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S1 Proof of Theorem 1

We break our proof into simpler claims.

Claim 1. M is IIR.

Proof. Arbitrarily fix i ∈ [n] and a′−i ∈ A−i, and let ai = (i, 0, θi). We need to prove

ui(ai, a
′
−i) ≥ 0. (1)

In the outcome of (ai, a
′
−i), if w 6= i then Pi = −δi, and thus ui(ai, a

′
−i) = −Pi = δi > 0. If w = i,

then θi ≥ 2ndv and Pi = 2ndv − δi, thus

ui(ai, a
′
−i) = θi − Pi ≥ 2ndv − 2ndv + δi = δi > 0.

Therefore Equation 1 holds, and so does Claim 1. �

To prove our revenue lower-bound, we make use of the following relations. For any two pairs of
non-negative integers (`, v) and (`′, v′), we write

(`, v) � (`′, v′)

if v > v′ or (v = v′ and ` < `′). We write (`, v) � (`′, v′) if (`, v) � (`′, v′) or (`, v) = (`′, v′). Notice
that the relation defined by “�” is complete: for any two pairs (`, v) 6= (`′, v′), either (`, v) � (`′, v′)
or (`′, v′) � (`, v). Also notice that the order defined by “�” is consistent with how the mechanism
breaks ties.

Claim 2. Let δi and δ′i respectively be the rewards that player i gets in Step c according to the
action profiles (ai, a−i) and (a′i, a−i), where ai = (i, `i, vi) and a′i = (i, `′i, v

′
i). Then,
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(`i, vi) � (`′i, v
′
i) implies δi > δ′i.

Proof. By definition, (`i, vi) � (`′i, v
′
i) means that either vi > v′i, or vi = v′i and `i < `′i.

If vi > v′i, we have

δi − δ′i =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + vi)2

]
− ε

2n

[
1 +

v′i
1 + v′i

− `′i
(1 + `′i)(1 + v′i)

2

]
=

ε

2n

[
vi − v′i

(1 + vi)(1 + v′i)
+

`′i
(1 + `′i)(1 + v′i)

2
− `i

(1 + `i)(1 + vi)2

]
≥ ε

2n

[
vi − v′i

(1 + vi)(1 + v′i)
+

`′i
(1 + `′i)(1 + vi)2

− `i
(1 + `i)(1 + vi)2

]
=

ε

2n

[
vi − v′i

(1 + vi)(1 + v′i)
+

`′i − `i
(1 + `i)(1 + `′i)(1 + vi)2

]
>

ε

2n

[
1

(1 + vi)2
+

`′i − `i
(1 + `i)(1 + `′i)(1 + vi)2

]
>

ε

2n

[
1

(1 + vi)2
− 1

(1 + vi)2

]
= 0,

where the first inequality holds because 0 ≤ v′i < vi and `′i ≥ 0, the second because 0 ≤ v′i < vi

and both vi and v′i are integers, and the third because
`′i−`i

(1+`i)(1+`′i)
≥ −`i

(1+`i)(1+`′i)
≥ −`i

1+`i
> −1 and

1 + vi > 0. Thus δi > δ′i as desired.

If vi = v′i and `i < `′i, we have

δi − δ′i =
ε

2n
· `′i − `i

(1 + `i)(1 + `′i)(1 + vi)2
> 0,

thus again δi > δ′i.
Therefore Claim 2 holds. �

Let us now prove that a player i never “underbids his beliefs”.

Claim 3. ∀ k ∈ {1, . . . ,K + 1} we have that

∀ai = (i, `i, vi) ∈ RAT ki (τi), (`i, vi) � (min{` : g`i (τi) = gk−1i (τi)}, gk−1i (τi)). (2)

Proof. We prove Claim 3 by induction on k. Because the analysis for the Base Case (k = 1) and
the Inductive Step (k > 1) are almost the same, below we focus on the Inductive Step and point
out the differences with the Base Case when needed.

Assume Equation 2 holds for all k′ < k. To prove it for k we proceed by contradiction. Let
ˆ̀
i = min{` : g`i (τi) = gk−1i (τi)} and v̂i = gk−1i (τi), and assume (`i, vi) 6� (ˆ̀

i, v̂i). By the definition

of “�” we have (ˆ̀
i, v̂i) � (`i, vi).

Let âi , (i, ˆ̀
i, v̂i), and arbitrarily fix t−i ∈ Bi(τi) and a′−i ∈ RAT

k−1
−i (t−i). Below we show

ui((âi, a
′
−i), θi) > ui((ai, a

′
−i), θi), (3)

which contradicts the fact ai ∈ RAT ki (τi).
To prove Equation 3, let δ̂i and δi respectively be the rewards that player i gets in Step c of

the mechanism according to (âi, a
′
−i) and (ai, a

′
−i). Because (ˆ̀

i, v̂i) � (`i, vi), by Claim 2 we have

δ̂i > δi.

Let (ŵ, P̂ ) and (w,P ) respectively be the outcomes of the two action profiles, and denote a′j by
(j, `′j , v

′
j) for each j 6= i. We distinguish two cases.

2



Case 1. ˆ̀
i = 0.

This case applies to both the Base Case (k = 1) and the Induction Step (k > 1). In this case
we have v̂i = gk−1i (τi) = g0i (τi) = θi, and we further distinguish three subcases.

Subcase 1.1. w = i.
In this subcase, we have ŵ = i as well, since according to M the triple (i, ˆ̀

i, v̂i) is ordered
before (i, `i, vi). Therefore Pi = maxj 6=i v

′
j − δi and P̂i = maxj 6=i v

′
j − δ̂i. Accordingly,

ui((âi, a
′
−i), θi) = θi − P̂i = θi −max

j 6=i
v′j + δ̂i > θi −max

j 6=i
v′j + δi

= θi − Pi = ui((ai, a
′
−i), θi),

where the inequality holds because δ̂i > δi. Thus Equation 3 holds.

Subcase 1.2. w 6= i and ŵ = i.
In this subcase, v̂i ≥ maxj 6=i v

′
j , P̂i = maxj 6=i v

′
j − δ̂i, and Pi = −δi. Thus

ui((âi, a
′
−i), θi) = θi − P̂i = θi −max

j 6=i
v′j + δ̂i = v̂i −max

j 6=i
v′j + δ̂i ≥ δ̂i

> δi = −Pi = ui((ai, a
′
−i), θi),

and Equation 3 holds.

Subcase 1.3. w 6= i and ŵ 6= i.
In this subcase, Pi = −δi and P̂i = −δ̂i. Thus

ui((âi, a
′
−i), θi) = −P̂i = δ̂i > δi = −Pi = ui((ai, a

′
−i), θi),

and again Equation 3 holds.

Case 2. ˆ̀
i ≥ 1.

