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Abstract

Press and Dyson (2012) discovered a special set of strategies in two-player Iterated Pris-
oner’s Dilemma games, the zero-determinant (ZD) strategies. Surprisingly, a player using such
strategies can unilaterally enforce a linear relation between the payoffs of the two players. In par-
ticular, with a subclass of such strategies, the extortionate strategies, the former player obtains
an advantageous share of the total payoff of the players, and the other player’s best response is
to always cooperate, by doing which he maximizes the payoff of the extortioner as well. When
an extortionate player faces a player who is not aware of the theory of ZD strategies and im-
proves his own payoff by adaptively changing his strategy following some unknown dynamics,
Press and Dyson conjecture that there always exist adapting paths for the latter leading to the
maximum possible scores for both players.

In this work we confirm their conjecture in a very strong sense, not just for extortionate
strategies, but for all ZD strategies that impose positive correlations between the players’ payoffs.
We show that not only the conjectured adapting paths always exist, but that actually every
adapting path leads to the maximum possible scores, although some paths may not lead to the
unconditional cooperation by the adapting player. This is true even in the rare cases where the
setup of Press and Dyson is not directly applicable. Our result shows that ZD strategies are
even more powerful than as pointed out by their discoverers. Given our result, the player using
ZD strategies is assured that she will receive the maximum payoff attainable under the desired
payoff relation she imposes, without knowing how the other player will evolve. This makes the
use of ZD strategies even more desirable for sentient players.

Keywords: Iterated Prisoner’s Dilemma, Zero-Determinant strategy, adapting player, adapting
path, cooperative behavior.

1 Introduction

The two-player Iterated Prisoner’s Dilemma (IPD) game is one of the standard models for studying
the emergence of cooperative behavior among competitive players. It has long been investigated
in economics, political science, evolutionary biology, and computer science (see [8], [5], [3], [18],
[4], [19], [16], [14], [15], [7], [9], [13], [12] and [6], as just a few examples). As IPD has been so
widely studied, it was surprising when Press and Dyson [17] discovered a completely new property
of this game, namely, the existence of Zero-Determinant (ZD) strategies. Roughly speaking, such
strategies allow one player to unilaterally set the payoff score of the other or to enforce a linear
relation between the two players’ scores, as opposite to the previous general belief that no ultimatum
strategy can enforce any specific kind of outcome. Among such strategies, of particular interest
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Figure 1: Scores for the players X and Y in each of the four outcomes in a single play of Prisoner’s
Dilemma.

are the so-called extortionate strategies [17], in which the sentient player takes a larger share of the
total benefit, and generous strategies [2, 20, 21], in which the sentient player takes a larger share of
the total loss from the full-cooperation rewards. The results of [17] have led to completely new
viewpoints on IPD. Since then, the properties of ZD strategies, including extortionate strategies
in arbitrary IPD games and generous strategies in donation games, have been actively studied;
see [20], [10], [21], [1], [2], [22], and [11].

The game under consideration here is of discrete time and with infinitely many rounds. In each
round, the same two players, X and Y , play the one-shot Prisoner’s Dilemma (PD). As illustrated
in Figure 1, each player can choose to cooperate (C) or to defect (D), without knowing the other’s
choice. If both cooperate, then each receives score R. If both defect, then each receives a smaller
score P . If one cooperates and the other defects, then the defector rips off a score T larger than R,
and the cooperator gets ripped off with a score of S smaller than P . The literature typically
assumes 2R>T+S>2P , so that the total score of the players is maximized when both cooperate.
For example, (T,R, P, S)=(5, 3, 1, 0) is a conventional realization of the parameters.

Press and Dyson [17] assume that both players have memory of length 1, i.e. what a player does
in the current round only depends on the outcome of the previous round, rather than the whole
history of the play or the number of rounds played. Accordingly, a (mixed) strategy of a player
consists of a mapping from the four possible outcomes of PD to the probabilities of cooperating.
The strategies of the two players together with a starting outcome determine a Markov chain. The
players’ payoff scores, sX and sY , are defined to be the expected scores they would receive under
the stationary distribution of the Markov chain.

A ZD strategy of player X guarantees

sX −K = χ(sY −K)

for specified values of χ and K satisfying certain conditions, no matter what strategy Y uses. For
sX and sY to be positively correlated, one needs χ ≥ 1 (the cases χ ∈ (0, 1) do not correspond
to ZD strategies). Facing such ZD strategies, when Y adjusts his own strategy to increase his
score, he increases X’s score even more, and when he achieves his own maximum score, X’s score
is also maximized. Both extortionate and generous strategies are positively correlated ZD (pcZD)
strategies, with the former satisfying K = P and the latter K = R.

As pointed out by [17], for extortionate strategies, the scores of both players are maximized
when Y cooperates unconditionally, namely, uses the strategy (1, 1, 1, 1).

An extortionate player facing an adapting player. One question which is not completely
answered by [17] and not considered by previous followups is the following. What should a player
X witting of extortionate strategies do if she believes that her opponent Y is an adapting player?
An adapting player is one who tries to improve his own score following some optimization scheme
(perhaps known only to him), but without explicitly considering or trying to alter the strategy
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of X. Such a player is called an evolutionary player in [17], but “evolutionary” already has a
specific (and different) meaning in the context of game theory, and thus we use “adapting” instead,
to avoid confusion. The answer to the question above depends on how Y adapts. Although it is
of Y ’s best interest to unconditionally cooperate, he may not realize this fact and may only make
local movement to gradually improve his score. Since the direction of improvement is not unique, in
principle Y might end up at a local optimum and leave X with a score much smaller than what she
expects when Y unconditionally cooperates. If this can happen, then X would use an extortionate
strategy only if she believes that Y will take a desirable adapting path (roughly speaking, an
adapting path is a smooth map from time to Y ’s strategies such that Y ’s utility increases along
time —formally defined in Section 3), and would otherwise continue monitoring the behavior of Y
and change her strategy when necessary.

