îs
< θîsĵs .

Therefore we have
θîsĵs ≤

B

s
for any s ≤ k,

which implies ∑
i≤m

∑
j≤ai

θij =
∑
s≤k

θîsĵs ≤
∑
s≤k

B

s
≤ B

∑
s≤n

1

s
≤ (1 + lnn)B,

as we wanted to show.
Since the sub-mechanism outputting ei∗ pays B to player i∗ and 0 to others, the expected

payment of mechanism MAdd is at most

1

2(1 + lnn)
· (1 + lnn)B +

1

2
·B = B,

and Lemma 3 holds.

Lemma 4. Mechanism MAdd is a 4(1 + lnn)-approximation.

19

Proof. Recall that A∗ is an optimal allocation and i∗ is a player whose first unit has the highest value
among all units of all players. We shall show that V (A) + V (ei∗) is a 2-approximation of V (A∗),
where A is the output of Step 2.

To do so, notice that once the cost profile (c1, . . . , cn) is given, without strategic considerations,
the optimization problem in our setting can be reduced to a 0-1 knapsack problem with n items and
budget B. In particular, for each player i ∈ [m] and each j ∈ [ni], there is an item (i, j) with value
vij and cost cij = ci. For any subset S ⊆ {(i, j) : i ∈ [m], j ∈ [ni]}, its value is V (S) =

∑
(i,j)∈S vij ,

and its cost is
∑

(i,j)∈S cij =
∑

(i,j)∈S ci. The allocation A∗ naturally corresponds to an optimal set
S∗ in the 0-1 knapsack problem, and the pair (i∗, 1) is the item with the highest value.

For 0-1 knapsack, it is well known (see, e.g., [29]) that the greedy algorithm that uses value-rate
sorting and exhausts the budget gives constant approximation. In particular, letting (i1, j1), . . . , (in, jn)
be the ordered list with rij ’s decreasing and ties broken lexicographically, and letting k̂ be the largest
number in [n] satisfying

∑
`≤k̂ ci` ≤ B, we have∑
`≤k̂

vi`j` + vi∗1 ≥
∑
`≤k̂+1

vi`j` ≥ V (S∗) = V (A∗), (5)

where vik̂+1jk̂+1
= 0 if k̂ = n. The first inequality above is by the definition of i∗, and the second is

because
∑

`≤k̂+1 vi`j` is greater than or equal to the optimal fractional solution.
Recall that the mechanism only picks up the first k pairs and may not exhaust the budget. To

lower-bound the value generated by those k pairs, notice that we have ci`
vi`j`

≤ cik
vikjk

for any ` ≤ k,
and thus ∑

`≤k ci`∑
`≤k vi`j`

≤ cik
vikjk

≤ B∑
`≤k vi`j`

,

which implies
∑

`≤k ci` ≤ B. Accordingly, k ≤ k̂.
If k = k̂, by Inequality 5 we have

V (A) + V (ei∗) =
∑
`≤k̂

vi`j` + vi∗1 ≥ V (A∗). (6)

If k < k̂, then ∑
k+1≤`≤k̂ ci`∑
k+1≤`≤k̂ vi`j`

≥
cik+1

vik+1jk+1

>
B∑

`≤k+1 vi`j`
,

where the first inequality is because ci`
vi`j`

≥
cik+1

vik+1jk+1
for any ` ≥ k + 1, and the second is by the

construction of the mechanism. Accordingly,

∑
k+1≤`≤k̂

vi`j` <

∑
k+1≤`≤k̂ ci`

B
·
∑
`≤k+1

vi`j` ≤
∑
`≤k+1

vi`j` ≤
∑
`≤k

vi`j` + vi∗1,

where the second inequality is because
∑

k+1≤`≤k̂ ci` ≤
∑

`≤k̂ ci` ≤ B, and the last is because
vik+1jk+1

≤ vi∗1. Thus

2V (A) + 2V (ei∗) = 2
∑
`≤k

vi`j` + 2vi∗1 ≥
∑
`≤k

vi`j` + vi∗1 +
∑

k+1≤`≤k̂

vi`j`

=
∑
`≤k̂

vi`j` + vi∗1 ≥ V (A∗), (7)

20

where the last inequality is by Inequality 5.
Combining Inequalities 6 and 7, we have that V (A) + V (ei∗) is a 2-approximation for V (A∗).