This case applies to the Induction Step only. (In the Base Case we have ˆ̀
i = 0.)

In this case, we shall prove that ŵ 6= i. To do so, first note that, by the definition of ˆ̀
i,

g
ˆ̀
i−1
i (τi) < g

ˆ̀
i
i (τi). (4)

Because t−i ∈ Bi(τi), we have

g
ˆ̀
i
i (τi) = min

t′−i∈Bi(τi)
max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t′−i)

)}
≤ max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t−i)

)}
. (5)

Combining Equations 4 and 5, we have

g
ˆ̀
i−1
i (τi) < max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t−i)

)}
.

Letting t = (τi, t−i) and j = argmaxr∈[n] g
ˆ̀
i−1
r (tr) with ties broken lexicographically, we have

g
ˆ̀
i−1
j (tj) = max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t−i)

)}
.

Accordingly,

j 6= i and g
ˆ̀
i−1
j (tj) ≥ g

ˆ̀
i
i (τi),

thus
(ˆ̀
i − 1, g

ˆ̀
i−1
j (tj)) � (ˆ̀

i, g
ˆ̀
i
i (τi)). (6)
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Because ˆ̀
i ≤ k − 1 and a′j ∈ RAT

k−1
j (tj), we have a′j ∈ RAT

ˆ̀
i
j (tj). Thus by the inductive

hypothesis1 we have

(`′j , v
′
j) � (min{` : g`j(tj) = g

ˆ̀
i−1
j (tj)}, g

ˆ̀
i−1
j (tj)) � (ˆ̀

i − 1, g
ˆ̀
i−1
j (tj)),

which together with Equation 6 implies

(`′j , v
′
j) � (ˆ̀

i, g
ˆ̀
i
i (τi)) = (ˆ̀

i, g
k−1
i (τi)) = (ˆ̀

i, v̂i). (7)

By Equation 7 we have that the triple (j, `′j , v
′
j) is ordered before (i, ˆ̀

i, v̂i) according to M , and

thus ŵ 6= i. Since (ˆ̀
i, v̂i) � (`i, vi), we have w 6= i as well. Therefore Pi = −δi and P̂i = −δ̂i,

which implies
ui((âi, a

′
−i), θi) = −P̂i = δ̂i > δi = −Pi = ui((ai, a

′
−i), θi).

Thus Equation 3 holds.

In sum, Equation 3 holds in all possible cases, contradicting the fact that ai ∈ RAT ki (τi).
Therefore Claim 3 holds. �

Following Claim 3, we have that for every action profile a ∈ RAT k+1(τ), 2ndv is at least the
second highest value in the set {gki (τi)}i∈[n], which is precisely Gk(C). Because for each player i

δi =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + vi)2

]
≤ ε

2n
· 2 =

ε

n
,

we have

rev(M(a)) = 2ndv −
∑
i

δi ≥ Gk(C)−
∑
i

δi ≥ Gk(C)−
∑
i

ε

n
= Gk(C)− ε.

This concludes the proof of Theorem 1.

S2 Proof of Theorem 2

We first prove the theorem for n = 2. Arbitrarily fix V, k ≥ 1 (the case where k = 0 is degenerated
and will be briefly discussed at the end) and c < V . Assuming there exists an IIR mechanism M̂
that level-k rationally implements Gk − c for Cn,V , we prove the following statement:

There exist C = (2, V, T , τ) ∈ Cn,V and a ∈ RAT k(τ) s.t. rev(M̂(a)) < Gk(C)− c, (8)

which leads to a contradiction. To prove Statement 8, we set T = (T,Θ, ν, B) as follows: for each
player i,

• Ti = {ti,` : ` ∈ {0, 1, . . . , k}};
• νi(ti,`) = 0 ∀` < k, and νi(ti,k) = V ; and

• Bi(ti,`) = {t−i,`+1} ∀` < k, and Bi(ti,k) = {t−i,k}.
The type structure T is illustrated in Figure 1, and we set τi = ti,0 for each i.

Below we show that there exists an action profile a ∈ RAT k(τ) such that rev(M̂(a)) < Gk(C)−c.
For doing so we use an auxiliary context C ′ = (2, V, T ′, τ ′), where T ′ = (T ′,Θ, ν ′, B′) is defined as
follows: for each player i,

1Claim 3 is stated with respect to context C and player i. But due to the arbitrary choice of C and i, the claim
applies also to context C′ = (n, V, T , (τ−j , tj)) and player j.
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Figure 1: Type structure T in context C

• T ′i = {t′i,` : ` ∈ {0, 1, . . . , k}};
• ν ′i(t′i,`) = 0 ∀`; and

• B′i(t′i,`) = {t′−i,`+1} ∀` < k, and B′i(t
′
i,k) = {t′−i,k}.

The type structure T ′ is illustrated in Figure 2, and we set τ ′i = t′i,0 for each i.
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Figure 2: Type structure T ′ in context C ′

We first prove the following claim.

Claim 4. In type structure T , for any player i and any `, k′ ∈ {0, 1, . . . , k}, gk′i (ti,`) = 0 if k′+` < k
and gk

′
i (ti,`) = V otherwise.

Proof. We proceed by an induction on k′. The case with k′ = 0 holds immediately, since g0i (ti,`) =
νi(ti,`), which is 0 when ` < k and V otherwise. For k′ ≥ 1, assuming the case is true for k′− 1, we
show that it is true for k′ as well. Indeed, for any player i,

gk
′
i (ti,k) = max{gk′−1i (ti,k), g

k′−1
−i (t−i,k)} = max{V, V } = V,

where the second equality is by the inductive hypothesis and the fact that k′ − 1 + k ≥ k. For any
` < k, we have gk

′
i (ti,`) = max{gk′−1i (ti,`), g

k′−1
−i (t−i,`+1)}. If k′ + ` < k, then (k′ − 1) + ` < k and

(k′ − 1) + (`+ 1) = k′ + ` < k, thus by the inductive hypothesis we have

gk
′
i (ti,`) = max{0, 0} = 0.

If k′ + ` ≥ k, then (k′ − 1) + (`+ 1) ≥ k, thus by the inductive hypothesis we have

gk
′
i (ti,`) = max{gk′−1i (ti,`), V } = V,

where the second equality is because gk
′−1
i (ti,`) ≤ V . Therefore Claim 4 holds. �

By Claim 4, gki (ti,0) = V for each i, thus

Gk(C) = V and Gk(C)− c = V − c > 0.
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Accordingly, to prove Statement 8 it suffices to prove the following two propositions:

RAT k(τ) = RAT k(τ ′); (9)

and
there exists a ∈ RAT k(τ ′) such that rev(M̂(a)) ≤ 0. (10)

To prove Equation 9, recall that by definition

RAT 0
i (ti,`) = RAT 0

i (t′i,`) = Ai for any player i and any ` ≤ k,

where Ai is the set of actions for player i in M̂ . Because νi(ti,`) = ν ′i(t
′
i,`) = 0 for each i and each

` < k, and because of the definitions of B and B′, by a similar induction as the one in the proof of
Claim 4 we have that, for any player i and any `, k′ ∈ {0, 1, . . . , k},

RAT k
′

i (ti,`) = RAT k
′

i (t′i,`) whenever k′ + ` ≤ k.

