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Abstract

Maximizing revenue in the presence of perfectly informed players is a well known goal in mechanism
design. Yet, all current mechanisms for this goal are vulnerable to equilibrium selection, collusion, privacy
and complexity problems, and therefore far from guaranteeing that maximum revenue will be obtained. In
this paper we both clarify and rectify this situation by

• Proving that no weakly dominant-strategy mechanism (traditionally considered immune to equilibrium
selection) guarantees an arbitrarily small fraction of the maximum possible revenue;

and, more importantly,

• Constructing a new mechanism, of extensive-form and with a unique sub-game-perfect equilibrium,
which

(a) guarantees a fraction arbitrarily close to 1 of the maximum possible revenue;

(b) is provably robust against equilibrium selection, collusion, complexity, and privacy problems; and

(c) works for any number of players n > 1, and without relying on special conditions for the players
utilities.



1 Introduction

1.1 Classical Mechanism Design

Contexts and mechanisms. A context C describes the players, the outcomes and the players’ preferences
over the outcomes. A mechanism M describes the strategies available to the players, and how strategies
determine outcomes. Together, a context C and a mechanism M define a game G, G = (C,M), in which
each rational player will endeavor to choose his own strategy so as to maximize his own utility.

Mechanism design. Mechanism design aims at finding a mechanism M such that, for any context C (or
any C in a given class), a desired property P holds for the outcomes of the game (C,M), when rationally
played. The difficulty is that the designer does not exactly know the players’ preferences, while P typically
depends on such preferences. In the purest form of mechanism design, all knowledge about the players lies
with the players themselves. The designer can count only on the players’ rationality. And based solely on
this fact, he must design M so that it becomes “in the best interest of the players” to satisfy P. That is, he
must ensure that P holds in a rational play of M . But: What is a rational play?

The classical interpretation of a rational play. The classical interpretation of a rational play is an
equilibrium, that is a profile of strategies σ = σ1, . . . , σn such that no player i has an incentive to deviate from
his specified strategy σi to an alternative strategy σ′i. But equilibria are vastly different in their “quality.”
The weakest form is that of a Nash equilibrium, simply stating that i prefers σi to any alternative σ′i only if
he believes that every other player j will stick to his specified σj. That is, Nash equilibrium only guarantees
that i prefers σ1, . . . , σi, . . . , σn to σ1, . . . , σ

′
i, . . . , σn. If σ is a dominant-strategy equilibrium, the strongest

form of equilibrium, then, for any player i, σi is i’s best strategy no matter what strategies the other players
may choose. More precisely, a dominant-strategy equilibrium σ is called strict (respectively, weak) if, for any
player i, any alternative strategy σ′i, and any strategy sub-profile τ−i for the other players, i’s utility when
playing σi is strictly larger than (respectively, larger than or equal to) his utility when playing σ′i.

1.2 Our Goal

This paper focuses on a classical context: quasi-linear utilities with non-negative valuations. Namely, there
are finitely many possible states, ω1, . . . , ωk, including the null state, which every player values 0; each player
i has non-negative value vi(ωj) for each state ωj ; each outcome consists of a state ω together with a price
Pi for each player i; and the utility of each player i for such an outcome is vi(ω) − Pi. (The revenue of an
outcome (ω, P ) consists of

∑
i Pi. The function vi is i’s valuation.)

Such context models a great deal of situations. For instance, in an auction of multiple goods, a state ω
represents which player wins which items. Accordingly, the utility of player i in an outcome (ω, P ) naturally
is his value for the items he gets in ω, minus the price he pays. In another example, each state ω represents
one of finitely many ways of building a bridge across a given river. Accordingly, and naturally too, each
player has different values for each possible bridge. (For instance, a player’s value for a given potential bridge
may dependent on how distant it would be from his house.) The list of examples could go on and on. In
all of them, however, no matter what the mechanisms may be, it is also natural for different subsets of the
players to collude —that is, to coordinate their strategies— so as to improve their utilities.

In such a classical context, our goal is equally classical: getting an outcome of maximum revenue when
the players have perfect knowledge. That is, when each player knows the valuations of all players (as well as
who colludes with whom, if collusion exists among the players).

When the players’ knowledge is best possible, it is natural to ask whether the best possible revenue can
be obtained. Note that, without the ability of imposing arbitrary prices, the best possible revenue that a
mechanism can hope to get from rational players is the maximum social welfare, that is, maxω

∑
i vi(ω).

Thus:

Can a mechanism guarantee perfect revenue from perfectly informed players?
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1.3 Four Main Obstacles

Plenty of mechanisms have been proposed for our goal. Yet, none of them achieves it in a robust way. Four
main obstacles stand on their way. Let us explain.

Equilibrium Selection It should be realized that designing a mechanism so as to guarantee a property
P “at a Nash Equilibrium” is a weak guarantee. First, because there may be several Nash equilibria, while
P holds for just some of them. Moreover, even if P held for all equilibria, P may not hold at all in a real
play. For instance, assume that there exist two equilibria, σ and τ , and that some players believe that σ will
be played out, while others believe that τ will. Then, rather than an equilibrium, a mixture of σ and τ will
be played out, so that P may not hold. Of course, this problem worsens as the number of players and/or
equilibria grows.

Collusion The problem of collusion in mechanism design is well recognized. The problem occurs for
obvious reasons. Any equilibrium, even a dominant-strategy one, only guarantees that no single player has
incentive to deviate from his strategy. However, two or more players may have all the incentive in the
world to jointly deviate from their equilibrium strategies. Accordingly, by “guaranteeing” a property P at
equilibrium, a classical mechanism is typically vulnerable to collusion. In a second-price auction, although the
mechanism is dominant-strategy, if the players with the highest two valuations for the item on sale collude,
then the revenue generated drops from the second-highest to the third-highest valuation. As for a more
extreme example, Ausubel and Milgrom [2] show that two sufficiently informed players can totally destroy
the economic efficiency of the famous VCG mechanism [26, 9, 12], although it too is dominant-strategy.

Complexity Traditional mechanism design disregards the “complexity of a mechanism.” A mechanism of
normal-form may require the players to simultaneously announce exponentially long strings. And a mech-
anism of extensive form may require the players to act over exponentially many rounds. In both cases,
therefore, such mechanisms in practice fail to reach their objectives, no matter what their theoretical claims,
unless their contexts are extremely “tiny.”

Privacy Privacy has been traditionally neglected in mechanism design, and considered a quite separate
desideratum: nice to have perhaps, but not central for an incentive analysis. Yet, as especially argued by
[13], it has a great potential to distort incentives, and thus to derail classical mechanisms from achieving
their desired properties. A mechanism typically neglects privacy by requiring the players to reveal a lot of
information about themselves. But if the players value privacy (which by definition implies that divulging
their secret information causes them to receive a negative utility), then the mechanism gives them both
positive and negative incentives, and it is no longer clear how these opposing forces will balance out.

1.4 Prior Mechanisms

Let us now discuss the most relevant mechanisms for our design problem. We start with the traditional “at
equilibrium” approach, and then proceed to more sophisticated ones.

The Generic Mechanism The following may be the first mechanism that comes to mind for our context.

hope-for-the-best: Each player reports the valuations of all players (including himself). If all reports
are the same, then (1) choose the state ω maximizing the sum of the reported valuations and (2) for
each player i, choose the price Pi to be his reported value for ω (possibly minus a small discount ε
to encourage i’s participation). If not all reports coincide, then choose the “null outcome” (which all
players are assumed to value 0) and price 0 for every player.
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Unfortunately, hope-for-the-best is extremely vulnerable to equilibrium selection. It is trivial to see that
the strategy profile in which each player reports all true valuations is a Nash equilibrium for hope-for-the-
best, indeed, it is the truthful equilibrium. It is also trivial to see that in this equilibrium the revenue is the
maximum possible (disregarding the negligible quantity nε). Notice too, however, that hope-for-the-best
also has additional equilibria, E2, E3, . . ., where in Ex all players report all true valuations divided by x.
Thus, the truthful equilibrium is E1, and in each Ex the utility of each player is increased by a factor x, and
the money collected is a fraction 1/x of the maximum possible revenue. Accordingly,

• In the truthful equilibrium E1 the designer is “happy”, but the players are “sad”, while

• in all other equilibria Ex the players are “happy” and the designer is “sad.”