Thus the expected value of MAdd’s output is

1

2(1 + lnn)
· V (A) +

1

2
· V (ei∗) ≥

V (A) + V (ei∗)

2(1 + lnn)
≥ V (A∗)

4(1 + lnn)
.

Since individually rationality and budget-feasibility have been shown by Lemmas 1 and 3, mecha-
nism MAdd is a 4(1 + lnn)-approximation and Lemma 4 holds.

Theorem 2 follows immediately from Lemmas 1-4.

B Proofs of Theorems 4 and 5

Theorem 4 (restated). Mechanism MOne is universally truthful, individually rational, budget-
feasible, and is a (1 + lnn)-approximation for V (λ∗∗ei∗∗).

Proof. To show that MOne is universally truthful, we only need to show that the mechanism in
Steps 1-4 is DST. First of all, it is easy to see that the allocation is monotone. Indeed, for any
player i 6= i∗∗, increasing i’s cost can only cause vi to decrease. Thus i is still not the first in the list
and sells 0 unit in the new allocation. Decreasing his cost can only cause him to sell more units,
since he sells 0 under ci.

For player i∗∗, decreasing his cost to c′ < ci∗∗ can only cause vi∗∗ to increase, thus he is still the
first in the list, and the number of units he sells is min{ni∗∗ , bBc′ c} ≥ min{ni∗∗ , b B

ci∗∗
c}. On the other

hand, by increasing his cost to c′ > ci∗∗ , he will either lose the first place and sell 0 unit, or still be
the first but with the number of units min{ni∗∗ , bBc′ c} ≤ min{ni∗∗ , b B

ci∗∗
c}. In sum, monotonicity

holds.
Next, we show that for each ` ∈ [λ∗∗], θ` is the correct threshold for the `-th unit of player i∗∗.

We distinguish whether ` ≤ k or not.
If ` ≤ k, then by bidding c′i∗∗ > θ` =

B
k , we have B

c′
i∗∗

< k, and thus b B
c′
i∗∗
c ≤ k− 1. Accordingly,

V (min{ni∗∗ , b
B

c′i∗∗
c} · ei) ≤ V (min{ni∗∗ , k − 1} · ei) = V (min{ni∗∗ , b

B

B/(k − 1)
c} · ei).

By the definition of k, player i∗∗ is not the first in the list by bidding B
k−1 . Thus by bidding c′i∗∗ he

is not the first either, and does not sell his `-th unit.
By bidding c′i∗∗ < θ`, we have B

c′
i∗∗
≥ k, and thus

V (min{ni∗∗ , b
B

c′i∗∗
c} · ei) ≥ V (min{ni∗∗ , b

B

B/k
c} · ei).

Since player i∗∗ is the first by bidding B
k , he is still the first by bidding c′i∗∗ , and the number

of units he sells is min{ni∗∗ , b B
c′
i∗∗
c} ≥ min{ni∗∗ , b B

B/kc} = k ≥ `, where the equality is because
k ≤ λ∗∗ ≤ ni∗∗ . That is, by bidding c′i∗∗ he still sells his `-th unit. Therefore θ` is the correct
threshold.