In particular, RAT ki (ti,0) = RAT ki (t′i,0) for each i, and Equation 9 holds.

To prove Statement 10, notice that ν ′i(τ
′
i) = 0 for each player i. Thus for each action profile a,

we have rev(M̂(a)) = −u1(a, 0)−u2(a, 0). Accordingly, it suffices to prove the following statement:

there exists a ∈ RAT k(τ ′) such that ui(a, 0) ≥ 0 for each i. (11)

Since M̂ is IIR, for each player i there exists an action ai such that

ui((ai, a
′
−i), 0) ≥ 0 ∀a′−i ∈ A−i.

This equation and the definition of RAT 1
i (τ ′i) together imply that for each i there exists an action

a1i ∈ RAT 1
i (τ ′i) such that

ui((a
1
i , a
′
−i), 0) ≥ 0 ∀a′−i ∈ A−i = RAT 0

−i(t
′
−i,1).

Indeed, if ai ∈ RAT 1
i (τ ′i) then a1i = ai, else a1i is the action in RAT 1

i (τ ′i) that dominates ai.

Because B′i(τ
′
i) = {t′−i,1}, by induction we conclude that for each i there exists an action

aki ∈ RAT ki (τ ′i) such that

ui((a
k
i , a
′
−i), 0) ≥ 0 ∀a′−i ∈ RAT k−1−i (t′−i,1).

Note that ak ∈ RAT k(τ ′). Accordingly, to prove Statement 11 it suffices to show that ak−i ∈
RAT k−1−i (t′−i,1) for each i, because then we have ui(a

k, 0) ≥ 0 for each i, as desired. Thus it is left
to show

aki ∈ RAT k−1i (t′i,1) ∀i. (12)

To prove Equation 12, notice that

RAT 0
i (t′i,`) = RAT 0

i (t′i,`+1) = Ai for each i and each ` < k.

Because the players’ valuations are always 0 in T ′, by another induction we have that for any i, k′, `,

RAT k
′

i (t′i,`) = RAT k
′

i (t′i,`+1) whenever k′ + ` < k.

Thus
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RAT k−1i (t′i,0) = RAT k−1i (t′i,1) for each i.

Accordingly, we have aki ∈ RAT ki (t′i,0) ⊆ RAT
k−1
i (t′i,0) = RAT k−1i (t′i,1) for each i, and Equation 12

holds. Therefore Statement 11 also holds, and so does Statement 10. Combining Equation 9 and
Statement 10, we have that Statement 8 holds, a contradiction. Thus Theorem 2 holds for n = 2
and k ≥ 1.

The analysis is very similar for the degenerated case where n = 2 and k = 0. Indeed, we
consider the context C = (2, V, T , τ) with T = (T,Θ, ν, B) defined as follows: for each player i,

Ti = {ti}, νi(ti) = V, and Bi(ti) = {t−i}.

Also we consider the auxiliary context C ′ = (2, V, T ′, τ ′) with T ′ = (T ′,Θ, ν ′, B′) defined as follows:
for each player i,

T ′i = {t′i}, ν ′i(t
′
i) = 0, and B′i(t

′
i) = {t′−i}.

Because M̂ is IIR, in auction (C ′, M̂) there exists an action profile a such that ui(a, 0) ≥ 0 for
each i. Thus rev(M̂(a)) ≤ 0 < V − c = G0(C) − c. Because a ∈ A = RAT 0(τ), M̂ cannot level-0
rationally2 implement G0 − c. In sum, Theorem 2 holds for n = 2.

Finally, for n > 2, we construct the desired type structures (and contexts) essentially by adding
dummy players to the type structures T and T ′. More precisely, the n-player type structure
T̂ = (T̂ ,Θ, ν̂, B̂) is defined as follows:

• ∀i ∈ {1, 2}, T̂i = Ti;

• ∀i 6∈ {1, 2}, T̂i = {t̂i};

• ∀i ∈ {1, 2}, ν̂i(ti) = νi(ti) for any ti ∈ T̂i;

• ∀i 6∈ {1, 2}, ν̂i(t̂i) = 0;

• ∀i ∈ {1, 2}, B̂i(ti) = Bi(ti)× {t̂−{1,2}} for all ti ∈ T̂i;

• ∀i 6∈ {1, 2}, B̂i(t̂i) = {(t1,0, t2,0, t̂−{1,2,i})}.

In the context Ĉ = (n, V, T̂ , τ̂), we let τ̂ = (τ, t̂−{1,2}). The auxiliary type structure T̂ ′ =

(T̂ ′,Θ, ν̂ ′, B̂′) is constructed from T ′ in the same way, and so is the auxiliary context Ĉ ′. The
analysis is essentially the same, and thus omitted.

In sum, Theorem 2 holds.

S3 Variants of Mechanism M

Discrete v.s. Continuous Valuation Space From the examples that we have discussed in the
main paper and the analysis in the Supplementary Material, it is not hard to see that the revenue
guarantee of our mechanism is facilitated by the fact that the valuation space and thus the action
space of the mechanism are discrete —so that a player i who wants to increase vi must increase it
by at least 1 and the bigger reward he gets from this offsets the smaller reward due to the possible
increase of `i. If the values can be reals and the mechanism allows the vi’s to be reals, then in
the second round of elimination in the first example of Section 5.2, player 1 wants to announce v1

2Level-0 rationality naturally means that the players are “irrational” and may use any actions.
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smaller than but arbitrarily close to 200, believing that player 2 will announce v2 ≥ 200 and `2 = 0.
However, any action (`1, v1) of player 1 with v1 < 200 is dominated by (0, v1 + 200−v1

2 ) and thus
should be eliminated. The limit, (0, 200), is not dominated, but it does not dominate the actions
(`1, v1) with v1 < 200 either.

More generally, with a continuous valuation space Theorem 1 remains true under a slightly
different analysis, but our mechanism becomes unbounded [14]: the dominated strategies are not
dominated by any of the surviving ones. Following [14] we focus on bounded mechanisms, and that
is why we only consider discrete valuation spaces in our model. It is an interesting open problem
whether there exists a bounded mechanism for continuous valuation spaces that leads to Theorem 1.