This being the case: which equilibrium Ex is more likely to be selected? Further, while each Ex at least
maximizes social welfare, in plenty of other equilibria both revenue and social welfare are quite poor.1 Given
the multitude of available equilibria and the fact that different equilibria are preferable to different players:
will a play of hope-for-the-best be an equilibrium and generate any revenue at all?

The JPS Mechanism Jackson, Palfrey, and Srivastava [15] provided a quite different mechanism. Again,
their mechanism yields optimal revenue only at the truthful equilibrium τ . But this time τ is a much
more meaningful equilibrium: it is the only Nash equilibrium composed of weakly undominated strategies.
Somewhat counterintuitively, however, their solution too is vulnerable to equilibrium-selection. The point is
that, as in hope-for-the-best, there are plenty of equilibria σ that generate smaller revenue while being
more attractive to all players. Again too, each such σ consists of reporting all true valuations divided by
the same factor x. To be sure, this time each component σi is weakly dominated by some other strategy σ′i.
This means that, in all cases (i.e., for all possible subprofiles of strategies for the other players) σi provides
no more utility to i than σ′i does, while in at least some cases σi provides less utility to i than σ′i. But in the
JPS mechanism this happens in only one case: when all other players “suicide” (i.e., when all other players
deliberately choose the worst possible strategies for themselves). Thus, as long as a single player does not
believe that all others will commit mass suicide, all players prefer σ to the truthful and revenue-maximizing
equilibrium τ . Accordingly, the JPS mechanism too is very vulnerable to equilibrium selection.

What has happened? At a first glance, the JPS mechanism looks very “robust,” because “no one should
want to play a weakly dominated strategy.” But the problem is that the process of eliminating all weakly
dominated strategies for yourself and the other players is not well defined. Unlike the iterated elimination of
strictly dominated strategies, the iterated elimination of weakly dominated strategies depends on the order of
elimination. For example, if one eliminates first “suicidal strategies” (in fact, if one eliminates first “suicide”
for just another one of the players), then all equilibria become equally reasonable, and the attractive ones
from the players’ point of view are those generating less revenue.

In addition, the JPS mechanism is totally vulnerable to collusion. Indeed, it enables some pairs of players
(i, j) to jointly deviate from the truthful equilibrium so as to improve the utility of i without hurting that of
j. And when they so deviate its revenue cannot be maximum.

Finally, the JPS mechanism is totally vulnerable to privacy, because it relies on the players revealing all
their knowledge.

The AM (and GP) Mechanisms Assuming that there are at least 3 players and that some more technical
conditions hold, Abreu and Matsushima [1] present a general normal-form mechanism that guarantees that
essentially any desired property (including ours) is satisfied in a perfect-knowledge context. Their mechanism
is robust against equilibrium selection, because after the iterated elimination of strictly dominated strategies,
each player is left with a single (and truthful) strategy, and thus the resulting game has a single equilibrium.
However, the AM mechanism is highly vulnerable to collusion, complexity, and privacy problems. That is,

1Let ω be any state such that vi(ω) >> c > 0 for all players i. And let σ be the strategy profile, where each σj consists of
reporting that all players have the following valuation v: v(ω) = c and v(x) = 0 for any state x 6= ω. Then, it is easy to see that
σ is an equilibrium. Moreover, the revenue of σ is cn, and the social welfare of σ is

∑
i vi(ω).

3



(1) it no longer guarantees its desired property when any two players jointly deviate from their equilibrium
strategies; (2) it requires the players to announce a doubly-exponential number of bits even when there are a
constant number of outcomes, a constant number of player, and each player can have one of two types; and
(3) it relies on the players revealing all the knowledge in their possession.

A variant of the AM mechanism was put forward by Glazer and Perry [11]. The GP mechanism is of
extensive form: informally this means that the players act one at a time, over several rounds. The GP
mechanism did not suffer from any equilibrium selection problems either, because its corresponding game
admits a unique subgame-perfect equilibrium. Essentially, this means that, at each decision node of the game
tree, every acting player has a single best action available to him. However, the GP mechanism continues to
be vulnerable to collusion, complexity and privacy problems. The vulnerability to collusion and privacy is
essentially identical to that of the AM mechanism. Complexity wise the GP mechanisms actually requires
exponentially many rounds of communication. A justification of this fact is presented in Appendix B.

1.5 Our Results

Our Impossibility Result The problem of equilibrium selection fully disappears when a mechanism
achieves its desired property P at a strictly dominant-strategy equilibrium, while still “lurks around” for
weakly dominant-strategy equilibria. Unfortunately, we prove that neither strong nor weakly dominant-
strategy mechanisms exist that can guarantee perfect revenue from perfectly informed players. Worse, our
impossibility result holds even even if the mechanism designer were content to generate an arbitrarily small
fraction of the optimal revenue. In sum, we prove the following.

Thm 1: No weakly dominant-strategy mechanism guarantees a fraction ε of the optimal revenue.

Our impossibility theorem shows that, in order to guarantee perfect revenue, we must adopt a different
solution concept.

Our Possibility Result To enable the design of mechanisms reasonably resilient against equilibrium
selection, collusion, complexity, and privacy, the first and third author have developed rational robustness,
a new solution concept and implementation notion [7]. (Essentially, rational robustness is based on iterated
elimination of distinguishably dominated strategies, a new notion “in between” iterated elimination of strictly
and weakly dominated strategies.) But in our perfect knowledge context we are able to achieve perfect revenue
and perfect resiliency, by means of an extensive-form mechanism, under the classical solution concept of
unique subgame-perfect equilibrium (which indeed is a special case of rationally robust implementation).

Informal Thm 2: There exists an extensive-form mechanismM, guaranteeing a fraction 1−ε of the optimal
revenue, that

• Works for any number of players n > 1;

• Has a unique subgame perfect equilibrium;

• Enjoys perfect collusion resilience;

• Enjoys perfect privacy;

• Does not require any trust from the players; and

• Has perfect communication complexity and n+ 1 rounds.

Remarks

• Note thatM works with just two players. By contrast, the mechanism of Jackson, Palfrey and Srivasta,
that of Abreu and Matsushima, that of Glazer and Perry, and the generic mechanism all require more
than 2 players. In essence, because this requirement facilitates (or makes it possible and meaningful) to
identify which player deviated from his equilibrium strategies.
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• We stress the word “unique” because a game with multiple subgame-perfect equilibria can still suffer
from equilibrium-selection problems.

• Perhaps interestingly, in the presence of collusive players, our mechanism M has multiple ways to be
truthful, but only one of them is a subgame-perfect equilibrium.

• By saying that M is perfectly resilient to collusion we mean two things. First, M guarantees perfect
revenue as long as not all players belong to the same coalition, and each coalition acts rationally. (In
our setting, a rational coalition maximizes the sum of the individual utilities of its members. Only when
the players have imperfect knowledge about each other, one may want to consider weaker models of
coalition rationality.) Second, M achieves perfect revenue no matter how well players belonging to the
same collusive set, if any, may coordinate their actions. In particular, M works even when such players
are free to make side-payments to each other and/or to enter into binding contracts with each other.

• By saying that M is perfectly private we essentially mean that, in any rational play, nothing can be
learned about the players’ valuations, by the mechanism designer or any observer of the play, except for
what is deducible from a perfect-revenue outcome. Of course, our M can be so “perfect” only because
we are dealing with perfectly informed players (so that the only privacy concern is with respect to the
“outside world”). But this is our setting, and thus one has both the right to demand and the obligation
to deliver as a perfect solution as possible.

• By saying that M does not require any trust from the players we mean several things. First, M is
not a mediated mechanism. (Indeed, privacy would be easy to achieve if the players could confide their
strategies or their preferences to mediator trusted to announce the right outcome and never to reveal
to anyone else any information received from the players). Second, M does not rely on any complexity
assumptions, as needed for running a cryptographically secure protocol. (After all, at least some of such
assumptions may turn out to be false.) Third, M does not rely on the security of some underlying
communication channels. Fourth, M does not rely on the “honesty” of even some of the players.
Indeed, in our mechanism M any action of the players becomes public as soon as it is taken.

• By saying thatM has perfect communication complexity we mean thatM’s players need to announce,
altogether, the same number of bits necessary to describe the desired outcome.
In addition to “mechanism complexity”, one may consider also “player complexity,” that is the time
required to a player to figure out and thus choose a rational strategy. Here it is worth pointing out
that, to play rationally M, a player performs a computation linear in the number of states —and the
number of players. This is essentially optimal given the generality of our setting. (Only with respect to
a specific choice of states, one can consider whether there exists a compact representation of the states
together with a compact representation of the players’ utilities for them.)