If k + 1 ≤ ` ≤ λ∗∗, then by bidding c′i∗∗ > θ` = B
` player i∗∗ will not sell his `-th unit even

if he remains to be the first in the list, since b B
c′
i∗∗
c ≤ ` − 1. By bidding c′i∗∗ < θ`, we have

V (min{ni∗∗ , b B
c′
i∗∗
c} · ei) ≥ V (min{ni∗∗ , b B

B/`c} · ei). Again by the definition of k, by bidding B
`

21

player i is the first in the list, and thus by bidding c′i∗∗ he is still the first. The number of units he
sells is min{ni∗∗ , b B

c′
i∗∗
c} ≥ min{ni∗∗ , b B

B/`c} = `. That is, by bidding c′i∗∗ he still sells his `-th unit.
In sum, the θ`’s are the correct thresholds, the mechanism in Steps 1-4 is DST, and mechanism

MOne is universally truthful.
Individual rationality of MOne follows from the fact that the mechanism in Steps 1-4 is individ-

ually rational. Indeed, for each ` ≤ λ∗∗ we have

θ` = min{B
k
,
B

`
} ≥ B

λ∗∗
≥ B

b B
ci∗∗
c
≥ ci∗∗ .

Thus
∑

`≤λ∗∗ θ` ≥ λ∗∗ci∗∗ , player i∗∗ has non-negative utility, and MOne is individually rational.
Furthermore, because for each ` ≤ λ∗∗ we have θ` ≤ B

` , the total payment made in Step 4 is∑
`≤λ∗∗

θ` ≤
∑
`≤λ∗∗

B

`
≤
∑
`≤n

B

`
≤ (1 + lnn)B.

Since this payment is made with probability 1
1+lnn , mechanism MOne is budget-feasible in expecta-

tion.
Finally, under the true cost profile, mechanism MOne outputs λ∗∗ei∗∗ with probability 1

1+lnn ,
and thus is a (1 + lnn)-approximation for V (λ∗∗ei∗∗). In sum, Theorem 4 holds.

Theorem 5 (restated) . Mechanism MSub runs in polynomial time, is universally truthful and
individually rational, and is an O((logn)

2

log logn)-approximation for procurement games with sub-additive
valuations.

In order to prove Theorem 5, first notice that the mechanism MSub clearly runs in polynomial
time. The proof that mechanism MRand is universally truthful, individually rational, and budget-
feasible is almost the same as in [10], and thus we omit it here. By Theorem 4, mechanismMOne also
satisfies all of those properties. Thus mechanism MSub is universally truthful, individually rational,
and budget-feasible. It remains to analyze the approximation ratio ofMSub, and we proceed by first
proving the following three lemmas. The framework of the analysis follows from [10], but many new
ideas are needed. In particular the proof of Lemma 7 requires novel ways of dealing with multi-unit
allocations.

Lemma 5. For any input to AMax, letting Â be the optimal allocation under the same input, we
have V (SMax) ≥ V (Â)

8 .

Proof. Denoting Â by (â1, . . . , âm), we have Â =
∨
i∈[m] âiei, and sub-additivity implies

V (Â) ≤
∑
i∈[m]

V (âiei).

Since
∑

i âici ≤ B, for each player i we have âici ≤ B, implying

âi ≤ min{ni, b
B

ci
c} = n′i,

and further implying V (âiei) ≤ V (n′iei) ≤ V (n′i∗∗ei∗∗). Accordingly,

V (Â) ≤ mV (n′i∗∗ei∗∗) = mv∗.

22

Since on the other hand we have V (Â) ≥ V (n′i∗∗ei∗∗) = v∗, there exists v ∈ V such that V (Â)
2 ≤ v ≤

V (Â).
Fix such a v and let S = (s1, . . . , sm) be the allocation returned by the demand oracle for v.

We have
V (S)− v

2B
·
∑
i∈[m]

sici ≥ V (Â)− v

2B
·
∑
i∈[m]

âici ≥ v −
v

2B
·B =

v

2
,

thus V (S) ≥ v
2 and algorithm AMax will not output A⊥. If

∑
i sici ≤ B, then Sv = S and

V (SMax) ≥ V (Sv) ≥
v

2
≥ V (Â)

4
≥ V (Â)

8
,

as desired.
Assume now

∑
i sici > B. By the construction of Sv we have

∑
`≤k si`ci` > B

2 . Letting
S′v =

∨
k+1≤`≤m si`ei` , we have S = Sv ∨ S′v, and thus V (S) ≤ V (Sv) + V (S′v), which implies