Finite v.s. Infinite Action Spaces We would like to point out that the finite valuation bound
V and level bound K are needed only to ensure that our mechanism has a finite action space. We
impose this restriction because our epistemic characterization in Section S4 of level-k rationality
(i.e., by means of an iterated deletion procedure) only applies to finite games, similar to many other
characterizations of higher-level rationality [9, 7, 6, 4, 19, 12].

We note, however, that the analysis in Theorem 1 (which focuses only on the set of actions
surviving the iterated deletion procedure) applies also to a variant of our mechanism M without
these finite bounds: namely, a mechanism M ′ defined identically to M except that each player i
announces (i, `i, vi) ∈ {i} × Z+ × Z+, where Z+ is the set of non-negative integers. We emphasize
that this holds as long as we consider a finite rationality level k, as we next discuss.

Infinitely Rational Players With a finite action space, our mechanism M can only elicit the
players’ beliefs up to level K, even when they are infinitely rational. As mentioned above, the
variant M ′ can elicit the players’ beliefs up to any finite level k, as long as the players are level-
(k+ 1) rational. When the players are infinitely rational —that is, level-k rational for every k ≥ 0,
consider g∞i = maxk g

k
i for each i and let G∞ be the second highest of the g∞i ’s.

As long as either the type space or the valuation space is finite, each g∞i is finite and can be
attained at some finite belief level ki. Roughly speaking, g∞i is the highest “rumored” valuation
according to player i’s beliefs and ki is the “closeness” of the rumor. In this case, the variant M ′

leverages the players’ infinitely high rationality levels without having any information about the
g∞i ’s or the ki’s. Allegedly, each player i announces (a) vi = g∞i , the highest value v such that i
believes “there exists some player who believes” . . . some player values the good v, and (b) `i = ki,
the smallest level of beliefs about beliefs needed to attain vi. The analysis is almost the same. In
particular, M ′ guarantees the revenue benchmark G∞ − ε under common belief of rationality.

If both the valuation space and the type space are infinite, then there exist contexts where
for each player i, gki goes to infinity as k goes to infinity. In this case there is no action profile
consistent with common belief of rationality in M ′, since each action (i, `i, vi) will be eliminated in
some round ki where gkii exceeds vi.

Our Mechanism under Different Solution Concepts Although our solution concept only
requires a very weak notion of rationality, it is interesting to consider how the mechanism behaves
under other solution concepts that impose stronger assumptions about the players’ rationality
and/or their beliefs about each other’s types. For example, following [3] sufficient conditions (which
are tight in some sense) for Nash equilibrium require that the true type profile is mutual knowledge
among the players, which implies the players have correct beliefs under our model. When the players
do have correct beliefs, it is easy to see that our elimination procedure preserves all (including
mixed) equilibrium actions, since it only eliminates actions that are strictly dominated. Thus the
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set of Nash equilibria actually implements the benchmark G∞ as defined above. A characterization
for the structure of Nash equilibria in our mechanism remains unknown (for example, for many type
structures there is no pure Nash equilibrium, since the winner can improve his utility by bidding
a higher value to get a higher reward). Such a characterization, although interesting to explore, is
beyond the scope of this paper.

When additional probabilistic structure is added to the type structure, one can consider a
stronger notion of rationality based on the players’ expected utilities, and define corresponding
iterated elimination of dominated actions (see, e.g., [1]). However, a probabilistic structure must be
consistent with the players’ possibilistic beliefs: namely, a player never assigns positive probability
to a type that he believes to be impossible according to his possibilistic beliefs. It is easy to see
that for any consistent probabilistic structure, any action that is eliminated under our solution
concept must also be eliminated based on the stronger notion of rationality. Thus our mechanism
continues to implement our benchmarks and Theorem 1 continues to hold. Moreover, when there
is a common prior over the type structure, our mechanism implements the benchmark G∞ under
Bayesian Nash equilibria, although the structure of such equilibria has not been characterized yet.

Different Reward Functions The total reward given to the players by our mechanism is up-
perbounded by an absolute value ε > 0. A similar analysis shows that the mechanism could choose
to reward the players with an ε fraction of the price charged to the winner. In this case, the
guaranteed revenue would be (1− ε)Gk rather than Gk − ε.

S4 Characterization of Level-k Rationality

We consider rationality and rationalizability for finite normal-form games of incomplete informa-
tion in which the players have possibilistic beliefs about their opponents. In this setting, we prove
that the actions consistent with the players being level-k rational coincide with the actions sur-
viving a natural k-step iterated elimination procedure. We view the latter actions as the (level-k)
rationalizable ones in our possibilistic setting. Section S4.2 and Definitions S4 and S5 are the main
conceptual novelty in this Supplement (even though some notions in Section S4 are similar to those
in [11], the characterization of level-k rationality and the connection between possibilistic structures
and type structures are quite non-trivial).

Rationalizability was defined by Pearce [16] and Bernheim [8] for complete-information settings.
Our iterated elimination procedure is similar to that proposed by Dekel, Fudenberg, and Morris [9]
and by Bergemann and Morris [7] in a Bayesian setting. For other iterated elimination procedures
and corresponding notions of rationalizability in Bayesian settings, see Brandenburger and Dekel
[6], Tan and Werlang [18], Battigalli and Siniscalchi [4], Ely and Peski [10], Weinstein and Yildiz
[19], and Halpern and Pass [12].

S4.1 Possibilistic Structures and Rationality Models

Given an n-player normal-form game Γ, let Ai be the finite set of pure actions of player i in Γ and
A = A1 × · · · × An. To model the players’ uncertainty about each other’s utility and action in Γ,
we consider a possibilistic version of Harsanyi’s type structure [13].

Definition S1. A possibilistic structure G for Γ is a tuple of profiles, G = (T, u,B, s), where for
each player i,

• Ti is a finite set, the set of i’s possible types;

9



• ui : A× T → R is i’s utility function;

• Bi : Ti → 2T−i is i’s belief correspondence; and

• si : Ti → Ai is i’s strategy function.

A possibilistic structure does not impose any consistency requirements among the beliefs of
different players. Indeed, a player may have totally wrong beliefs about another player’s beliefs.
For instance, in a single-good auction, player i may believe that player j’s valuation for the good
is greater than 100, whereas player j may believe that player i believes that j’s valuation is less
than 10. Moreover, each utility function ui has domain A× T rather than A× Ti. This enables us
to deal with interdependent-type settings as well.

Below we define the players’ rationality, higher-level rationality and common belief of rationality,
in the same way as Aumann [2]. The notions we use and the basic properties we prove about them
can be considered as the possibilistic analog of those in [11].

Definition S2. Let G = (T, u,B, s) be a possibilistic structure for Γ and t be a type profile in T .
Player i is rational at ti if for every action a′i of i, there exists t′−i ∈ Bi(ti) such that

ui((si(ti), s−i(t
′
−i)), (ti, t

′
−i)) ≥ ui((a′i, s−i(t′−i)), (ti, t′−i)).