Comparison with other work

• Note that our notion of collusion resiliency is stronger than that offered by other mechanisms. In
particular, group —or coalition— strategyproofness [3, 19, 16, 21, 25] rules out collusion, but only under
the assumption that the players are not able to make side payments to each other. Without restricting
how players might cooperate, t-truthful mechanisms [10] offer protection against coalitions of at most t
players, but only for single-value games. (In such games, a player i values some outcomes 0, and all other
outcomes a fixed value vi.) Again without restricting cooperation abilities, collusion neutralization [20, 6]
offers collusion protection in more general games, but their notion too is weaker than the one considered
in our paper. (Protection against the coalition of all players has also been considered and achieved, but
only in Bayesian settings, where the distributions of player preferences are known to everyone, including
the mechanism designer [17, 18, 4, 5].) Finally, a different approach altogether, collusion leveraging, has
been submitted to this same conference [8].

• Some work on privacy preserving mechanisms has already started. However, the privacy is either limited
or gained by adding an additional layer to the mechanism —such as one or more mediators, envelopes,
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or encryption— [23, 22, 13]. By contrast, our mechanism M achieves perfect privacy without relying
on any additional infrastructure. Indeed, M works by asking the players to take only public actions.

Easy Variants and Forthcoming Work By hindsight, it is easy to modify our mechanism in various
ways —or even the original Abreu-Matsushima or Glazer-Perry mechanisms— so as to keep our perfect
robustness against collusion, complexity, and privacy, while gaining some perceived additional advantage,
such as reducing the number of steps, achieving additive revenue approximation, etc.

There are, however, quite important variants that we would like to point out now, and develop in later
versions of this paper. Namely, we can achieve perfect revenue not from just perfectly informed players (as
in this paper), but also from players with perfect distributed knowledge. For instance, it suffices that for each
fact about a player i (i.e., for each TVi(ω)) there exists an additional player who knows this fact.

2 Preliminaries

Our Contexts We work with reasonably general contexts with quasi-linear utilities, where the players can
be collusive and are perfectly informed about each other. More formally,

Definition 1. A perfect-knowledge context C is identified by four quantities, C = (N,Ω, TV,C), where

• N is the finite set of players, N = {1, . . . , n}
• Ω is the finite set of states, which includes the empty state, ⊥.

The set Ω defines the set of outcomes: namely, Ω×Rn. It also defines the set V of valuation profiles v:
namely, each valuation vi is a function from Ω to non-negative reals such that vi(⊥) = 0.

• TV is the profile of true valuations (or types): namely, each valuation TVi describes player i’s actual
value for each possible state.
Each TVi defines the utility function ui of player i as follows: for each outcome (ω, P ), ui(ω, P ) =
TVi(ω)− Pi. That is, i’s utility is his true value for the state minus the price he pays. The profile P is
referred to as a price profile.

• C is the collusion structure: namely, a partition of N .
If S is a subset in C, then S is the maximal subset of players colluding with each other. A collusive set
is a member of C with cardinality greater than 1. A player i is independent if {i} ∈ C. The context is
non-collusive if all players are independent, and collusive otherwise.
Each independent player tries to maximize his own utility function, and each collusive set tries to max-
imize the sum of the utilities of its members.

The sets N and Ω are common knowledge to everybody; while the profile TV and the partition C are only
common knowledge to the players.

We stress that the mechanism designer has no knowledge about TV (or C)! In other words, we adhere
to the classic spirit of mechanism design, where all knowledge lies with just the players.

Our Mechanisms Recall that each mechanism M must specify the players’ strategies, including the opt-
out strategy (for each player i this strategy is always denoted by outi), and the outcome (or distribution over
outcomes if M is probabilistic), M(σ), associated to each possible strategy profile σ. In addition, we insist
that each mechanism M must satisfy the following

Opt-Out Condition: M(σ) = (⊥, (0, . . . , 0)) whenever σi = outi for some player i.

For conciseness, we refer to a profile of strategies as a play. The expected utility of player i in a play σ is
E[ui(M(σ))]. As announced, our mechanisms are finite, of extensive form, and public-action, that is, each of
our M specifies a game tree, where exactly one player acts at each node, knowing all actions played so far.
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Unique Subgame Perfect Equilibrium An extensive-form game has a unique subgame perfect equilib-
rium if:

1. At every decision note of height 1, each player has a (necessarily unique) strictly dominant strategy.

2. By induction: every decision node of height k − 1, has a unique subgame perfect equilibrium. Assume
that in any subgame rooted at node of height k− 1, the players choose their strategies according to the
equilibrium corresponding to this node. Then, for each decision node of height k, each player acting at
this node has a strictly dominant strategy.

Social Welfare, Revenue, and Our Goal The social welfare and the revenue of an outcome (ω, P ) are
respectively defined to be

∑
i TVi(ω) and

∑
i Pi.

The maximum rational revenue for a context C = (N,Ω, TV,C) is defined to coincide with the maximum
social welfare (MSW for short), that is, max

ω

∑
i TVi(ω).

3 Impossibility Result for DST mechanisms

Let us prove that DST mechanisms are incapable of properly leveraging external knowledge: namely, in a
perfect-knowledge context, they cannot guarantee even a minuscule fraction of the maximum rational revenue.

Definition 2. A DST mechanism M guarantees a fraction ε of the maximum rational revenue if for any
context C = (N,Ω, TV ) we have

(∗) M(TV, . . . , TV ) = (x, P ) implies
∑
Pi ≥ ε ·MSW .

Note that, in proposition (∗), each TV is not just the true valuation of a single player, but the profile of
all such valuations, because a player’s strategy includes his declaration about the others’ valuations as well.

Note too that the mechanism is not required to choose the outcome which maximizes the social welfare.
Moreover, when not all the players are telling the truth, there is no requirement on the behavior of the
mechanism.

Finally note the following immediate corollary of the opt-out condition. Namely,

Non-negative utility property: if M is a DST mechanism and M(v1, . . . , vn) = (ω, P ), then Pi ≤ vii(ω).

Theorem 1. For any ε > 0 no DST mechanism M guarantees a fraction ε of the maximum rational revenue.

Proof. We actually prove our result even for contexts with just two players and only two possible outcomes.
Without loss of generality, consider the context (N,Ω, TV ) where N = {1, 2} and Ω = {⊥, ω}. In such a
context, a valuation vi of a player i coincides with a single number vi(ω) (because vi(⊥) is bound to be 0),
and so a strategy v for i coincides with a pair of numbers, v = (c1, c2), where c1 is the declared value for
player 1 and c2 the declared value for player 2.

Our proof is by contradiction. We start by analyzing the behavior of M when the two players make
identical and positive (but not necessarily truthful) declarations. More precisely, we prove the following
proposition:

(?) if c1, c2 > 0, then M( (c1, c2) , (c1, c2) ) = (x, (P1, P2)) where

?1: P1 + P2 ≥ ε · (c1 + c2)

?2: x = ω

To see that proposition (?) holds, assume the players bid truthfully; that is assume that c1 = TV1(ω) and
c2 = TV2(ω). In this case, according to (∗) the mechanism must extract a revenue of at least ε ·MSW =
ε · (c1 + c2), and thus P1 + P2 ≥ ε · (c1 + c2), in agreement with inequality ?1.
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Now, the hypothesis c1 + c2 > 0 implies P1 + P2 > 0. Thus, in light of the non-negative utility property,
the state returned by M cannot be ⊥. Since ω is the only other state, M has to return ω in agreement with
equality ?2.

Consider now the declaration K = (1, 1) and let M(K,K) = (y,Q). Then proposition (?) guarantees
that y = ω and that Q1 + Q2 ≥ 2ε. This implies that Qi ≥ ε for at least a player i. Thus, without loss of
generality, we can assume Q1 ≥ ε.

Consider now the strategy K̃ = (ε/2, ε/2), and let us analyze the behavior of M(K̃,K). Let M(K̃,K) =
(x, P ).