V (S)− v

2B
·
∑
i∈[m]

sici ≤ V (Sv)−
v

2B
·
∑
`≤k

si`ci` + V (S′v)−
v

2B
·

∑
k+1≤`≤m

si`ci` . (8)

If V (Sv) <
v
4 , then

V (S)− v

2B
·
∑
i∈[m]

sici <
v

4
− v

2B
· B
2
+ V (S′v)−

v

2B
·

∑
k+1≤`≤m

si`ci`

= V (S′v)−
v

2B
·

∑
k+1≤`≤m

si`ci` ,

contradicting the fact that S is the optimal solution returned by the demand oracle. Thus

V (Sv) ≥
v

4
≥ V (Â)

8
,

implying V (SMax) ≥ V (Â)
8 .

Thus Lemma 5 holds.

Next, consider the two sets of players T and T ′ in Step 1 ofMRand. Let ÂT and ÂT ′ respectively
be the optimal allocation among the budget-feasible ones that only take units from players in T
and T ′, and let A∗ be the optimal allocation whose social welfare MSub aims to approximate. We
have the following.

Lemma 6. With probability at least 1/4,

V (ÂT ′) ≥ V (ÂT) ≥
V (A∗)

8
. (9)

Proof. For any subset of players C, let A∗C be A∗ projected to C: letting A∗ = (a∗1, . . . , a
∗
n), A∗C =∨

i∈C a
∗
i ei. If C = {i}, we write A∗i instead of A∗{i}. We show that there exists two disjoint player

sets C1, C2 such that C1 ∪ C2 = [m],

V (A∗C1
) ≥ V (A∗)

4
, and V (A∗C2

) ≥ V (A∗)

4
.

23

We start with C1 = ∅ and C2 = [m], and move players to C1 one by one in an arbitrary order,
until V (A∗C1

) ≥ V (A∗)
4 . Letting i be the last player moved, we have V (A∗C1\{i}) <

V (A∗)
4 . Since

C1 \ {i} and C2 ∪ {i} are two disjoint sets whose union is [m], we have

A∗ = A∗C1\{i} ∨A
∗
C2∪{i},

and sub-additivity implies V (A∗) ≤ V (A∗C1\{i}) + V (A∗C2∪{i}).
8 Accordingly V (A∗C2∪{i}) >

3V (A∗)
4 .

Since A∗ is budget-feasible, the number of units i sells in A∗ is at most min{ni, bBci c}, and we have

V (A∗i) ≤ V (min{ni, b
B

ci
c} · ei) ≤ V (λ∗∗ei∗∗) <

V (A∗)

2
,

where the first inequality is because V is monotone and the second is by the definition of i∗∗. Since i /∈
C2, we have A∗C2∪{i} = A∗C2

∨A∗i , and again sub-additivity implies V (A∗C2∪{i}) ≤ V (A∗C2
) + V (A∗i).

Thus
V (A∗C2

) ≥ V (A∗C2∪{i})− V (A∗i) >
3V (A∗)

4
− V (A∗)

2
=
V (A∗)

4
.

Since T ∩ T ′ = ∅ and T ∪ T ′ = [m], for each Ci we have A∗Ci = A∗Ci∩T ∨ A
∗
Ci∩T ′ , and thus

V (A∗Ci) ≤ V (A∗Ci∩T)+V (A∗Ci∩T ′). Accordingly, either V (A∗Ci∩T) or V (A∗Ci∩T ′) is greater than
V (A∗)

8 .
Since the players in C1 and C2 are partitioned to T and T ′ uniformly and independently, with
probability at least 1/2 there exists i such that

V (A∗Ci∩T) ≥
V (A∗)

8
and V (A∗C3−i∩T ′) ≥

V (A∗)

8
, (10)

namely, the more valuable parts of C1 and C2 end up at different sides.
Since both allocations A∗Ci∩T and A∗C3−i∩T ′ in Equation 10 are budget-feasible, we have V (ÂT) ≥

V (A∗Ci∩T) and V (ÂT ′) ≥ V (A∗C3−i∩T ′). Thus with probability at least 1/2, V (ÂT) ≥ V (A∗)
8 and

V (ÂT ′) ≥ V (A∗)
8 . Because the role of T and T ′ can be switched, with probability 1/2 we have

V (ÂT ′) ≥ V (ÂT). Thus with probability at least 1/4 we have V (ÂT ′) ≥ V (ÂT) ≥ V (A∗)
8 , and

Lemma 6 holds.