Player i is rational at t if he is rational at ti.

Based on this definition we define the following events.

• Let RATi = {t ∈ T | i is rational at t} be the event that player i is rational.

• For any event E ⊆ T , let Bi(E) = {t ∈ T | (ti, t′−i) ∈ E ∀t′−i ∈ Bi(ti)} be the event that player
i believes that E occurs.

• Let RAT 0
i = T be the event that player i is level-0 rational (namely, irrational), and for any

k ≥ 1, let RAT ki = RATi ∩Bi(∩j 6=iRAT k−1j ) be the event that player i is level-k rational.

Clearly, RAT 1
i = RATi∩Bi(∩j 6=iRAT 0

j ) = RATi∩Bi(T ) = RATi∩T = RATi. That is, being
level-1 rational is equivalent to being rational.

• For any k ≥ 0 let RAT k = ∩iRAT ki be the event that every player is level-k rational, and let
RAT = RAT 1 be the event that every player is rational.

• For any event E ⊆ T , let EB0(E) = E, EB1(E) = EB(E) = ∩iBi(E) be the event that every
player believes that E occurs, and EBk(E) = EB(EBk−1(E)) for any k ≥ 2.

• Let CB(RAT ) = ∩k≥0EBk(RAT ) be the event that the players have comment belief of ratio-
nality.

Definition S3. For any t ∈ T and k ≥ 0, player i is level-k rational at t if t ∈ RAT ki . For any
ti ∈ Ti, player i is level-k rational at ti if there exists t−i ∈ T−i such that i is level-k rational at
(ti, t−i). For any t ∈ T , the players have common belief of rationality at t if t ∈ CB(RAT ).

Notice that whether player i is level-k rational or not at t solely depends on ti and player i’s
belief hierarchy at ti, and does not depend on t−i at all. Thus it is immediately clear that

(∗) Player i is level-k rational at ti if and only if

for all t−i ∈ T−i player i is level-k rational at (ti, t−i).
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Basic Properties of Our Model The following three properties (which are standard in epis-
temic game theory) help understanding our model.

Property S1. For any player i and any k ≥ 1, RAT ki ⊆ RAT
k−1
i .

Property S2. For any player i and any k ≥ 1, RAT ki = RATi ∩Bi(∩jRAT k−1j ).

Property S3. CB(RAT ) = ∩k≥0 ∩i∈[n] RAT ki .

In particular, Property S1 shows that the players’ higher-levels of rationality are nested. Prop-
erty S2 is a trivial corollary of Property S1 and is also a natural way to think about level-k rationality
—that is, being level-k rational is equivalent to being rational and believing that every player is
level-(k− 1) rational. It will be used in the proof of Theorem S2. Finally, Property S3 provides an
alternative definition for common belief of rationality. Its proof relies on Properties S1 and S2, and
it will also be used in the proof of Theorem S2. To prove these properties, we first state without
proofs the following simple observations.

1. For any player i, RATi = Bi(RATi).

That is, a rational player believes that he is rational.

2. For any player i and any k ≥ 0, RAT ki = Bi(RAT
k
i ).

That is, a level-k rational player believes that he is level-k rational.

Proof of Property S1. By induction on k. For k = 1, RAT 1
i ⊆ T = RAT 0

i . For k > 1, by the induc-
tion hypothesis we have RAT k−1j ⊆ RAT k−2j for each j, thus Bi(∩j 6=iRAT k−1j ) ⊆ Bi(∩j 6=iRAT k−2j ).

Accordingly, RAT ki = RATi∩Bi(∩j 6=iRAT k−1j ) ⊆ RATi∩Bi(∩j 6=iRAT k−2j ) = RAT k−1i , as desired.
�

Proof of Property S2. Since RAT ki = RATi ∩Bi(∩j 6=iRAT k−1j ) by definition, RAT ki ⊆ RAT
k−1
i by

Property S1, and RAT k−1i = Bi(RAT
k−1
i ) by Observation 2, we have

RAT ki = RATi ∩Bi(∩j 6=iRAT k−1j ) ∩RAT k−1i = RATi ∩Bi(∩j 6=iRAT k−1j ) ∩Bi(RAT
k−1
i )

= RATi ∩Bi(∩jRAT k−1j ),

as desired. �

Proof of Property S3. We show by induction that for any k ≥ 1, ∩iRAT ki = EBk−1(RAT ). For
k = 1, ∩iRAT 1

i = RAT 1 = RAT = EB0(RAT ) as desired. For k > 1,

∩iRAT ki = ∩i
(
RATi ∩Bi(∩jRAT k−1j )

)
= ∩i

(
Bi(RATi) ∩Bi(∩jRAT k−1j )

)
= ∩i

(
Bi((RAT

1
i ∩RAT k−1i ) ∩ (∩j 6=iRAT k−1j ))

)
= ∩iBi(RAT

k−1
i ∩ (∩j 6=iRAT k−1j )) = ∩iBi(∩jRAT k−1j )

= EB(∩jRAT k−1j ) = EB(EBk−2(RAT )) = EBk−1(RAT ).

The first equality is is due Property S2, the second to Observation 1, the fourth to Property S1,
and the seventh to the induction hypothesis. Since ∩iRAT 0

i = T , we have

∩k≥0 ∩i RAT ki = ∩k≥1 ∩i RAT ki = ∩k≥0EBk(RAT ) = CB(RAT ),

as desired. �
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S4.2 Type Structures and Iterated Elimination of Strictly Dominated Actions

In many scenarios the players’ beliefs about each other’s (payoff) types are given exogenously, and
they reason about each other’s actions based on their beliefs about types. To model this kind of
information structure and reasoning procedure we define type structures: a type structure T for
Γ is a tuple of profiles, T = (T, u,B), where T, u,B are as defined in a possibilistic structure for
Γ. Thus a type structure can be considered as a possibilistic structure with the strategy function
removed.

Definition S4. A possibilistic structure G = (T, u,B, s) for Γ is consistent with a type structure
T ′ = (T ′, u′, B′) for Γ if there exists a profile of functions ψ with ψi : Ti → T ′i ∀i such that,

• ∀i and ∀t ∈ T , ui(·; t) = u′i(·;ψ(t)); and

• ∀i and ∀ti ∈ Ti, ψ−i(Bi(ti)) = B′i(ψi(ti)).

We refer to such a ψ as a consistency mapping.

The notion of consistency captures that, introducing actions into the picture does not cause
the players to change their beliefs about types, but causes them to form additional beliefs about
actions.

Illustratively, both possibilistic structures and type structures can be represented by directed
graphs, with nodes corresponding to the players’ types and edges corresponding to their beliefs.
The only difference is that in a possibilistic structure each node is also associated with an action.