We start by proving that x = ω. Assume for contradiction purposes that x =⊥. Then, when TV = K
(and thus player 1 is not truthful), player 2 has an incentive to lie. Indeed, by being truthful, under the
current assumption, his utility is 0. However, if player 2 chose the strategy K̃, then according to (?), the
outcome would be (ω, P1, P2). In this case, according to the non-negative utility property, since player 2’s
self-valuation is ε/2, P2 ≤ ε/2. Thus player 2’s utility would be at least 1− ε/2. Since this utility is positive,
while his utility of being truthful is 0, player 2 has an incentive to lie when TV = K and player 1’s strategy
is K̃. Therefore we must have x 6=⊥, or equivalently x = ω.

Let us now analyze the possible values for P1 and derive a contradiction in every case.

1. Case 1: P1 < ε. In this case, assume that TV = K and compute player 1’s utility under the following
two strategy profiles: (K,K) and (K̃,K). In the first case we already know that M(K,K) = (ω,Q),
where Q1 ≥ ε. Therefore player 1’s utility when being truthful is 1 − Q1 which is at most 1 − ε. On
the other hand, under the strategy profile (K̃,K), player 1’s utility is equal to 1− P1 and thus strictly
greater than 1−ε by hypothesis. Thus, the context ({1, 2}, {⊥, ω},K) contradicts the dominant-strategy
truthfulness of M .

2. Case 2: P1 > ε/2. In this case, since M(K̃,K) = (ω, P ) and K̃ = (ε/2, ε/2), the non-negative utility
property implies that P1 ≤ ε/2, and thus a contradiction.

In sum, if M guarantees an ε fraction of the maximum possible revenue, no price profile exists for M(K̃,K)
that does not contradict the dominant-strategy truthfulness of M . Since we have not assumed any property
of M beyond its being DST, this establishes our theorem. Q.E.D.

4 Our Mechanism

Notation In the mechanism below,

• ε and εij , for i ∈ {2, . . . , n} and j ∈ {1, . . . , n}, are constants such that
1

5n > ε > ε21 > · · · > ε2n > ε31 > . . . > ε3n > · · · > εn1 > · · · > εnn > 0.
• Numbered steps are taken by the players, while steps marked by letters are taken by the mechanism.

• Sentences between quotation marks are comments, and could be excised if no clarification is needed.

• We denote by nr the number of outcomes (ω, P ) with revenue r. For all such outcomes, we denote by
0 ≤ fr(ω, P ) < nr the rank of the outcome (ω, P ) in the lexicographic order that first considers the state
and then the price profile (where P1, . . . Pn precedes P ′1 . . . P

′
n whenever P1 > P ′1, etc.).

Mechanism M

(1) Player 1 announces a state ω? and a profile K1 of natural numbers.

“(ω?,K1) is player 1’s proposed outcome, allegedly an outcome of maximum revenue.”

(a) Set ω = ⊥, and Pi = 0 ∀i. If
∑

iK
1
i = 0, the mechanism ends right now. Otherwise, proceed to Step 2.

“Whenever the mechanism ends, ω and P will be, respectively, the final state and price profile.”
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(2,. . . , n) In Step i, 2 ≤ i ≤ n, player i publicly announces a profile ∆i of natural numbers such that ∆i
i = 0.

“By so doing i suggests to raise the current price of j, that is K1
j +

∑i−1
`=2 ∆`

j , by the amount ∆i
j .”

(b) For each player i, publicly select bipi and P ?i as follows. Let Ri = {j : ∆j
i > 0}.

If Ri 6= ∅, then bipi is highest player in Ri, and P ?i = K1
i +

∑bipi
`=2 ∆`

i . Else, bipi = 1 and P ?i = K1
i .

“We refer to bipi as the best informed player about i, and to P ?i as the provisional price of i.”

(n+ 1) Each player i such that P ?i > 0 simultaneously announces YES or NO.

By default, each player i such that P ?i = 0 announces YES, and player 1 announces YES if bip1 = 1.

“Each player i announces YES or NO to ω? as the final state and to P ?i − ε as his own price.
(By default player 1 accepts his own price if no one raises it.) At this point the players are done
playing, and the mechanism proceeds as follows. If all say YES, the updated proposal (ω?, P ?) is
implemented with probability 1. Else:

• With very high probability the null outcome is chosen, except that the best-informed players
of those saying NO are punished.

• With small probability the null outcome is chosen

• With very small probability, proportional to the number of players saying YES, we implement
(ω?, P ?) as if all said YES.

Importantly, as we shall see, all get a small reward at the end for their knowledge.”

(c) Let Y be the number of players announcing YES. If Y = n, then reset ω to ω? and each Pi to P ?i − ε,
and go to Step g. If Y < n, proceed to Step d.

(d) Publicly flip a biased coin c1 such that Pr[c1 = Heads] = 1− ε.

(e) If c1 = Heads, reset Pbipi to Pbipi + 2P ?i for each player i announcing NO.

(f) If c1 = Tails, letting B =
∑

i announces NO

P ?i , flip a biased coin c2 such that Pr[c2 = Heads] = Y
nB .

If c2 = Heads, reset ω to ω? and each Pi to P ?i − ε.
If c2 = Tails, ω and P continue to be ⊥ and 0n.

(g) Reset P1 to P1 − ε− 2ε
∑

jK
1
j + εfr(ω?)

nr
and each other Pi to Pi − ε−

∑
j ε
i
j∆

i
j.

“Although players’ prices may be negative, we prove that the mechanism never loses money, and
that in the unique rational play the utility of every player is non-negative. For clarity, our rewards
are proportional to prices and raises.”

5 Analysis of Our Mechanism

Mechanism M induces a game G whose game tree has height n + 1, and where only players act at each
internal node. (The mechanism tosses all its coins at leaf nodes, that are defined to be of height 0.) At each
node of height 1 all players act simultaneously, and at every other internal node only a single player acts.
Specifically, at each node of height h ≥ 2 the only acting player is player

ih , n− h+ 2.

For each internal node N , we denote by GN the subgame rooted at N . Recall that a strategy σi of player
i in G specifies, for each node at which i acts, which action i chooses among all those available to him. By σNi

9



we denote the restriction of σi to subgame GN . Given a restricted strategy profile σN for GN , the outcome
of M obtained by executing σN is denoted by M(σN ).

For uniformity, we find it sometimes convenient to assume that every player i belongs to a (necessarily
unique) collusive set, denoted by Ci. If i is independent, then Ci = {i}.

5.1 Statements of Our Lemmas

Lemma 1. If N is a node of height 1, then GN has a unique subgame-perfect equilibrium σN , where

• If i is independent, then σNi consists of announcing YES if and only if TVi(ω
?) ≥ P ?i .

• If i belongs to a coalition C , then σNi consists of announcing YES if and only if

bipi ∈ C or
∑
j∈C

TVj(ω
?) ≥

∑
j∈C

P ?j .

The proof of this lemma is based on the fact that the probability that an outcome is executed is monotone
with the number of players who announce YES. Thus, it is strictly dominant to announce YES, if and only
if the player has positive utility from this outcome and price.

Lemma 2. Let N be a node of height h ∈ [2, n], i = ih, and C = Ci. Then GN has a unique subgame-perfect
equilibrium where i acts as follows at node N : For each collusive set D 6= C ,

1. if ∑
j∈D

(
K1
j +

i−1∑
`=2

∆`
j

)
≥
∑
j∈D

TVj(ω
?)

then i announces ∆i
j = 0 for all j ∈ D ;

2. if ∑
j∈D

(
K1
j +

i−1∑
`=2

∆`
j

)
<
∑
j∈D

TVj(ω
?)

then letting k be the minimal player in D , i announces ∆i
j = 0 for all j ∈ D \ {k} and

∆i
k =

∑
j∈D

(
TVj(ω

?)−K1
j −

i−1∑
`=2

∆`
j

)
.

For his own collusive set C ,

1. if

∑
j∈C

(
K1
j +

i−1∑
`=2

∆`
j

)
≥
∑
j∈C

TVj(ω
?) or

it is the case that k ∈ C for all k > i,

then i announces ∆i
j = 0 for all j ∈ C ;

2. if

∑
j∈C

(
K1
j +

i−1∑
`=2

∆`
j

)
<
∑
j∈C

TVj(ω
?) and

there exists player j > i such that j 6∈ C ,

then letting k be the minimal player in C \ {i}, i announces

10



∆i
k =

∑
j∈C

(
TVj(ω

?)−K1
j −

i−1∑
`=2

∆`
j

)
.