Press and Dyson conjecture that in all cases, that is, with different parameters (R, T, S, P ),
different starting points of IPD, and different original strategies of Y , there exist adapting paths of
Y that lead to the globally maximum scores when X applies an extortionate strategy. However, the
existence of desirable adapting paths is not sufficient for one to conclude that X should extort Y . If
there are other adapting paths where Y ends up at a local optimum, it is unclear what X should do,
as discussed above. In the numerical experiment of [17] for the conventional parameters mentioned
before, the adapting paths examined do not end up at a local optimum, but formal analysis of the
general case is missing.

The same question can be asked for all pcZD strategies, not only the extortionate ones.

Our contribution. We prove the conjecture of [17] in a very strong and general form, and
analytically justify the use of extortionate as well as other pcZD strategies against adapting players.
We show that in all cases, all adapting paths of Y lead to the maximum scores, although the strategy
of Y may not end up at the unconditional cooperation. This holds even in some degenerate cases
where the analysis of [17] does not apply. Accordingly, as long as Y does not stop at a locally
sub-optimal strategy and does not evolve at a speed that goes to 0 as time goes to infinity, the
dynamics will always end up at the maximum scores attainable under the linear relation imposed
by X. Therefore, it is always “safe” for X to use pcZD strategies, and she will receive her desired
score in a very robust way, without knowing which adapting path Y will follow.

As an easy consequence of our main result, if X does not want to take any advantage over Y ,
but instead is benevolent and wishes to promote mutual cooperation, she is able to do so in all
cases, via a “fair” extortionate strategy, where χ= 1, or via a generous strategy. In this way, X
enforces the maximum total score of the two players, (R,R), which de facto is equivalent to the
unconditional cooperation by both players. This is true even when Y only evolves selfishly and
does not care about the total score at all.

Related work. The original setup of Press and Dyson [17] is very different from that of all other
studies of ZD strategies so far [1,2,10,11,21,22]. In particular, in [17] there are only two players, one
of them uses a fixed ZD strategy and the other changes his strategy over time. While in all other
studies, which focus on evolutionary aspects of ZD strategies, there are one or two populations of
players and all players can change their strategies over time (the study in [2] has two parts, where
the first part considers two players but none changes his strategy, and the second part considers a
population of players). Moreover, in [17] only the performances of the ZD strategy and the adaptive
player’s (non-ZD) strategy against each other matter, while in all other studies the performances
of ZD strategies against ZD strategies and the performances of non-ZD strategies against non-ZD
strategies are also important.

We follow the original model of [17]. Thus, it is not surprising that our conclusions are consistent
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with those of [17] and yet seem different from or even opposite to some of the other studies. Indeed,
[1] has argued that extortionate strategies are evolutionarily unstable, and [10] has shown via
numerical simulations that ZD strategies in general are disfavored by selection when the population
is sufficiently large. Generous ZD strategies are first considered by [20] and then studied by [2,21],
which have shown that such strategies are in general evolutionarily stable and disproportionately
favored by selection. Thus, among ZD strategies that have been studied, it seems that only generous
strategies can be successful from evolutionary aspects, at least when the population is sufficiently
large. In contrast, we show that all pcZD strategies, including both extortionate ones and generous
ones, are very successful facing an adaptive player in two-player IPD games.

In terms of methodology, most existing studies of ZD strategies either rely on numerical simula-
tions or focus on a finite set of representative strategies; see [1,10,17,21,22]. A recent work by [11]
uses both an analytical framework and numerical simulations to study the evolutionary dynamics
of all ZD strategies, when all players apply strategies that may not be ZD but still enforce a linear
relation between payoffs of the two players in the repeated game. Our results are derived purely
analytically and apply to all pcZD strategies and all adapting paths of the non-ZD player.

Outline of the paper. The results of [17] are recalled in Section 2. In Section 3, we state our
main theorem and outline its proof, which is carried out in Section 4. In Section 5, we discuss
implications of our results and other problems where our approach can be applied. Appendix A
provides some examples on the effect of Y ’s increased cooperation facing arbitrary strategies of X,
and Appendix B explains the key algebraic observations leading to our results.

2 Review of Zero-Determinant Strategies

For computational purposes, it is convenient to measure all scores from the base level P and relative
to R. Thus, we first shift down the values of R, T, S, P, sX , sY in [17] by P and then divide them by
R (which is the quantity R−P before shifting and is positive), so that the resulting IPD parameters
now satisfy

P = 0, R = 1, S < 0, T > 1, 0 < S + T < 2. (1)

Following [17], we denote an outcome of a one-shot PD game by xy ∈ {CC,CD,DC,DD}, with
the first letter being the choice of X. As shown in [17], for the study of ZD strategies it is sufficient
to consider strategies depending only on the outcome of the last round. Such a strategy for X is
described by a tuple p = (p1, p2, p3, p4), corresponding to the probabilities that X cooperates in the
current move when the previous outcome is CC, CD, DC, and DD, respectively. Symmetrically,
a strategy of Y is described by a tuple q = (q1, q2, q3, q4), corresponding to the probabilities that Y
cooperates when the previous outcome is CC, DC, CD, and DD, respectively. Notice that p2 and
q2 correspond to different outcomes, representing the different views of X and Y : if we switch the
letters of an outcome and let the first letter be the choice of Y , then q represents the probabilities
that Y cooperates when the previous outcome is CC, CD, DC, and DD, respectively.

Each pair of strategies (p,q) induces a Markov chain with the transition matrix

M(p,q) =


p1q1 p1(1−q1) (1−p1)q1 (1−p1)(1−q1)
p2q3 p2(1−q3) (1−p2)q3 (1−p2)(1−q3)
p3q2 p3(1−q2) (1−p3)q2 (1−p3)(1−q2)
p4q4 p4(1−q4) (1−p4)q4 (1−p4)(1−q4)

 , (2)

where rows and columns are indexed from the view of X (that is, by the vector (CC,CD,DC,DD))
and M(p,q)xy,x′y′ represents the probability of seeing outcome x′y′ when the previous outcome
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is xy. The players’ scores under (p,q), denoted by sX(p,q) and sY (p,q), are defined to be their
expected scores under the stationary distribution v(p,q), which is treated as a row vector and
is multiplied by M(p,q) on the right (in the degenerate cases, when M(p,q) has two or more
stationary distributions, the scores also depend on the starting outcome).