Example Consider a revised version of the BoS game, where player 1 has a unique type t1 and
player 2 has two types t2 and t′2 —whether he wants to meet or avoid player 1. The players’ utilities
are specified in Figure 3.

B S

B 2,1 0,0

S 0,0 1,2

(a) Utilities under (t1, t2)

B S

B 2,0 0,2

S 0,1 1,0

(b) Utilities under (t1, t
′
2)

Figure 3: A revised BoS game

Figure 4a provides an elementary type structure T ′ for the revised BoS game, where player 1
believes that player 2’s type can be either t2 or t′2 and player 2 believes that player 1’s (unique)
type is t1. Figure 4b provides an elementary possibilistic structure G consistent with T ′. Here
player 1’s two types t11 and t12 induce the same utility function but different actions for him, and
under both types player 1 believes that player 2 will use action B under type t2 and S under t′2.
The type structure T obtained from G by removing the actions is then illustrated in Figure 4c. It
is immediate to see that the consistency mapping ψ = (ψ1, ψ2) is such that ψ1 maps both t11 and
t12 to t1, and ψ2 maps t2 to t2 and t′2 to t′2. Indeed, under such mapping the utilities are preserved
and “the belief correspondence and ψ commute.”

We now define rationality for type structures.

Definition S5. Given a type structure T = (T, u,B) for Γ, for any player i, type ti ∈ Ti, action
ai and integer k ≥ 0, ai is consistent with level-k rationality for ti if, there exists a possibilistic
structure G = (T ′, u′, B′, s) and a type t′i ∈ T ′i , such that G is consistent with T under a consistency
mapping ψ, ψi(t

′
i) = ti, si(t

′
i) = ai and i is level-k rational at t′i.
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t1
//

""

t2oo

t′2

bb

(a) Type structure T ′

(t11, B) //

''

(t2, B)oo

(t12, S) //

77

(t′2, S)oo

(b) Possibilistic structure G

t11
//

##

t2oo

t12
//

;;

t′2oo

(c) Type structure T

Figure 4: A type structure and a consistent possibilistic structure

Action ai is consistent with common belief of rationality for ti if, there exists a possibilistic
structure G = (T ′, u′, B′, s) and a type profile t′ ∈ T ′, such that G is consistent with T under a
consistency mapping ψ, ψi(t

′
i) = ti, si(t

′
i) = ai and the players have common belief of rationality

at t′.

Slightly abusing notations, we denote by RAT ki (ti) the set of actions consistent with level-k
rationality for ti and by RATi(ti) the set of actions consistent with common belief of rationality for
ti. Notice that our concept of consistency with level-k rationality or common belief of rationality
is called rationalizability in other studies, see [4]. Next we define an iterated elimination procedure
for refining the players’ actions, and use it to characterize actions that are consistent with level-k
rationality or common belief of rationality.

Definition S6. Let T = (T, u,B) be a type structure for Γ. For each player i, type ti ∈ Ti and
integer k ≥ 0, we define NSDk

i (ti), the set of actions surviving k-round elimination of strictly
dominated actions for ti, inductively as follows:

• NSD0
i (ti) = Ai.

• For each k ≥ 1 and each ai ∈ NSDk−1
i (ti), ai ∈ NSDk

i (ti) if there does not exist an alternative
action a′i ∈ NSD

k−1
i (ti) such that ∀t−i ∈ Bi(ti) and ∀a−i ∈ NSDk−1

−i (t−i),

ui((a
′
i, a−i), (ti, t−i)) > ui((ai, a−i), (ti, t−i)),

where NSDk−1
−i (t−i) = ×j 6=iNSDk−1

j (tj).

In the definition for NSDk
i (ti), if the required action a′i does exist, we say that ai is strictly

dominated (by a′i) for ti over level-(k−1) surviving actions. It is easy to see that defining NSDk
i (ti)

by eliminating strictly dominated actions from NSDk−1
i (ti) is the same as defining it by eliminating

strictly dominated actions from Ai. Indeed, we have the following lemma, whose proof has been
omitted.

Lemma S1. For any k ≥ 1 and ai ∈ Ai, ai ∈ NSDk
i (ti) if and only if there does not exist an

alternative action a′i ∈ Ai such that ai is strictly dominated by a′i for ti over level-(k− 1) surviving
actions.

Given player i’s knowledge about T , he can iteratively compute NSDk
i (ti) for any ti and k.

Since both the game Γ and the type structure T are finite, the elimination procedure ends for all
types of all players after some round K when no action is strictly dominated over level-(K − 1)
surviving actions. Letting

NSDi(ti) = ∩k≥0NSDk
i (ti),
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we have NSDi(ti) = NSDK
i (ti) 6= ∅. We say that an action ai survives iterated elimination of

strictly dominated actions for ti if ai ∈ NSDi(ti). Following [4] we refer to NSDk
i (ti) as the set of

level-k rationalizable actions for ti, and to NSDi(ti) as the set of rationalizable actions for ti.
An immediate consequence of Lemma S1 is the following lemma, stated without proof.

Lemma S2. For any k ≥ 1 and ai ∈ Ai, ai ∈ NSDk
i (ti) if and only if there exists B′i ⊆ Bi(ti) and

Z−i(t−i) ⊆ NSDk−1
−i (t−i) for each t−i ∈ B′i, such that for each a′i ∈ Ai there exists t−i ∈ B′i and

a−i ∈ Z−i(t−i) with
ui((ai, a−i), (ti, t−i)) ≥ ui((a′i, a−i), (ti, t−i)).

Intuitively, ai survives k-round elimination if, given i’s belief that other players’ types are
among (some subset of) Bi(ti) and they use (some subset of) actions that survive (k − 1)-round
elimination, no other action according to i’s belief can lead to higher utility than what he gets
by using ai. Lemma S2 is a possibilistic analog of Pearce’s lemma [16] which, in probabilistic
models, relates best responses and rationalizability to strict dominance. Note that whereas in the
possibilistic case (which is what we consider) the proof is trivial, Pearce’s original lemma for the
probabilistic case requires additional work.

S4.3 Characterizing Level-k Rationality and Common Belief of Rationality

Theorem S1. Given a type structure T = (T, u,B) for Γ, for any player i, type ti, action ai and
integer k ≥ 0, ai is consistent with level-k rationality for ti if and only if ai ∈ NSDk

i (ti): that is,
RAT ki (ti) = NSDk

i (ti).