This lemma is technically involved, but conceptually simple. First, we show that a player i never wants to
“overbid,” that is raise the price of another player j to more than j’s true valuation for the proposed state
ω?. When j is independent, this holds because we know that j will announce NO to any price above his true
valuation, and thus no player after i will want to further raise j’s price. Therefore, overbidding on j will
cause i to be punished. Care must still be taken to verify the Step-g rewards of i and j will not change this
simple analysis. (For example j will not accept a higher price in order to get more reward for volunteering
his knowledge about other players.) For coalitions, the argument is more subtle.

After ruling out overbidding, we also show that a player i never wants to “underbid,” that is not raise
the price of a player j when it is below j’s true valuation for the proposed state. Again, this is easier to
argue for independent players. Arguing this point for coalitions is the only time that requires exploiting the
n2 reward values εi,j .

Lemma 3. Let N be the root of the tree (so that GN = G), then G has a unique subgame-perfect equilibrium
where player 1 acts as follows at node N :

1. player 1 announces ω?, the lexicographically first state ω such that
∑

` TV`(ω) = MSW ;

2. for each collusive set D , letting i be the minimal player in D , player 1 announces K1
i =

∑
j∈D TVj(ω

?),

and K1
j = 0 for each j ∈ D \ {i}.

The proof of this lemma is also done in two stages. First, given Lemma 2, we prove that it is dominant for
player 1 to set the prices correctly (although not exactly truthfully in the case of a coalition). Finally, as the
prices are set correctly, choosing the outcome which maximizes the total welfare dominates any other course
of action.

Proofs of our lemmas are in Appendix A.

5.2 Our Main Theorem

Theorem 2. Let σ be the unique subgame perfect equilibrium of G, and let (ω, P ) =M(σ). Then:

(1)
∑

i TVi(ω) = MSW , and

(2)
∑

i Pi ≥ (1− 4εn)MSW .

Proof. In execution σ, by Lemma 3, player 1 announces ω? such that
∑

` TV`(ω
?) = MSW and, for each

coalition D , also announces K1
` =

∑
j∈D TVj(ω

?), where ` is the minimal player in D . Thus
∑

iK
1
i = MSW .

If MSW = 0, then
∑

iK
1
i = 0 andM ends at Step a, with ω = ⊥ and Pi = 0 for each player i. Therefore∑

i TVi(ω) =
∑

i TVi(⊥) = 0 = MSW and
∑

i Pi = 0 = MSW .
If MSW > 0, then

∑
iK

1
i > 0 and M ends at Step g. By Lemma 2, for each player i 6= 1, i announces

∆i
k = 0 for each k. Therefore for each player i, bipi = 1. Furthermore, the total price for each coalition D

equals D ’s total true valuation for ω?: that is,
∑

`∈D P
?
` =

∑
`∈D K

1
` =

∑
`∈D TV`(ω

?). By Lemma 1, every
player in D announces YES in Step n + 1. This implies that, at the end of Step c we have Y = n, ω = ω?,
and, for each coalition D ,

∑
`∈D P` =

∑
`∈D P

?
` −|D |ε =

∑
`∈D TV`(ω

?)−|D |ε. Because Y = n, the execution
of M will then proceed directly to Step g, which does not reset the current state. Thus we have that∑

i

TVi(ω) =
∑
i

TVi(ω
?) = MSW.

Because the reward given to each player i > 1 in Step g is ε, and player 1 gets at most ε+ 2εMSW , then the
final revenue of the mechanism is∑

i

Pi >

(∑
i

TVi(ω
?)− nε

)
− (n− 1)ε− ε− 2εMSW > (1− 4εn)MSW,

11



where we parenthesized the prices after step c, and used that MSW is integer and thus MSW ≥ 1. Q.E.D.
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Appendix

A Proofs of Lemmas 1 to 3

Let us restate and prove Lemma 1 in the absence of collusive players.

Lemma 1′. Let all players be independent, let N be a node of height 1, and for each player i let σNi be the
strategy of i in GN defined according to the following two mutually exclusive cases:

Case 1: N is such that TVi(ω
?) ≥ P ?i . In this case, σNi consists of announcing YES.

Case 2: N is such that TVi(ω
?) < P ?i . In this case σNi consists of announcing NO.

Then, σN is the unique subgame-perfect equilibrium of GN .

Proof. To prove our lemma it suffices to prove that

Each σNi is a (and thus “the”) strictly dominant strategy of player i in GN .

To this end, one needs to consider both cases, but we restrict ourselves to just the first one, because the
second can be handled in a totally symmetric way.

Proof for Case 1. Notice that in mechanismM some players may announce YES in Step n+1 by default,
depending on their best-informed players and provisional prices. Accordingly to prove the strict dominance
of σNi in Case 1 it suffices to consider i such that (a) P ?i > 0 and (b) either i 6= 1 or i = 1 but bip1 6= 1.

Notice that there are only two strategies for i (in Step n+ 1 and thus) in GN : that is, announcing YES
and announcing NO. Since we are working in the hypothesis of Case 1, the first strategy is σNi , and we shall
denote the second one by σ̄Ni . Thus, all we have to show is that σNi strictly dominates σ̄Ni ; that is, letting
σN−i be an arbitrary strategy subprofile for all other players in GN , all we have to show is that

E[ui(M(σNi t σN−i))] > E[ui(M(σ̄Ni t σN−i))].

Notice that in any play of GN the expected utility of player i has three potential components:

1. the reward component that i gets in Step g;

2. the provisional-outcome component, that is, i’s value for the provisional state ω? minus i’s provisional
price P ?i − ε; and

3. the punishment component that i gets if he is the best informed player of some j announcing NO.

The probability of the reward component is always 1 for any play of GN . Moreover the amount of the reward
component, denoted by U1

i , is determined by the actions taken in “ancestor nodes” of N , and thus is the
same in any play of GN .2

The amount of the provisional-outcome component, denoted by U2
i , is the same in any play of GN : namely

U2
i = TVi(ω

?)− (P ?i − ε). However the probability that such component arises depends on the actual play of
GN . Accordingly, we denote this probability by pi for the play σNi t σN−i, and by p̄i for the play σ̄Ni t σN−i.

Finally, the amount of the punishment component only depends on the actions taken by the other players
in GN , and is therefore the same both in play σNi t σN−i and in play σ̄Ni t σN−i. We denote this same quantity
by U3

i . Thus U3
i =

∑
bipj=i,j announces NO 2P ?j . We denote the probability that i’s punishment component

arises in play σNi t σN−i by qi, and that this component arises in play σ̄Ni t σN−i by q̄i.
Accordingly, we have that

E[ui(M(σNi t σN−i))] = U1
i + piU

2
i − qiU3

i and E[ui(M(σ̄Ni t σN−i))] = U1
i + p̄iU

2
i − q̄iU3

i

so that
E[ui(M(σNi t σN−i))]− E[ui(M(σ̄Ni t σN−i))] = U2

i (pi − p̄i) + U3
i (q̄i − qi).

2Indeed, U1
i equals ε+ 2ε

∑
j K

1
j − ε fr(ω

?)
nr

if i = 1, and ε+
∑

j ε
i
j∆

i
j otherwise.
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Therefore to prove our lemma it suffices to show that

U2
i (pi − p̄i) + U3

i (q̄i − qi) > 0. (1)

Notice that, by hypothesis we have TVi(ω
?) ≥ P ?i , which implies U2

i > 0. Also notice that U3
i ≥ 0 (i.e.,

“punishment is never a reward”). To prove Inequality 1 we now distinguish 2 possible scenarios for σN−i.

Scenario 1. All players other than i announce YES.
In this scenario, letting Y and Y be the number of players announcing YES in executions σNi t σN−i and
σ̄Ni t σN−i respectively, we have that Y = n and Y = n− 1 (since i announces YES in σNi and NO in σ̄Ni ). In

turn, this implies pi = 1 and p̄i = ε Y
nP ?

i
= ε(n−1)

nP ?
i

< 1 (since ε < 1 and P ?i is a positive integer). Moreover, in

the present scenario, there is no punishment for player i, and thus U3
i = 0. Accordingly,

U2
i (pi − p̄i) + U3

i (q̄i − qi) = U2
i (1− p̄i) > 0,

proving Inequality 1.