The fundamental observation of [17] is that the stabilized scores sX(p,q) and sY (p,q), in nearly
all cases, are given by

sX(p,q) =
D(p,q,SX)

D(p,q,14)
, sY (p,q) =

D(p,q,SY )

D(p,q,14)
, (3)

where SX=(1, T, S, 0), SY =(1, S, T, 0), 14=(1, 1, 1, 1), and

D(p,q, f) = det


−1 + p1q1 −1 + p1 −1 + q1 f1

p3q2 p3 −1 + q2 f2
p2q3 −1 + p2 q3 f3
p4q4 p4 q4 f4

 (4)

for any f = (f1, f2, f3, f4). We have switched the second and third entries of the payoff vectors
of [17], as well as the second and third rows of the matrix of [17]. We have also renamed the vector f
so that each fℓ still appears in the ℓ-th row. These changes are to simplify the discussion later on
(each qℓ now appears in the ℓ-th row of the matrix) and have no effect on the left-hand sides of the
equations in (3). These equations are valid as long as D(p,q,14) ̸=0. We call the strategy 14 the
unconditional cooperation strategy.

For many (α, β, γ)∈R3, equations in (3) allow player X to choose a strategy p so that

αsX + βsY + γ = 0 (5)

for any strategy q of Y . As shown in [17], a suitable strategy of X is given by

p = (1 + ϕ(α+β+γ), 1 + ϕ(αS+βT+γ), ϕ(αT+βS+γ), ϕγ
)

(6)

for some ϕ ̸=0 so that p∈ [0, 1]4 (if it exists). Thus, a ZD strategy, i.e. p as above for some α, β, γ
and ϕ, satisfies

p2 + p3 = 1 + 2p4 − (1−p1+p4)(T+S) . (7)

Whenever α ̸=0, the condition (5) is equivalent to the condition

sX −K = χ(sY −K), (8)

where χ = −β/α, K = −γ/(α+β) if α ̸= −β, and K does not matter otherwise (if α = −β and p
in (6) lies in [0, 1]4 for some ϕ ̸=0, then γ=0 in (5)). A suitable strategy of X is then given by

p = (1− ϕ(χ−1)(1−K), 1− ϕ(χT−S − (χ−1)K), ϕ(T−χS+(χ−1)K), ϕ(χ−1)K
)
, (9)

where ϕ has been scaled up by α from equation (6). The K=0 case of (9) is equation (12) of [17]
with typos corrected (ϕ in (12) of [17] should be replaced by (P−S)ϕ to be consistent with (11); this
typo carries over to (13)). The scores of X and Y are positively correlated if χ≥1 (the cases χ∈(0, 1)
do not correspond to any ZD strategy; see Section 4). An extortionate strategy in the terminology
of [17] is a strategy p of X enforcing equation (8) with K = 0 and some fixed χ ≥ 1; it ensures
that X gets a higher share of the total payoff (above the base level P =0). A generous strategy in
the terminology of [2] and [21] is a strategy p of X enforcing (8) with K=1 and some fixed χ≥1;
it ensures that X takes a higher share of the total loss below the total unconditional-cooperation
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reward 2R = 2. The value of χ is called the extortion factor in the first case and the generosity
factor in the second case. For χ=1 (in which case K is irrelevant), the strategy p is called fair.

By (3), the players’ payoffs when X plays a ZD strategy (9) and Y unconditionally cooperates
are given by

s∗X(χ,K) = 1 + (χ−1)
(1−K)(T−1)

T−1 + χ(1−S)
, s∗Y (χ,K) = 1− (χ−1)

(1−K)(1−S)

T−1 + χ(1−S)
(10)

and in particular are independent of the value ϕ in (9). Since s∗X(χ,K)+s∗Y (χ,K) cannot exceed
2R = 2, there are no values of ϕ so that p ∈ [0, 1]4 (i.e. the relation (8) cannot be enforced) if
(χ−1)(1−K) < 0. Since s∗X(χ,K)+s∗Y (χ,K)=2 if χ=1 or K=1, the maximal possible scores for
a fixed fair or generous ZD strategy of X are the unconditional cooperation scores (10). For K=0,
(10) provides the maximal possible scores for an extortionate ZD strategy, as stated in equation (14)
of [17]. As a corollary of our analysis of adapting paths, we show that sX and sY are maximized
for any fixed positively correlated ZD (pcZD) strategy p of X whenever Y is unconditionally
cooperative.

Even a priori knowledge that sY (q) is maximized at the unconditionally cooperative strategy
q=14 does not imply that there are adapting paths for Y that eventually lead to this score, as the
function sY (q) could have local peaks. For a fixed extortionate strategy, [17] conjectures that

(a) there exist in all cases adapting paths for Y along which the directional derivatives of sY with
respect to q1, q2, q3, q4 are always positive, and thus

(b) Y would evolve to a strategy that achieves the maximum possible scores.

Numerical evidence for these conjectures, with the conventional values of R, T, S, P and the uncon-
ditionally non-cooperative initial strategy (0, 0, 0, 0) of Y , is provided in [17]. We not only confirm
these conjectures, but extend them to the most general form for all pcZD strategies. We prove that

(a) for all pcZD strategies of X in all IPD games (with the standard restrictions on the parameters
given by (11)), the directional derivatives of sY with respect to q1, q2, q3, q4 are everywhere
positive (with rare exceptions when some, but not all of them, are zero), and

(b) for all pcZD strategies in all IPD games, all adapting paths of Y lead to the maximum possible
scores for both players given by (10), but not necessarily to the unconditionally cooperative
strategy of Y , in a finite time, even though some adapting paths may pass through degenerate
points where the score sY (q) is not continuous in q.

In particular, the fair (χ=1) and the generous (K =1) ZD strategies against an adapting player
always lead to the optimal outcome (the total score sX+sY at the unconditional cooperation level
of 2R=2).

3 Main Result

We first define adapting paths for Y .