Furthermore, recall that v is the value computed in Step 2 of Mechanism MRand and (i∗∗, λ∗∗)
is the optimal single-item allocation. Letting A be the outcome of MRand, we have the following.

Lemma 7. When Inequality 9 holds, V (A) + V (λ∗∗ei∗∗) ≥ log logn
64 logn · v.

Proof. We shall partition ÂT ′ into disjoint sets. But instead of partitioning according to the players
as we have done in Lemma 6, this time we shall partition according to the units. Let t = |T ′|, âi be
the number of units each player i ∈ T ′ sells in ÂT ′ , and n′ =

∑
i∈T ′ âi. Without loss of generality,

assume T ′ = {1, 2, . . . , t} and c1 ≥ c2 ≥ · · · ≥ ct.
Let L be the ordered list of player-unit pairs

(1, 1), . . . , (1, â1), (2, 1), . . . , (2, â2), . . . , (t, 1), . . . , (t, ât),

and denote by (i`, j`) the `-th pair in L, with ` ∈ [n′]. We recursively partition the pairs in L into
different groups as follows:

8Notice that in single-unit settings partitioning the players is the same as partitioning the units, and given the
optimal allocation S∗ which is a subset of players, for any set S ⊆ S∗ we have V (S∗) ≤ V (S) + V (S∗ \ S). But in
our setting the partition has to be done in terms of players rather than units. Indeed, partitioning A∗ = (a∗1, . . . , a

∗
m)

into two arbitrary allocations A = (a1, . . . , am) and A′ = (a′1, . . . , a
′
m) with ai + a′i = a∗i for each i will not give us

A∗ = A ∨A′, since there may exist i such that both ai and a′i are strictly less than a∗i . Only when A and A′ are A∗

projected to two disjoint player sets will one have A∗ = A ∨A′ and V (A∗) ≤ V (A) + V (A′).

24

• Let α1 be the largest integer such that ci1 ≤ B
α1
. Put the first α′1 = min{α1, n

′} pairs into
group Z1.

• Let βr = α′1+ · · ·+α′r. If βr < n′, then let αr+1 be the largest integer such that ciβr+1
≤ B

αr+1
.

Put the next α′r+1 = min{αr+1, n
′ − βr} pairs in group Zr+1.

Let x+ 1 be the number of groups. For each r ∈ [x+ 1], notice that Zr naturally correspond to an
allocation where each player i’s number of units is the number of pairs of his in Zr. Slightly abusing
notation, we refer to this allocation as Zr as well, and use V (Zr) to denote its value.

If x = 0, then there is only one group Z1 = L. Thus Z1 = ÂT ′ and V (Z1) = V (ÂT ′). In round
k = α1 of mechanism MRand, we have Tk = T ′ since ci ≤ c1 ≤ B

α1
for each i ∈ T ′. The optimal

budget-feasible allocation for Tk with unit-cost B
α1

has value at least V (Z1), because |Z1| ≤ α1,
which makes Z1 a budget-feasible allocation under unit-cost B

α1
. By Lemma 5, in this round we

have

V (X) ≥ V (Z1)

8
=
V (ÂT ′)

8
≥ log logn

8 log n
· v,

where the last inequality is because v is the value of a budget-feasible allocation for players in T ,
which implies V (ÂT) ≥ v, and thus

V (ÂT ′) ≥ v

by Inequality 9. Thus the mechanism, which may terminate before or at round α1, will output an
allocation A such that V (A) ≥ log logn