Scenario 2. At least a player j 6= i announces NO.
In this scenario, we have qi = q̄i = 1 − ε. Moreover, defining Y and Y as in the previous scenario, we have
that Y < n and Y = Y − 1, which implies

pi = ε
Y

n
(∑

j 6=i,j announces NO P
?
j

) and p̄i = ε
Y

n
(
P ?i +

∑
j 6=i,j announces NO P

?
j

) .
Comparing the fractions expressing pi and p̄i reveals that pi > p̄i, because the first numerator is greater than
the second, while the first denominator is smaller than the second. In sum, pi − p̄i > 0 and qi − q̄i = 0.
Therefore

U2
i (pi − p̄i) + U3

i (q̄i − qi) = U2
i (pi − p̄i) > 0,

proving again Inequality 1.
Since the above two scenarios are mutually exclusive, Inequality 1 always holds, and thus our lemma is true.

�

Lemma 2′. Let N be a decision node of height h ∈ [2, n], then GN has a unique subgame-perfect equilibrium
where at node N player i = ih acts as follows: For each player j 6= i,

1. if K1
j +

∑i−1
`=2 ∆`

j ≥ TVj(ω?), then i announces ∆i
j = 0;

2. if K1
j +

∑i−1
`=2 ∆`

j < TVj(ω
?), then i announces ∆i

j = TVj(ω
?)−K1

j −
∑i−1

`=2 ∆`
j.

Proof. We proceed by induction on h.

Base Case. When h = 2, we have that i = n. First we prove implication 1 (called No Overbidding), and
then proceed to implication 2 (No Underbidding).

No Overbidding. We begin by giving a high level idea of the proof. Suppose player n overbids on another
player j, that is he announces ∆n

j > 0 such that K1
j +

∑n
`=2 ∆`

j > TVj(ω
?). Consider an alternative strategy

σ̂n for player n in which he announces

∆̂n
j = min(0, TVj(ω

?)− (K1
j +

n−1∑
`=2

∆`
j))

and keeps the rest of his declarations.
The difference in utility between the strategies comes from three terms:
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1. The initial strategy gives player n a larger reward. However, this reward is upper bounded by εnj ∆n
j ,

which is much less than ∆n
j

2. With probability 1− ε player n will be punished by 2P ?j , which is greater than 2∆n
j

3. The probability that c2 = Tails changes. This change can either increase or decrease player n’s expected
utility, depending on whether he prefers ⊥ without paying, or ω? for P ?n . We show that if this decreases
player n’s utility, than it does so by at most 1 < ∆n

j .

Summing the contributions shows that σ̂ gives player n a larger expected utility.
We now give the details. By contradiction, assume that there exist a decision node N of height 2, a player

j 6= n, and a restricted strategy profile σN of subgame GN such that: (1) σNn is a subgame-perfect strategy of
player n in GN ; (2) for each proper subgame GM of GN and each player `, σM` is the unique subgame-perfect
strategy of ` at GM ; and (3) at node N , K1

j +
∑n−1

`=2 ∆`
j ≥ TVj(ω?), and σNn consists of player n announcing

∆n
j > 0. Consider the following alternative strategy σ̂n for n.

Strategy σ̂n

Step n. Run σn and compute ∆n as σn does.

For each player ` 6= j, announce ∆̂n
` = ∆n

` .

If K1
j +

∑n−1
`=2 ∆`

j ≥ TVj(ω?), then announce ∆̂n
j = 0.

If K1
j +

∑n−1
`=2 ∆`

j < TVj(ω
?), then announce ∆̂n

j = TVj(ω
?)−K1

j −
∑n−1

`=2 ∆`
j .

Step n+1. If P ?n = 0, announce nothing.
If P ?n > 0 and TVn(ω?) ≥ P ?n , announce YES.
Otherwise, announce NO.

Notice that σ̂Nn consists of n announcing ∆̂n
j = 0. To emphasize the difference between execution σN and

execution σ̂Nn t σN−n, we write σN as σNn t σN−n. We prove that E[un(M(σNn t σN−n))] < E[un(M(σ̂Nn t σN−n))],
which implies that σNn is not a subgame-perfect strategy of n at GN , contradicting our hypothesis about σNn .
Because the two executions σNn t σN−n and σ̂Nn t σN−n are restricted to GN , for each variable whose value does
not change in GN , we use the same notation in both executions —ω?, K1, and ∆` for each ` 6= n—, without
causing any ambiguity. For the other variables, we use different notations in the two executions —∆n and
∆̂n, bip` and b̂ip`, P

? and P̂ ?, etc, for σNn t σN−n and σ̂Nn t σN−n respectively—, and it should be clear from
the context which execution a notation belongs to.

We have the following observations:

O1: in Step n+1 of both σNn and σ̂Nn , n announces YES or NO consistently with Lemma 1.

O2: for each player ` 6= n, in both executions σNn t σN−n and σ̂Nn t σN−n, ` announces YES or NO in Step n+1
consistently with Lemma 1.

O3: In execution σNn t σN−n, bipj = n, P ?j = K1
j +

∑n
`=2 ∆`

j , and j announces NO.

O4: In execution σ̂Nn t σN−n, b̂ipj 6= n.

O1 is by hypothesis about σNn and by construction of σ̂Nn ; O2 is by hypothesis about σN−n; O3 is by construction

ofM, O2, and the fact that P ?j = (K1
j +
∑n−1

`=2 ∆`
j)+∆n

j ≥ TVj(ω?)+∆n
j > TVj(ω

?); and O4 is by construction

of M and the fact that ∆̂n
j = 0.

We now compare the reward that player n gets in Step g in the two executions. In execution σNn t σN−n
this is ε+

∑
` ε
n
` ∆n

` ; while in execution σ̂Nn t σN−n this is ε+
∑

` ε
n
` ∆̂n

` . By construction of σ̂Nn , ∆̂n
` = ∆n

` for
all ` 6= j, and thus (

ε+
∑
`

εn` ∆̂n
`

)
−

(
ε+

∑
`

εn` ∆n
`

)
= εnj (∆̂n

j −∆n
j ) = −εnj ∆n

j . (2)

16



Therefore it suffices to show that before Step g, E[un(M(σ̂i t τ−i))]− E[ui(M(σi t τ−i))] > εnj ∆n
j .

To do so, notice that for each player ` 6= j (in particular for ` = n), bip` = b̂ip`, P
?
` = P̂ ?` , and ` announces

the same content in Step n+1 in the two executions. The only player whose best informed player, provisional
price, and announcement in Step n+1 may be different in the two executions is player j, due to player n’s
announcement in Step n about him.

We define the following variables:

• u1
n = TVn(ω?)− P ?n + ε.

This is the utility that player n gets in both executions due to the provisional outcome (ω?, P ?) being
implemented, either because everybody announces YES, or because c1 = Tails and c2 = Heads.

• p1
n =

∑
6̀=j: bip`=n, ` announces NO

2P ?` .

This is the punishment that n pays to the mechanism in both executions due to players other than j
announcing NO, when c1 = Heads.

We distinguish two cases, according to u1
n.

Case 1: u1
n > 0.

In this case, player n announces YES in Step n+1, either because Lemma 1 or because P ?n = 0. We
distinguish the following two subcases.

Subcase 1.1: K1
j +

∑n−1
`=2 ∆`

j > TVj(ω
?).

In this subcase, player j announces NO in both executions, despite the value of bipj and b̂ipj .

Accordingly, we have the following facts: (1) Y = Ŷ , and actually for each player `, his announce-
ments in Step n+1 in the two executions are the same; (2) B − B̂ = P ?j − P̂ ?j = ∆n

j > 0 which is

equivalent to say B > B̂; and (3) c1 and c2 are flipped in both executions. According to fact (3),
before Step g

E[un(M(σNn t σN−n))] = −(1− ε)(p1
n + 2P ?j ) +

εY

nB
u1
n,

and

E[un(M(σ̂Nn t σN−n))] = −(1− ε)p1
n +

εŶ

nB̂
u1
n.

Substract the first equation above from the second one, we have that before Step g

E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))]

= (1− ε)2P ?j + (
εŶ

nB̂
− εY

nB
)u1
n > (1− ε)∆n

j > ε∆n
j > εnj ∆n

j ,

where the first inequality is because facts (1) and (2) we have deduced in this subcase, the fact
that u1

n > 0, and that P ?j = K1
j +
∑n−1

`=2 ∆`
j +∆n

j > TVj(ω
?)+∆n

j ≥ ∆n
j ; the second one is because

∆n
j > 0 and 1− ε > ε > 0 (since 0 < ε < 1/5); and the last one is because ε > εnj . We are done in

this subcase.