Definition. An adapting path for Y is a smooth map λ : [0, τ ]−→ [0, 1]4, for some τ ∈R, such that

(A1) sY (λ(t1))<sY (λ(t2)) whenever 0≤ t1<t2≤τ ;

(A2) there is no smooth map λ̃ : [0, τ̃ ] −→ [0, 1]4 such that λ̃ satisfies the restriction (A1) and
λ([0, τ ]) = λ̃([0, τ̃ ′]) for some τ̃ ′<τ̃ .
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In this definition, the input of λ is time and the output is a mixed strategy of Y . The restric-
tion (A1) means that Y improves his own utility by changing his strategies; the restriction (A2)
means that Y does not stop at a locally sub-optimal strategy. The fact that τ is finite reflects the
requirement that Y does not adapt under a speed that goes to 0 as time goes to infinity. Below we
state our main theorem.

Theorem. Let p be a pcZD strategy of player X in an IPD game with the payoffs satisfying

S < P < R < T, 2P < S + T < 2R . (11)

Every adapting path for the strategy of player Y leads to a strategy q with (q1, q2)=(1, 1) if p1<1
and with q1=1 if p1=1. This strategy for Y is de facto equivalent to the unconditional cooperation
strategy and maximizes the stationary payoff scores sX and sY among all the possible strategies
of Y (for the given strategy p of X); these scores are given by equation (10). Furthermore, an
adapting path for Y always exists.

Outline of the proof. In order to understand the adapting paths of Y , we need to characterize
the partial derivatives of sY with respect to q. Given a ZD strategy p, sX and sY are linearly
correlated, either positively or negatively, where the latter corresponds to χ< 0 in the definition
of ZD strategies. Thus, equivalently we can characterize the partial derivatives of sX . The key to
our result is an observation that a positive multiple of the partial derivative of sX with respect to
each qi splits into factors that are independent of qi and are linear in each of the other qj ’s, no
matter what p is (the mathematical deduction of the factorization is provided in Appendix B and
the result is used in equation (14)). Given the factorization, the qi-th partial of sX on the entire
4-cube of the possible strategies q is nonnegative if the factors are all nonnegative at the 8 corners
of the 3-cube of the other three variables qj with j ̸= i. These partials are often positive (or at
least nonnegative), reflecting the fact that increased cooperation by Y generally helps X, but this
is not always the case for an arbitrary non-ZD strategy p of X; see Appendix A. For a typical ZD
strategy, depending on whether sX and sY are positively or negatively correlated, the qi-partials
of sX specify whether it is desirable for Y to increase his cooperation. For all pcZD strategies
in all IPD games (with standard restrictions on the parameters as specified by equation (11)), by
examining the factorization of the partials one can see that it is indeed desirable for Y to increase his
cooperation. In these cases, an adapting player Y moves toward the unconditionally cooperative
strategy or an effectively equivalent one. On the other hand, against negatively correlated ZD
strategies p of X, Y would generally reduce his cooperation, helping his score and hurting X’s.

4 Proof of the Main Theorem

We first note some necessary conditions on (χ,K) for a pcZD strategy (9) to exist and the resulting
properties of p. As ϕ=0 in (9) would correspond to taking α, β, γ=0 in (5), which is meaningless,
we have ϕ ̸=0 in (9). As noted after (10), (χ−1)(1−K)≥ 0; since p1≤ 1, this implies that either
ϕ> 0, or χ=1, or K =1. Since p3 ≥ 0 and (S, T ) satisfies (1), either of the last two assumptions
also implies that ϕ>0. So ϕ > 0 always. Since p4≥0, it follows that (χ−1)K≥0 and so χ≥1 and
K∈ [0, 1] if χ>1 (if χ=1, K does not matter). Combining these observations with the conditions
in (1), we conclude that

χ ≥ 1, 0 ≤ K ≤ 1, p1 > p2, p3 > p4 .

Thus,
p1, p̂2, p3, p̂4 > 0, (12)
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(q3, q4)
(0, 0) (0, 1) (1, 0) (1, 1)

(q
1
,q

2
)

(0, 0) p̂2+p4 p1p4+2p̂2+p3p̂4 p̂1p2+p̂2p̂3+2p4 2(1−(p1−p3)(p2−p4))
(0, 1) (p̂2+p4)p3 p1p3+p̂2(p̂4+2p3) p̂1p3+(p̂2+2p3)p4 p1p̂2+p̂1p̂4+2p3
(1, 0) p̂1(p̂2+p4) p̂1(2p̂2+p3)+p̂2p4 p̂1(p̂3+2p4)+p2p4 2p̂1+p2p3+p̂3p4
(1, 1) 0 (p̂1+p3)p̂2 (p̂1+p3)p4 p̂1+p3

Table 1: The values of the determinant D(p,q,14) at the corners of [0, 1]4; p̂i≡1−pi.

(q3, q4)
(0, 0) (0, 1) (1, 0) (1, 1)

(q
1
,q

2
)

(0, 0) none none p = (1, 0, 1, 0) none
(0, 1) none none (p1, p4)=(1, 0) none
(1, 0) p1=1 (p1, p4)=(1, 0) (p1, p4)=(1, 0) p = (1, 0, 1, 0)
(1, 1) all none p4=0 none

Table 2: The pcZD strategies p for which D(p,q,14)=0 for the specified values of q∈{0, 1}4.

where p̂i=1−pi.
We next derive some properties of the determinants in (3). An important feature of the function

D(p,q,14) defined by (4) is that it is linear in each variable q1, q2, q3, q4 separately. Thus, in order
to check whether D(p,q,14) = 0 for any of the possible values of q, it is sufficient to consider
the values of D(p,q,14) only for the extremal values of q, that is, for q1, q2, q3, q4 = 0, 1. This is
simple to do; the results are summarized in Table 1. We can see that for every strategy p of X,
D(p,q,14) ≥ 0 at the 16 corners of [0, 1]4, and thus D(p,q,1) ≥ 0 everywhere on [0, 1]4. For a
generic strategy p, D(p,q,14)=0 at only one of the 16 corners, q=(1, 1, 0, 0), which implies that
D(p,q,14)>0 everywhere else on [0, 1]4.