64 logn · v, and Lemma 7 holds.
If x > 1, notice that for any 1 ≤ r < x there is at most one player whose pairs appear in both

Zr and Zr+1: he is the last one picked up by Zr and the first by Zr+1. Denote this player by jr.9

We have
ÂT ′ = Z1 ∨ âj1ej1 ∨ Z2 ∨ âj2ej2 ∨ · · · ∨ âjxejx ∨ Zx+1,

where âjrejr is defined to be A⊥ if there is no such a player jr between some Zr and Zr+1. This is
because, for any player in T ′, either all his units taken by ÂT ′ appear in some Zr, or he is player jr
for some r and all his units appear in âjrejr . By sub-additivity,

V (ÂT ′) ≤
∑

r∈[x+1]

V (Zr) +
∑
r∈[x]

V (âjrejr) ≤
∑

r∈[x+1]

V (Zr) + xV (λ∗∗ei∗∗), (11)

where the second inequality is because ÂT ′ is budget-feasible, and thus for each i ∈ T ′ we have
âici ≤ B, implying âi ≤ min{ni, bBci c}.

Letting r∗ ∈ argmaxr∈[x+1] V (Zr), by Inequality 11 we have

V (ÂT ′) ≤ xV (λ∗∗ei∗∗) + (x+ 1)V (Zr∗).

By a similar argument as in [10], we have n′ ≥
(
x
2

)x, which implies n ≥
(
x
2

)x, and thus x ≤ 2 logn
log logn .

Accordingly,

V (λ∗∗ei∗∗) + V (Zr∗) ≥
V (ÂT ′)

x+ 1
≥ V (ÂT ′)

2x
≥ log log n

4 log n
· V (ÂT ′).

If V (λ∗∗ei∗∗) ≥ log logn
8 logn · V (ÂT ′), then Lemma 7 holds immediately, again because V (ÂT ′) ≥ v.

Otherwise, we have V (Zr∗) ≥ log logn
8 logn · V (ÂT ′). In round k = αr∗ of mechanism MRand, Tk includes

9In principle it is possible that a player’s units spread among several consecutive groups Zr, Zr+1, Zr+2, In
this case any group in the middle contains only pairs of this player, and jr = jr+1 = This will not affect our
analysis.

25

all players whose pairs appear in Zr∗ , and thus the optimal budget-feasible allocation for Tk with
unit-cost B

αr∗
is at least V (Zr∗), because |Zr∗ | ≤ αr∗ , which makes Zr∗ a budget-feasible allocation

for Tk with unit-cost B
αr∗

. By Lemma 5, the allocation X in this round satisfies

V (X) ≥ V (Zr∗)

8
≥ log log n

64 log n
· V (ÂT ′) ≥

log logn

64 log n
· v.

Thus the mechanism, which may terminate before or at round αr∗ , will output an allocation A such
that V (A) ≥ log logn

64 logn · v, and Lemma 7 holds.

At this point, we are ready to prove Theorem 5.

of Theorem 5. By Lemma 5, the value v satisfies v ≥ V (ÂT)
8 . When Inequality 9 holds, we have

V (ÂT) ≥ V (A∗)
8 , and thus

v ≥ V (A∗)

64
. (12)

By Lemma 6, Inequality 9 holds with probability at least 1/4. Thus by Theorem 4, Lemma 7
and Inequality 12, the expected value generated by MSub under the true cost profile is at least

1

4
·
(
V (A)

2
+
V (λ∗∗ei∗∗)

2(1 + lnn)

)
≥ V (A) + V (λ∗∗ei∗∗)

8(1 + lnn)
≥ 1

8(1 + lnn)
· log logn
64 log n

· v

≥ 1

8(1 + lnn)
· log log n
64 log n

· V (A∗)

64
=

V (A∗)

O((logn)
2

log logn)
.

Thus mechanism MSub is an O((logn)
2

log logn)-approximation and Theorem 5 holds.

26