Subcase 1.2: K1
j +

∑n−1
`=2 ∆`

j = TVj(ω
?).

In this subcase, in execution σ̂Nn t σN−n, j announces YES and P̂ ?j = K1
j +

∑n−1
`=2 ∆`

j = TVj(ω
?).

Combining with O3, we have that: (1) Ŷ = Y + 1; (2) B − B̂ = P ?j ≥ ∆n
j ≥ 1.

If Ŷ = n, then before Step g,

E[un(M(σ̂Nn t σN−n))] = u1
n and E[un(M(σNn t σN−n))] = −(1− ε)2P ?j +

εY

nB
u1
n

17



(notice that p1
n = 0 since Y = n− 1 and j is the only player who announces NO). Accordingly, we

have that

E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))] = (1− ε)2P ?j + (1− εY

nB
)u1
n > (1− ε)∆n

j > εnj ∆n
j ,

where the first inequality is because Y < n, ε < 1, B ≥ 1, and P ?j ≥ ∆n
j .

If Ŷ < n, then before Step g,

E[un(M(σ̂Nn t σN−n))] = −(1− ε)p1
n +

εŶ

nB̂
u1
n

and

E[un(M(σNn t σN−n))] = −(1− ε)(p1
n + 2P ?j ) +

εY

nB
u1
n.

Accordingly, we have that

E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))] = (1− ε)2P ?j + (
εŶ

nB̂
− εY

nB
)u1
n > (1− ε)∆n

j > εnj ∆n
j ,

where the first inequality is because Ŷ > Y , B̂ < B, and P ?j ≥ ∆n
j .

Therefore E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))] > εnj ∆n
j before Step g in this subcase.

To summarize, in Case 1 we have E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))] > εnj ∆n
j before Step g.

Case 2: u1
n < 0.

In this case, P ?n > 0, player n announces NO in Step n+1 in both executions, and thus before Step g,

E[un(M(σ̂Nn t σN−n))] = −(1− ε)p1
n +

εŶ

nB̂
u1
n,

and

E[un(M(σNn t σN−n))] = −(1− ε)(p1
n + 2P ?j ) +

εY

nB
u1
n.

Subtracting the second equation from the first one, we have that before Step g,

E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))] = (1− ε)2P ?j +
εŶ

nB̂
u1
n −

εY

nB
u1
n.

Because 0 > u1
n = TVn(ω?) − P ?n + ε > −P ?n , B ≥ P ?n , and Y < n, we have that 0 > εY

nBu
1
n > −ε.

Similarly, 0 > εŶ

nB̂
u1
n > −ε also. Thus εŶ

B̂n
u1
n − εY

Bnu
1
n > −ε, and

E[un(M(σ̂Nn t σN−n))]− E[un(M(σNn t σN−n))]

> (1− ε)2P ?j − ε ≥ (1− ε)∆n
j − ε = ε∆n

j + (1− 2ε)∆n
j − ε

> εnj ∆n
j + 1− 2ε− ε > εnj ∆n

j ,

where the second inequality is because P ?j ≥ ∆n
j , the third one is because ∆n

j ≥ 1 and ε > εnj , and the
last one is because ε < 1/5. We are done in Case 2 also.
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In sum, in both Case 1 and Case 2 we have that E[un(M(σ̂Nn t σN−n))] − E[un(M(σNn t σN−n))] > εnj ∆n
j

before Step g, which together with Equation 2 implies that E[un(M(σ̂Nn t σN−n))] > E[un(M(σNn t σN−n))].
Implication 1 follows.

No Underbidding.
Again we begin by giving a high level idea of the proof. Suppose player n underbids on another player j,

that is he announces ∆n
j such that K1

j +
∑n−1

`=2 ∆`
j + ∆n

j < TVj(ω
?). Consider an alternative strategy σ̂n for

player n in which he announces

∆̂n
j = TVj(ω

?)− (K1
j +

n−1∑
`=2

∆`
j)

and keeps the rest of his declarations.
The difference in utility between the strategies comes only from the reward, which is bigger in the latter

strategy.
Now we prove Implication 2 for h = 2 (and thus i = n), that is if K1

j +
∑n−1

`=2 ∆`
j < TVj(ω

?), then σNn
consists of n announcing ∆n

j = TVj(ω
?) − K1

j −
∑n−1

`=2 ∆`
j at Step n. We proceed by contradiction, and

assume that σNn is a subgame-perfect strategy of n at GN , and consists of n announcing ∆n
j 6= TVj(ω

?) −
K1
j −

∑n−1
`=2 ∆`

j . Consider the same alternative strategy σ̂Nn as defined before, we are going to show that

E[un(M(σNn tσN−n))] < E[un(M(σ̂Nn tσN−n))]. Using the same rule to refer to variables in execution σNn tσN−n
and execution σ̂Nn t σN−n, we distinguish two cases.

Case 1: σNn consists of n announcing ∆n
j > TVj(ω

?)−K1
j −

∑n−1
`=2 ∆`

j .

In this case, notice that ∆n
j > 0 and ∆̂n

j > 0, bipj = b̂ipj = n, j announces NO in execution σNn t σN−n,

while announcing YES in execution σ̂Nn t σN−n. The remaining analysis is very similar to Subcase 1.2
and Case 2 in the proof of Implication 1 above, and thus ignored here.

Case 2: σNn consists of n announcing ∆n
j < TVj(ω

?)−K1
j −

∑n−1
`=2 ∆`

j .

In this case, in executions σNn t σN−n and σ̂Nn t σN−n, the rewards that player n receives in Step g are

ε +
∑

` ε
n
` ∆n

` and ε +
∑

` ε
n
` ∆̂n

` respectively. Since ∆n
` = ∆̂n

` for all ` 6= j and ∆n
j < TVj(ω

?) −K1
j −∑n−1

`=2 ∆`
j = ∆̂n

j , we have that

ε+
∑
`

εn` ∆n
` < ε+

∑
`

εn` ∆̂n
` ,

that is player n receives strictly less reward in execution σNn tσN−n than in execution σ̂Nn tσN−n. Therefore
it suffices to show that before Step g, E[un(M(σNn t σN−n))] ≤ E[un(M(σ̂Nn t σN−n))].

Since j announces YES in both executions, we have that Y = Ŷ and B = B̂. Thus before Step g, either
Y = n and E[un(M(σNn t σN−n))] = E[un(M(σ̂Nn t σN−n))] = u1

n, or Y < n and E[un(M(σNn t σN−n))] =
E[un(M(σ̂Nn t σN−n))] = −(1 − ε)p1

n + εY
nBu

1
n. That is, E[un(M(σNn t σN−n))] = E[un(M(σ̂Nn t σN−n))]

before Step g, despite the value of Y .

In sum, we have that E[un(M(σNn t σN−n))] < E[un(M(σ̂Nn t σN−n))] in Case 2.

Combining Case 1 and Case 2, Implication 2 follows for h = 2.
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Inductive Step. Now we prove that Lemma 2’ is true for each node N of height h ∈ [3, n], given that it
is true for each node M of height < h. The proof is very similar to the base of the induction, and thus some
of the cases are omitted.

No Overbidding. We first prove, by contradiction, Implication 1. Assume that there exist a decision node
N of height h, a player j 6= i, and a restricted strategy profile σN for subgame GN such that: (1) σNi is a
subgame-perfect strategy of player i in GN ; (2) for each proper subgame GM of GN and each player `, σM`
is the unique subgame-perfect strategy of ` at GM ; and (3) at node N , K1

j +
∑i−1

`=2 ∆`
j ≥ TVj(ω

?), and σNi
consists of player i announcing ∆i

j > 0. Consider the following alternative strategy σ̂i for i (essentially σ̂i is
the same as σ̂n defined before, except that every reference to player n now is to player i).

Strategy σ̂i

Step i. Run σi and compute ∆i as σi does.

For each player ` 6= j, announce ∆̂i
` = ∆i

`.

If K1
j +

∑i−1
`=2 ∆`

j ≥ TVj(ω?), then announce ∆̂i
j = 0.

If K1
j +

∑i−1
`=2 ∆`

j < TVj(ω
?), then announce ∆̂i

j = TVj(ω
?)−K1

j −
∑i−1

`=2 ∆`
j .