By Table 1, D(p,q,14)=0 at all 16 corners only for the strategy p=(1, 1, 0, 0). By (12), this
is not a pcZD strategy. Thus, for every pcZD strategy p, D(p,q,14) > 0 on (0, 1)4. Indeed, if
D(p,q,14) = 0 for any interior point q ∈ (0, 1)4, it must be 0 at all 16 corners, due to the linearity
of D(p,q,14) in each qi. Table 2 characterizes, at each of the 16 corners, the pcZD strategies for
which D(p,q,14) = 0. Thus, it completely determines the vanishing locus of D(p,q,14) = 0 for
every pcZD strategy p; the results are summarized in the following proposition.

Proposition 1. For every p∈ [0, 1]4, D(p,q,14) ≥ 0 for all q∈ [0, 1]4. For a pcZD strategy p and
a strategy q, D(p,q,14)=0 if and only if

(D1) q = (1, 1, 0, 0), or

(D2) p4=0 and (q1, q2, q4) = (1, 1, 0), or

(D3) p1=1 and (q1, q3, q4) = (1, 0, 0), or

(D4) (p1, p4)=(1, 0) and either (q1, q4)=(1, 0), or (q1, q2, q3)=(1, 0, 0), or (q2, q3, q4)=(1, 1, 0), or

(D5) p=(1, 0, 1, 0) and either (q1, q2)=(1, 0) or (q3, q4)=(1, 0).

We now derive some properties of the partial derivatives, which are well defined as long as

8



q−ℓ −⟨M1⟩ ⟨M2⟩ −⟨M3⟩ ⟨M4⟩
(0, 0, 0) 0 0 p4 p̂2
(0, 0, 1) p̂2p4 p̂2p̂4 p1p4+p3p̂4 p̂1p2+p̂2p̂3
(0, 1, 0) p2p4 p̂2p4 p3p4 p̂2p3
(0, 1, 1) p2p3+p̂3p4 p1p̂2+p̂1p̂4 p1p3 p̂1p3
(1, 0, 0) 0 0 p̂1p4 p̂1p̂2
(1, 0, 1) p̂2p3 p̂1p̂2 p̂1p3 p̂1p̂3
(1, 1, 0) p3p4 p̂1p4 0 0
(1, 1, 1) p3 p̂1 0 0

Table 3: The values of the determinants ⟨Mℓ⟩ at the corners of [0, 1]3 for q−ℓ; p̂i≡1−pi.

D(p,q,1) ̸= 0. By (3) and the Quotient Rule,

D(p,q,14)
2 · ∂sX

∂qℓ
= D(p,q,14) ·

∂D(p,q,SX)

∂qℓ
− ∂D(p,q,14)

∂qℓ
·D(p,q,SX). (13)

Since the functions q−→D(p,q,14) and q−→D(p,q, SX) are linear in each qℓ, the right-hand side
of (13) is independent of qℓ and is of degree at most 2 in each of the other three variables qj with
j ̸= ℓ. It turns out that the right-hand side of (13) splits into two factors, each of which is linear
in each qj with j ̸=ℓ; we give a conceptual reason for this and describe the two factors explicitly in
Appendix B. Thus, the sign of the right-hand side of (13) on [0, 1]4 is completely determined by
the signs of each of the two factors at the 8 corners of [0, 1]3 for the three variables qj with j ̸= ℓ,
provided these signs are the same for each of the two factors.

If p satisfies (7), in particular if p is a pcZD strategy, the second factor described in (22) of
Appendix B splits further and

D(p,q,14)
2 · ∂sX

∂qℓ
=
(
p̂2−p̂1S+p4(1−S)

)
⟨Mℓ⟩dℓ, (14)

where ⟨Mℓ⟩ is the determinant of the (ℓ, 4)-minor of the matrix in (4) and dℓ is linear in each qj
with j ̸= ℓ (as is ⟨Mℓ⟩); this statement can be verified directly (using Mathematica, for example).
By (12) and the fact that S < 0,

p̂2−p̂1S+p4(1−S) > 0

for every pcZD strategy p. Thus, the sign behavior of each qℓ-partial of sX is determined by the
signs of ⟨Mℓ⟩ and dℓ at the 8 corners of [0, 1]3 for the qj ’s with j ̸= ℓ.

The eight signs of the two factors are described by Tables 3 and 5. Since (−1)ℓ⟨Mℓ⟩, (−1)ℓdℓ≥0
at all 8 corners, ⟨Mℓ⟩dℓ ≥ 0 on [0, 1]3. Tables 4 and 6 characterize, at each of the 8 corners, the
pcZD strategies for which ⟨Mℓ⟩, dℓ=0, and thus completely determine the vanishing locus of (14).
Since sX and sY are positively correlated, the results apply equally well to the partials of sY and
are summarized in the following proposition (we started by describing the partials of sX as they
are more likely to be positive for general, not necessarily pcZD, strategies).

Proposition 2. For a pcZD strategy p,

∂sY
∂q1

,
∂sY
∂q2

,
∂sY
∂q3

,
∂sY
∂q4

≥ 0 (15)

for every q∈ [0, 1]4 such that D(p,q,14) ̸=0. Moreover,

9



q−ℓ −⟨M1⟩ ⟨M2⟩ −⟨M3⟩ ⟨M4⟩
(0, 0, 0) all all p4=0 none

(0, 0, 1) p4=0 none none
(p1, p3)=(1, 1) or
(p2, p3)=(0, 1)

(0, 1, 0) p2=0 or p4=0 p4=0 p4=0 none

(0, 1, 1)
(p2, p3)=(0, 1) or
(p2, p4)=(0, 0)

none none p1=1

(1, 0, 0) all all p1=1 or p4=0 p1=1
(1, 0, 1) none p1=1 p1=1 p1=1 or p3=1
(1, 1, 0) p4=0 p1=1 or p4=0 all all
(1, 1, 1) none p1=1 all all

Table 4: The pcZD strategies p for which ⟨Mℓ⟩=0 for the specified values of q−ℓ∈{0, 1}3.