Proof. We first prove the “only if” direction. Assuming ai is consistent with level-k rationality
for ti, we prove ai ∈ NSDk

i (ti) by induction on k. For k = 0, the property trivially holds since
NSD0

i (ti) = Ai by definition.
For k > 0, by Definition S5 there exists a possibilistic structure G = (T ′, u′, B′, s) and a type

t′i ∈ T ′i , such that G is consistent with T under a consistency mapping ψ, ψi(t
′
i) = ti, si(t

′
i) = ai

and i is level-k rational at t′i.
By Definition S3 and Property (∗), player i being level-k rational at t′i implies: (a) i is rational

at t′i; and (b) for each type subprofile t′−i ∈ B′i(t′i) we have (t′i, t
′
−i) ∈ ∩j 6=iRAT

k−1
j . According to

(a) and Definition S2, for each action a′i ∈ Ai there exists t′−i ∈ B′i(t′i) such that

u′i((ai, s−i(t
′
−i)), (t

′
i, t
′
−i)) ≥ u′i((a′i, s−i(t′−i)), (t′i, t′−i)). (13)

According to (b), for each t′−i ∈ B′i(t′i) and each j 6= i, player j is level-(k − 1) rational at t′j . By
Definition S5, sj(t

′
j) is consistent with level-(k−1) rationality for ψj(t

′
j) and thus, by the induction

hypothesis,
sj(t

′
j) ∈ NSDk−1

j (ψj(t
′
j)). (14)

For each t−i ∈ Bi(ti), let Z−i(t−i) = s−i(ψ
−1
−i (t−i)). Because ψ−i(B

′
i(t
′
i)) = Bi(ti), Z−i(t−i) 6= ∅.

By Equation 14,
Z−i(t−i) ⊆ NSDk−1

−i (t−i).

For each a′i ∈ Ai, let t′−i ∈ B′i(t′i) be such that Equation 13 holds, t−i = ψ−i(t
′
−i) and a−i = s−i(t

′
−i).

Accordingly, a−i ∈ Z−i(t−i). Since ui(·; (ti, t−i)) = u′i(·; (t′i, t
′
−i)), Equation 13 implies

ui((ai, a−i), (ti, t−i)) ≥ ui((a′i, a−i), (ti, t−i)).

By Lemma S2 we have ai ∈ NSDk
i (ti), concluding the proof of the “only if” direction.
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Now we prove the “if” direction. By definition, proving this direction is equivalent to proving
that, if ai ∈ NSDk

i (ti) then there exists a possibilistic structure G = (T ′, u′, B′, s) for Γ and a type
t′i ∈ T ′i such that, G is consistent with T under a consistency mapping ψ, ψi(t

′
i) = ti, si(t

′
i) = ai

and i is level-k rational at t′i. Notice that G, t′i and ψ may depend on k, i, ti and ai.
In fact, we shall prove a stronger statement. Namely, for each k, there exists a universal

possibilistic structure G = (T ′, u′, B′, s) for Γ, consistent with T under a consistency mapping ψ,
such that for every player i, type ti ∈ Ti, action ai and non-negative integer k′ ≤ k,

if ai ∈ NSDk′
i (ti) then there exists a type t′i ∈ T ′i such that

ψi(t
′
i) = ti, si(t

′
i) = ai and i is level-k′ rational at t′i, (15)

which implies that ai is consistent with level-k′ rationality for t′i.

We define G as follows: for each player i,

• T ′i =
{

(ti, k
′, ai) : ti ∈ Ti, k′ ∈ {0, . . . , k}, ai ∈ NSDk′

i (ti)
}

;

• for each type profile t′ ∈ T ′, letting t ∈ T be the type profile obtained by projecting each t′j
to its first component, u′i(·; t′) = ui(·; t);

• for each type t′i = (ti, k
′, ai), si(t

′
i) = ai; and

• for each type t′i = (ti, k
′, ai) and type subprofile t′−i ∈ T ′−i, t′−i ∈ B′i(t′i) if and only if there

exist t−i ∈ Bi(ti) and a−i ∈ NSDmax{k′−1,0}
−i (t−i) such that t′j = (tj ,max{k′− 1, 0}, aj) for all

j 6= i.

It is easy to check that G is consistent with T under the consistency mapping ψ where ψi(ti, k
′, ai) =

ti for each player i and type (ti, k
′, ai) ∈ T ′i .

We now prove by induction on k′ that for any i, ti ∈ Ti and ai ∈ NSDk′
i (ti), player i is level-k′

rational at t′i = (ti, k
′, ai). For k′ = 0, since RAT 0

i = T by definition, it trivially holds that player
i is level-0 rational at t′i.

For k′ > 0, for any t′−i = (tj , k
′ − 1, aj)j 6=i ∈ B′i(t′i), by construction we have t−i ∈ Bi(ti) and

a−i ∈ NSDk′−1
−i (t−i). By the hypothesis induction, for any player j 6= i, j is level-(k′ − 1) rational

at t′j and thus at (t′i, t
′
−i). Therefore

(t′i, t
′
−i) ∈ ∩j 6=iRAT k

′−1
j .

Since this is true for any t′−i ∈ B′i(t′i), we have

(t′i, t
′
−i) ∈ Bi(∩j 6=iRAT k

′−1
j )

for any t′−i ∈ B′i(t′i), as again whether player i believes some event or not only depends on t′i and
not t′−i.

Since ai ∈ NSDk′
i (ti), by Lemma S1 we have that for any a′i ∈ Ai, there exists t−i ∈ Bi(ti) and

a−i ∈ NSDk′−1
−i (t−i) such that

ui((ai, a−i), (ti, t−i)) ≥ ui((a′i, a−i), (ti, t−i)).

Letting t′−i = (tj , k
′−1, aj)j 6=i, we have t′−i ∈ B′i(t′i), ψ(t′i, t

′
−i) = (ti, t−i), si(t

′
i) = ai and s−i(t

′
−i) =

a−i. Thus
u′i((si(t

′
i), s−i(t

′
−i)), (t

′
i, t
′
−i)) ≥ u′i((a′i, s−i(t′−i)), (t′i, t′−i)).
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Accordingly, player i is rational at t′i and (t′i, t
′
−i) ∈ RATi for any t′−i ∈ B′i(t

′
i). By definition,

(t′i, t
′
−i) ∈ RATi ∩Bi(∩j 6=iRAT k

′−1
j ) for any t′−i ∈ B′i(t′i), and thus i is level-k′ rational at t′i. This

concludes the induction step and the proof of Statement (15). Therefore the “if” direction holds,
concluding the proof of Theorem S1.

Similarly, we characterize common belief of rationality in our model by the following theorem.

Theorem S2. Given a type structure T = (T, u,B) for Γ, for any player i, type ti and action
ai, ai is consistent with common belief of rationality for ti if and only if ai ∈ NSDi(ti): that is,
RATi(ti) = NSDi(ti).