q−ℓ −d1 d2 −d3 d4
(0, 0, 0) p1+θp̂1 p3+θp̂3 p2+θp̂2 p4+θp̂4
(0, 0, 1) (2−θ)p1+p̂3+(p1−p2) p3+θp̂3+(2−θ)(p3−p4) (2−θ)p2+p̂3+θ(p1−p2) p2+θp̂4
(0, 1, 0) θp̂1+p2 p2+θp̂3 θp̂2+p3 p3+θp̂4
(0, 1, 1) (2−θ)p1+p̂3 p2+θp̂3+(2−θ)(p3−p4) 1−(θ−1)p2+θ(p1−p2) p2+θp̂3+(1+θ)(p3−p4)

(1, 0, 0) p̂2+(2−θ)p4 θp̂1+p3 θp̂1+p2 θp̂1+p4
(1, 0, 1) (2−θ)p1+p̂2 p̂2+(2−θ)p3 (2−θ)p2+p̂3 θp̂1+p2
(1, 1, 0) p̂1+(2−θ)p4 p̂3+(2−θ)p4 p̂2+(2−θ)p4 p̂2+(2−θ)p4
(1, 1, 1) 1−(θ−1)p1 1−(θ−1)p3 1−(θ−1)p2 1−(θ−1)p4

Table 5: The values of the factors dℓ at the corners of [0, 1]3 for q−ℓ; p̂i≡1−pi, θ≡T+S.

• ∂sY
∂q1

=0 if and only if (q3, q4)=(0, 0), or (p4, q4)=(0, 0), or (p4, q2, q3)=(0, 0, 0), or
(p2, q2, q4)=(0, 0, 0), or (p2, p4, q2)=(0, 0, 0), or (p2, p3, q2, q3)=(0, 1, 0, 1);

• ∂sY
∂q2

=0 if and only if (q3, q4)=(0, 0), or (p4, q4)=(0, 0), or (p1, q1)=(1, 1), or
(p2, p3, q1, q3, q4)=(0, 1, 0, 1, 0);

• ∂sY
∂q3

=0 if and only if (q1, q2)=(1, 1), or (p4, q4)=(0, 0), or (p1, q1)=(1, 1), or
(p2, p3, q1, q2, q4)=(0, 1, 1, 0, 1);

• ∂sY
∂q4

=0 if and only if (q1, q2)=(1, 1), or (p1, q1)=(1, 1), or (p1, q2, q3)=(1, 1, 1), or
(p3, q1, q3)=(1, 1, 1), or (p1, p3, q3)=(1, 1, 1), or (p2, p3, q2, q3)=(0, 1, 0, 1).

Corollary 1. For any pcZD strategy p and any strategy q such that D(p,q,14) ̸= 0, ∂sY
∂qj

> 0 for
some j = 1, 2, 3, 4.

We can now derive some properties of Y ’s adapting paths. By equation (15) and Corollary 1,
the value of at least one qi increases at each point of an adapting path, at least outside of the
vanishing locus of the function q−→D(p,q,14) described by Proposition 1 (could be different qi
at different points of the same adapting path). A smooth map λ : [0, τ ]−→ [0, 1]4 satisfying (A1)
and λ(τ)=q′ can be extended further and thus cannot be an adapting path, unless

D(p,q′,14)=0 or
∂sY
∂qi

∣∣
q′ = 0 ∀ i s.t. q′i < 1, (16)
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q−ℓ −d1 d2 −d3 d4
(0, 0, 0) none none none none
(0, 0, 1) none none none none
(0, 1, 0) (p1, p2)=(1, 0) (p2, p3)=(0, 1) none none
(0, 1, 1) none none none none
(1, 0, 0) none none (p1, p2)=(1, 0) (p1, p4)=(1, 0)
(1, 0, 1) none none (p2, p3)=(0, 1) (p1, p2)=(1, 0)
(1, 1, 0) (p1, p4)=(1, 0) (p3, p4)=(1, 0) none none
(1, 1, 1) none none none none

Table 6: The pcZD strategies p for which dℓ=0 for the specified values of q−ℓ∈{0, 1}3.

and

∂sY
∂qi

∣∣
14

= 0 ∀ i s.t. q′i < 1. (17)

The conditions (16) describe the singular points and the points with all relevant partial derivatives
vanishing. Such points are still not local optima if (17) is not satisfied, because of the linearity of
the factors of these partial derivatives as we previously discussed. Only if q′ satisfies (16) and (17),
it may not be possible to extend λ further. If D(p,q′,14) ̸= 0 and q′ satisfies the second condition
in (16) and the condition in (17), then λ cannot be further extended. However, if D(p,q′,14) = 0
and q′ satisfies (17), λ may still be extendable.

We now describe when q′ satisfies (16) and (17). The set of q′ satisfying the first condition
in (16) is provided by Proposition 1. The second condition in (16) and the one in (17) can be
studied either from Proposition 2 or directly from Tables 4 and 6. For example, since ∂sY

∂q1
̸= 0

at q = 14, no q′ with q′1 < 1 satisfies both (16) and (17). Considering the 7 possibilities for the
nonempty set {j ̸=1: q′j<1} with q′1=1, we find that q′ satisfies (16) and (17) if and only if

(T1) (q′1, q
′
2)=(1, 1) or

(T2) p1=1 and q′1 = 1.

The situations corresponding to (T1) and (T2) are depicted respectively in the two diagrams
in Figure 2, which indicate the possible flows of the game: under each condition and at any one of
the four outcomes, the arrows indicates where the game can go. The solid arrows show the flows
that always exist with nonzero probability. At least one of the two dashed flows leaving from the
same vertex exists as well. However, the one that is more to the right can be reduced by increasing
the value of qi corresponding to the given vertex; doing so increases both sX and sY and thus will
eventually be carried out by player Y , if the stationary distribution passes through that vertex.
The dotted flows need not exist, depending on p.

For most values of the undetermined parameters qi (i=3, 4 in the first diagram and i=2, 3, 4
in the second), there is a unique stationary distribution (CC/DC combination in the first diagram
and CC in the second); since D(p,q′,14) ̸= 0 in these cases, λ cannot be extended. In these
situations, the terminal strategy of Y is equivalent to the unconditional cooperation strategy, since
the undetermined parameters qi have no effect on the outcome. For other values of the undetermined
parameters qi, D(p,q′,14) = 0 and there may be one or two (if p1=1) stationary distributions in
addition to the above one. If the game starts in the above stationary distribution, it will stay there
forever. If it starts in a different stationary distribution, increasing q4 from 0 in the first case and
q2 and/or q4 in the second case would move the game into the main stationary distribution. This
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Figure 2: Possible transitions of IPD for the final strategies for adapting player Y ; dashed arrows
from DD to CC are omitted.
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Figure 3: Possible transitions of IPD in the ϕ=0 case of (9).

would increase the score of X (as evident from the two diagrams) and thus the score of Y (as they
are positively correlated). With either starting situation, the terminal strategy of Y will again be
de facto equivalent to the unconditional cooperation strategy. Thus, equation (10) describes the
scores corresponding to these situations. Since all adapting paths lead to these scores, they are the
maximal possible. Therefore, our theorem holds.

Remark: a special non-ZD strategy. We showed at the beginning of Section 4 that ϕ ̸= 0
in (9). However, the case ϕ= 0, i.e. p= (1, 1, 0, 0), is formally allowed by [17]. For this strategy
of X and most strategies q of Y , there are two stationary distributions,

vC =
(q3, 1−q1, 0, 0)

1− q1 + q3
, vD =

(0, 0, q4, 1−q2)

1− q2 + q4
;

they are depicted in Figure 3. Under either distribution, Y benefits from evolving to the fully
non-cooperative strategy. The same holds for degenerate values of q as well. Thus, this strategy p
does not work out well for X. This is not too surprising, as p is not a ZD strategy. As noted at
the beginning of Section 4, when ϕ = 0, equation (11) in [17] imposes no condition on the scores,
and the analysis of [17], including equation (14) in [17], does not apply.

5 Discussion

We have formally shown that the extortionate, the generous, and other pcZD strategies are ex-
tremely robust at achieving high scores for a sentient player against an adapting opponent. In
particular, a sentient player X can force an adapting player Y into effectively unconditional coop-
eration in all cases: Y ’s strategy may not evolve to (1, 1, 1, 1), but in the long run Y will always
cooperate, because the outcomes at which Y may not cooperate (i.e. qi < 1) never occur when Y
stops evolving and the Markov stationary distribution is established. So, the score of X ends up
being the same as if Y were unconditionally cooperative and is the maximum possible score for a
given pcZD strategy p of X.

Furthermore, it is immediate from equation (10) that the score for the first player increases
with χ if K<1, while the total score sX+sY decreases with χ. The latter is maximized at χ=1 or
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K=1, with each player receiving the mutual cooperation reward R=1. In particular, the χ=1 and
K=1 outcomes are the most desirable from the point of view of social welfare or that of a generous
player, but least desirable from the point of view of an extortionate player: there is always some
social welfare “burnt” when one player tries to extort the other.

Finally, the approach of this paper can be used to analyze situations when player Y chooses to
maximize the relative payoff sY /sX , instead of sY . Since

sY
sX

=
D(p,q, SY )

D(p,q, SX)

according to (3), Appendix B shows that all the relevant derivatives are still products of factors
that are linear in each of the qj ’s. However, this is a question of a different flavor from those
considered in this paper (which focus on the effect of pcZD strategies against a payoff-maximizing
adapting player), and we do not pursue it here.
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A Some Examples on the Effect of Increased Cooperation

Although intuitively the more Y cooperates the better X’s payoff is, for arbitrary strategies of X
this may not be true. We now give examples of strategies p and q for X and Y , respectively,
so that increasing one of the cooperation variables qℓ of Y hurts the stabilized score sX , sX+sY ,
or even both sX and sY . The first example is fairly simple; it is intended to indicate why these
phenomena can happen. By Proposition 2, they cannot happen for pcZD strategies.

The basic reason why Y ’s increasing cooperation in response to some outcomes may hurt X’s
long-term score is that T > R = 1, i.e. the outcome DC is better for X than CC. In the first
diagram in Figure 4, if Y were to reduce q1 from 1, as shown by the dotted arrow in the second
diagram, the game would move to CD and then to DC, so X gets hurt in the first step, but gains
after that. This situation has two stationary distributions and so is degenerate. The degeneracy is
removed by making p3 a small positive number instead of 0, as shown by the dashed arrow in the
second diagram. With (T, S)=(2,−1/2), i.e. the conventional IPD values in our notation,

∂

∂q1
sX(q1, 1, 1, 1)

∣∣
q1=1

= −8.5 ;

in particular, the maximum of sX is not at q=(1, 1, 1, 1).
The players’ total utility may also be reduced if Y increases cooperation. The basic reason is

that T+S<2R=2, i.e. CC is better for X+Y than DC or CD. In the first diagram in Figure 5,
with the game flows shown by the solid arrows, if Y were to reduce q2 from 1 (the dotted arrow),
the game would move from DC to DD and then to CC (so X+Y get hurt in the first step, but gain
after that). This situation has two stationary distributions and so is degenerate. The degeneracy
is removed by making 1−p1 small (the dashed arrow). With (T, S)=(2,−1/2),

∂

∂q2
sX(1, q2, 1, 1)

∣∣
q2=1

+
∂

∂q2
sY (1, q2, 1, 1)

∣∣
q2=1

= −3.5;
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in particular, the maximum of sX+sY is not at q=(1, 1, 1, 1).
Furthermore, the utility of each player may be reduced if Y increases cooperation. The basic

reason is that R > (T+S)/2, i.e. CC is better for X and Y than DC and CD half time each. In
the second diagram above, given the solid arrows, if Y were to reduce q3 from 1 (dotted arrow),
the game would move from DC/CD cycle to DD and then to CC (so X and Y get hurt in the
first step, but gain after that). This situation is degenerate. To remove the degeneracy, make 1−p1
small (dashed arrow). With (R, T, S)=(2, 4,−1/2),

d

dq3
sX(1, 0, q3, 1)

∣∣
q3=1

=
d

dq3
sY (1, 0, q3, 1)

∣∣
q3=1

= −0.875.