Proof. We first prove the “only if” direction. Assume ai is consistent with common belief of
rationality for ti. By Definition S5, there exists a possibilistic structure G = (T ′, u′, B′, s) and a
type profile t′ ∈ T ′, such that G is consistent with T under a consistency mapping ψ, ψi(t

′
i) = ti,

si(t
′
i) = ai and t′ ∈ CB(RAT ).
By Property S3, for any k ≥ 0, t′ ∈ RAT ki and player i is level-k rational at t′i. Thus, by

Definition S5, ai is consistent with level-k rationality for ti. By Theorem S1, ai ∈ NSDk
i (ti) for

any k ≥ 0. Thus ai ∈ NSDi(ti) and the “only if” direction holds.

The “if” direction holds from the following lemma, which we prove separately.

Lemma S3. There exists a universal possibilistic structure G = (T ′, u′, B′, s) for Γ, consistent with
T under a consistency mapping ψ, such that

(1) CB(RAT ) = T ′ —that is, common belief of rationality holds everywhere, and

(2) for every player i, type ti ∈ Ti and action ai ∈ NSDi(ti), there exists a type t′i ∈ T ′i such that
ψi(t

′
i) = ti and si(t

′
i) = ai.

Indeed, Lemma S3 implies that for any i, ti and ai ∈ NSDi(ti), ai is consistent with common
belief of rationality for ti.

In sum, Theorem S2 holds.

Proof of Lemma S3. Similarly to the second part of the proof of Theorem S1, we construct structure
G as follows: for each player i,

• T ′i = {(ti, ai) : ti ∈ Ti, ai ∈ NSDi(ti)};

• for each type profile t′ ∈ T ′, letting t ∈ T be the type profile obtained by projecting each t′j
to its first component, u′i(·; t′) = ui(·; t);

• for each t′i = (ti, ai) ∈ T ′i , si(t′i) = ai; and

• for each t′i = (ti, ai) ∈ T ′i and t′−i ∈ T ′−i, t′−i ∈ B′i(t′i) if and only if there exist t−i ∈ Bi(ti) and
a−i ∈ NSD−i(t−i) such that t′j = (tj , aj) for all j 6= i.

Below we only show part (1) of Lemma S3, as part (2) holds by construction.

By Property S3, to show CB(RAT ) = T ′ it suffices to show ∩j∈[n]RAT kj = T ′ for every k ≥ 0.

We proceed by induction. For k = 0, by definition, ∩j∈[n]RAT 0
j = ∩j∈[n]T ′ = T ′.

For k > 0, it suffices to show RAT ki = T ′ for each player i. Arbitrarily fixing a player i, by the
induction hypothesis we have ∩j∈[n]RAT k−1j = T ′, and thus Bi(∩j∈[n]RAT k−1j ) = T ′ as well. By
Property S2, it is left to show RATi = T ′, or equivalently, player i is rational at every type t′i ∈ T ′i .
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Arbitrarily fix a type t′i = (ti, ai) and an action a′i of i. Since ai ∈ NSDi(ti), by definition and
by Lemma S1 we have that ai is not strictly dominated by a′i for ti over level-` surviving actions
for any ` ≥ 0. In particular, ai is not strictly dominated by a′i for ti over level-K surviving actions,
where K is such that the elimination procedure ends after round K for all types of all players.
That is, there exists t−i ∈ Bi(ti) and a−i ∈ NSDK

−i(t−i) such that

ui((ai, a−i), (ti, t−i)) ≥ ui((a′i, a−i), (ti, t−i)).

Since NSDK
−i(t−i) = NSD−i(t−i), letting t′j = (tj , aj) for any j 6= i, we have t′−i ∈ B′i(t′i) and

u′i((si(t
′
i), s−i(t

′
−i)), (t

′
i, t
′
−i)) ≥ u′i((a′i, s−i(t′−i)), (t′i, t′−i)).

Thus player i is rational at type t′i, and RATi = T ′ as desired. In sum, CB(RAT ) = T ′ and Lemma
S3 holds.

References

[1] D. Abreu and H. Matsushima. Virtual Implementation in Iteratively Undominated Actions:
Incomplete Information. Working paper, 1992.

[2] R. Aumann. Backward Induction and Common Knowledge of Rationality. Games and Eco-
nomic Behavior, Vol. 8, pp. 6-19, 1995.

[3] R. Aumann and A. Brandenburger. Epistemic Conditions for Nash Equilibrium. Econometrica,
Vol. 63, No. 5, pp. 1161-1180, 1995.

[4] P. Battigali and M. Siniscalchi. Rationalization and Incomplete Information. The B.E. Journal
of Theoretical Economics, Volume 3, Issue 1, Article 3, 2003.

[5] P. Bich and R. Laraki. A Unified Approach to Equilibrium Existence in Discontinuous Strategic
Games (Preliminary Version). Working paper, 2012.

[6] A. Brandenburger and E. Dekel. Rationalizability and correlated equilibria. Econometrica. Vol.
55, pp. 1391-1402, 1987.

[7] D. Bergemann and S. Morris. Informational Robustness and Solution Concepts. Working paper,
2014.

[8] B. Bernheim. Rationalizable Strategic Behavior. Econometrica, 52(4): 1007-1028, 1984.

[9] E. Dekel, D. Fudenberg, S. Morris. Interim correlated rationalizability. Theoretical Economics,
Vol. 2, pp. 15-40, 2007.

[10] J. C. Ely and M. Peski. Hierarchies of belief and interim rationalizability. Theoretical Eco-
nomics, Vol. 1, pp. 19-65, 2006.

[11] J. Halpern and R. Pass. A Logical Characterization of Iterated Admissibility. Conference on
Theoretical Aspects of Rationality and Knowledge (TARK), pp. 146-155, 2009.

[12] J. Halpern and R. Pass. Conservative belief and rationality. Games and Economic Behavior,
Vol. 80, pp. 186-192, 2013.

17



[13] J. Harsanyi. Games with Incomplete Information Played by “Bayesian” Players, I-III. Part I.
The Basic Model. Management Science, 14(3) Theory Series: 159-182, 1967.

[14] M. Jackson. Implementation in Undominated Actions: A Look at Bounded Mechanisms. The
Review of Economic Studies, 59(4): 757-775, 1992.

[15] M. Jackson, L. K. Simon, J. M. Swinkels, and W. R. Zame. Communication and Equilibrium
in Discontinuous Games of Incomplete Information. Econometrica, 70(5): 1711-1740, 2002.

[16] D. Pearce. Rationalizable strategic behavior and the problem of perfection. Econometrica, Vol.
52, No. 4, pp. 1029-1050, 1984.

[17] L. K. Simon and W. R. Zame. Discontinuous games and endogenous sharing rules. Economet-
rica, 58, 861-872, 1990.

[18] T. Tan and S. Werlang. The Bayesian foundation of solution concepts of games. Journal of
Economic Theory, Vol 45, pp. 370-391, 1988.

[19] J. Weinstein and M. Yildiz. A Structure Theorem for Rationalizability with Application to
Robust Predictions of Refinements. Econometrica, 75(2), pp. 365-400, 2007.

18