B Some Algebraic Observations

We now give a conceptual reason behind our approach, i.e. that the partial derivatives of sX and sY
over q multiplied by D(p,q,14)

2 split into factors each of which is linear in each of the variables qi
(and each pi as well by symmetry).

For any n×n real matrix M , let ⟨M⟩ denote the determinant of M . If in addition k ∈ {1, . . . , n},
the k values i1, . . . , ik ∈ {1, . . . , n} are all distinct, and x1, . . . ,xk∈Rn, let

⟨M ;x1, . . . ,xk⟩i1,...,ik ∈ R

denote the determinant of the matrix obtained from M by replacing its columns numbered i1, . . . , ik
by the column vectors x1, . . . ,xk. We note that

det
((

⟨M ;xj⟩il
)
j,l=1,...,k

)
= ⟨M⟩k−1⟨M ;x1, . . . ,xk⟩i1,...,ik (18)

for the following reason. Since the subspace of nondegenerate (invertible) matrices is dense and
both sides of (18) are continuous in M , it is sufficient to verify (18) under the assumption that the
columns of M span Rn. Since both sides are linear and anti-symmetric in the inputs x1, . . . ,xk and
vanish if some xj equals to a column of M not numbered i1, . . . , ik, it is sufficient to verify (18)
only for the case with x1, . . . ,xk equal to the columns of M numbered i1, . . . , ik, respectively. The
identity (18) in this case is immediate (the left-hand side is a diagonal matrix). To derive our main
result, we only need the (n, k)=(3, 2) case of (18), which can also be verified directly.
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If M is an n×n matrix, x ∈ Rn, and z ∈ Rn+1, let ⟨z;M,x⟩ denote the determinant of the
(n+1)×(n+1)-matrix with the first row z and the remaining rows consisting of the matrix M
with x upended as the last column. We note that

det

(
⟨z;M,x⟩ ⟨z;M,x′⟩
⟨z′;M,x⟩ ⟨z′;M,x′⟩

)
= ⟨M⟩

( ∑
1≤i<j≤n

⟨M ;x,x′⟩i,j
(
ziz

′
j−zjz

′
i

)
−
∑

1≤i≤n

⟨M ;x−x′⟩i
(
ziz

′
n+1−zn+1z

′
i

)) (19)

for all x,x′ ∈Rn and z, z′ ∈Rn+1, for the following reason. Since the subspace of nondegenerate
(invertible) matrices is dense, it is sufficient to verify (19) under the assumption that the rows of M
span Rn. Since both sides are linear and anti-symmetric in the inputs z and z′, it is sufficient to
verify (19) only with z and z′ equal to different coordinate vectors ei in Rn+1. Since

⟨ei;M,x⟩ =

{
(−1)n−1⟨M ;x⟩i, if i≤n;

(−1)n⟨M⟩, if i=n+1;

the identity (19) with z or z′ equal to en+1 is immediate, and that with (z, z′) = (ei, ej), where
1≤ i<j≤n, follows from the k=2 case of (18). To derive our main result, we only need the n=3
case of (19), which can also be verified directly from the (n, k)=(3, 2) case of (18).

If z, z̃∈Rn+1 differ only by the last entry and the last entry of z′ is 0, (19) gives

det

(
⟨z;M,x⟩ ⟨z̃;M,x′⟩
⟨z′;M,x⟩ ⟨z′;M,x′⟩

)
=

z̃n+1

zn+1
det

(
⟨z;M,x⟩ ⟨z;M, zn+1

z̃n+1
x′⟩

⟨z′;M,x⟩ ⟨z′;M, zn+1

z̃n+1
x′⟩

)

=
z̃n+1

zn+1
⟨M⟩

( ∑
1≤i<j≤n

⟨M ;x,
zn+1

z̃n+1
x′⟩i,j

(
ziz

′
j−zjz

′
i

)
+
∑

1≤i≤n

⟨M ;x− zn+1

z̃n+1
x′⟩i zn+1z

′
i

)

= ⟨M⟩

( ∑
1≤i<j≤n

⟨M ;x,x′⟩i,j
(
ziz

′
j−zjz

′
i

)
+
∑

1≤i≤n

⟨M ; z̃n+1x−zn+1x
′⟩i z′i

)
.

(20)

The three equalities above are valid if zn+1, z̃n+1 ̸=0, but the first and the last expressions in (20)
are equal for all zn+1, z̃n+1 (again by continuity).

Going back to our setting, for each ℓ=1, . . . , 4, denote

• by Mℓ the matrix in (4) with the ℓ-th row and the fourth column removed,

• by zℓ and z′ℓ the ℓ-th row of the matrix in D(p,q,14) with qℓ=0 and the qℓ-partial of the ℓ-th
row of the same matrix, respectively (the latter is a constant function in q),

• by z̃ℓ and z̃′ℓ the analogues for the matrix in D(p,q,SX), and

• by x′
ℓ∈R3 the column vector SX with the ℓ-th entry removed.

By equation (13),

D(p,q,14)
2 · ∂sX

∂qℓ
= det

(
⟨zℓ;Mℓ,13⟩ ⟨z̃ℓ;Mℓ,x

′
ℓ⟩

⟨z′ℓ;Mℓ,13⟩ ⟨z̃′ℓ;Mℓ,x
′
ℓ⟩

)
, (21)
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where 13 = (1, 1, 1). The row vectors zℓ and z̃ℓ differ only by the last entry (except for ℓ=1 when
they are equal), while z′ℓ= z̃′ℓ with the last entry equal to 0. Thus, by (21) and (20),

D(p,q,14)
2 · ∂sX

∂qℓ
= ⟨Mℓ⟩

( ∑
1≤i<j≤3

⟨Mℓ;13,x
′
ℓ⟩i,j

(
zℓ;iz

′
ℓ;j−zℓ;jz

′
ℓ;i

)
+
∑

1≤i≤3

⟨Mℓ; z̃ℓ;413−x′
ℓ⟩i z′ℓ;i

)
,

(22)

since zℓ;4=1. Since each variable qi (and pi as well) appears in a single row of M , each of the two
factors on the right-hand side above is at most linear in each of these variables.
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