Step n+1. If P ?i = 0, announce nothing.
If P ?i > 0 and TVi(ω

?) ≥ P ?i , announce YES.
Otherwise, announce NO.

We prove that E[ui(M(σNi t σN−i))] < E[ui(M(σ̂Ni t σN−i))], which implies that σNi is not a subgame-perfect
strategy of i at GN , contradicting our hypothesis about σNi .

To do so, we define the following variables:

•
u1
i =

{
TVi(ω

?)− (K1
i +

∑i−1
`=2 ∆`

i) + ε if K1
i +

∑i−1
`=2 ∆`

i > TVi(ω
?);

ε if K1
i +

∑i−1
`=2 ∆`

i ≤ TVi(ω?).

This is the utility that player i gets in both executions due to the provisional outcome (ω?, P ?) being
implemented. Notice that this definition is different from its counterpart u1

n defined before. This is
because players ` > i will announce their ∆` after Step i, and P ?i has not been defined yet in Step
i. However, according to our induction assumption, the value of P ?i has been fully determined by the
values of K1

i +
∑i−1

`=2 ∆`
i and TVi(ω

?):
if K1

i +
∑i−1

`=2 ∆`
i > TVi(ω

?), then for each player ` > i, σN` consists of ` announcing ∆`
i = 0 at step `,

and thus P ?i = K1
i +

∑i−1
`=2 ∆`

i and u1
i = TVi(ω

?)− P ?i + ε = TVi(ω
?)− (K1

i +
∑i−1

`=2 ∆`
i) + ε;

if K1
i +

∑i−1
`=2 ∆`

i ≤ TVi(ω
?), then σNi+1 consists of player i + 1 announcing ∆i+1

i = TVi(ω
?) − (K1

i +∑i
`=2 ∆`

i) = TVi(ω
?)− (K1

i +
∑i−1

`=2 ∆`
i) at Step i+ 1, and σN` consists of player ` announcing ∆`

i = 0 at
Step ` for each ` > i+ 1, which implies that P ?i = TVi(ω

?) and u1
i = TVi(ω

?)− P ?i + ε = ε.

•

p1
i =

∑
6̀=j: ∆i

`>0, K1
` +

∑i
k=2 ∆k

`>TV`(ω
?)

2

(
K1
` +

i∑
k=2

∆k
`

)
.

This is the punishment that i pays to the mechanism in both executions due to players other than
j announcing NO in Step n+1, when c1 = Heads. Notice that this definition is different from its
counterpart p1

n. But according to our induction assumption, and by the fact that ∆i
` = ∆̂i

` for all ` 6= j,
the punishment that player i pays after Step n+1 in both executions has been fully determined by the
players’ announcement till Step i:
For each player ` 6= j such that ∆i

` > 0 and K1
` +
∑i

k=2 ∆k
` > TV`(ω

?), for each player k > i, σNk consists

of announcing ∆k
` = 0. Thus bip` = b̂ip` = i, P ?` = P̂ ?` = K1

` +
∑i

k=2 ∆k
` , σ

N
` consists of ` announcing

NO in Step n+1, and i is punished by 2P ?` in both executions.
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For every other player `, either ∆i
` = 0 and bip` = b̂ip` 6= i, or ∆i

` > 0 and K1
` +

∑i
k=2 ∆k

` ≤ TV`(ω
?).

No matter which is the case, in both executions i is not punished due to the announcement of player `
in Step n+1.

Once u1
i and p1

i are defined, the remaining analysis for proving E[ui(M(σNi t σN−i))] < E[ui(M(σ̂Ni t σN−i))]
is almost the same as the analysis for Implication 1 when h = 2 and i = n, and is ignored here.

No Underbidding. Again, this is very similar to the base case.
To prove Implication 2 for h ∈ [3, n], notice that if σNi consists of i announcing ∆i

j > TVj(ω
?) − (K1

j +∑i−1
`=2 ∆`

j), then E[ui(M(σNi t σN−i))] < E[ui(M(σ̂Ni t σN−i))] for the same reasons as in Implication 1, with

σ̂Ni defined as before. If σNi consists of i announcing ∆i
j < TVj(ω

?) − (K1
j +

∑i−1
`=2 ∆`

j), as in Implication 2

when h = 2, we have that E[ui(M(σNi t σN−i))] = E[ui(M(σ̂Ni t σN−i))] before Step g, but i receives strictly
larger reward in Step g in execution σ̂Ni t σN−i, which implies E[ui(M(σNi t σN−i))] < E[ui(M(σ̂Ni t σN−i))].

To summarize, we have that for all h ∈ [2, n], Lemma 2’ holds. �

Lemma 2. Let N be a node of height h ∈ [2, n], i = ih, and C = Ci. Then GN has a unique subgame-perfect
equilibrium where i acts as follows at node N : For each collusive set D 6= C ,

1. if ∑
j∈D

(
K1
j +

i−1∑
`=2

∆`
j

)
≥
∑
j∈D

TVj(ω
?)

then i announces ∆i
j = 0 for all j ∈ D ;

2. if ∑
j∈D

(
K1
j +

i−1∑
`=2

∆`
j

)
<
∑
j∈D

TVj(ω
?)

then letting k be the minimal player in D , i announces ∆i
j = 0 for all j ∈ D \ {k} and

∆i
k =

∑
j∈D

(
TVj(ω

?)−K1
j −

i−1∑
`=2

∆`
j

)
.

For his own collusive set C ,

1. if

∑
j∈C

(
K1
j +

i−1∑
`=2

∆`
j

)
≥
∑
j∈C

TVj(ω
?) or

it is the case that k ∈ C for all k > i,

then i announces ∆i
j = 0 for all j ∈ C ;

2. if

∑
j∈C

(
K1
j +

i−1∑
`=2

∆`
j

)
<
∑
j∈C

TVj(ω
?) and

there exists player j > i such that j 6∈ C ,

then letting k be the minimal player in C \ {i}, i announces

∆i
k =

∑
j∈C

(
TVj(ω

?)−K1
j −

i−1∑
`=2

∆`
j

)
.
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Proof. For each collusive set D 6= C , the reasoning is almost the same as in Lemma 2’, with the following
new points: For each player j ∈ D and each player ` ∈ C such that ` > i, we have that εij > ε`j , and thus
letting i raise j’s price gives C ’s members more reward than letting ` do so. Therefore given that ` (if exists)
will raise D ’s members’ price, it is still preferable for i to do so, whenever he has a chance (that is, whenever∑

j∈D

(
K1
j +

∑i−1
`=2 ∆`

j

)
<
∑

j∈D TVj(ω
?)), but he should never raise so much that he gets punished due to

D ’s members announcing NO. Finally, i prefers to raise price for the minimal player k in D , because doing
so gives him the most reward (εik > εik′ for each k′ > k), and will not affect D ’s members announcement in
Step n+1, by Lemma 1.

For collusive set C , we have the following intuition: For players in C , if
∑

j∈C

(
K1
j +

∑i−1
`=2 ∆`

j

)
<∑

j∈C TVj(ω
?) and all players j > i are in C , then nobody after i will raise price for C ’s members, and i

prefers not raising either, since by raising his colluder `’s price by 1, he gets reward at most ε more, but `

loses utility 1, and the sum of their utilities decreases. While if
∑

j∈C

(
K1
j +

∑i−1
`=2 ∆`

j

)
<
∑

j∈C TVj(ω
?)

and there exists a player j > i not in C , then j will raise price for C ’s members anyway, in which case i
prefers doing so by himself, because this will not hurt his colluders’ utilities but gives i himself more reward.
Moreover, i prefers raising price for C ’s members by himself, instead of letting some colluder i′ > i do so,
because εi` > εi

′
`′ for each ` and `′, and raising price by i gives C ’s members more reward. Of course, i will

never raise so much that C ’s members jointly get negative utility. Finally, i prefers to raise price for the
minimal player k in C \ {i}, because he can not raise price for himself, and raising price for k gives him the
most reward (since εik > εik′ for any k′ > k).

The detailed proof is complicated and highly repetitive, and thus ignored here. �

Lemma 3′. Let N be root of the tree (so that GN = G), then G has a unique subgame-perfect equilibrium
where player 1 acts as follows at node N :

1. player 1 announces ω?, the lexicographically first state ω such that
∑

` TV`(ω) = MSW ;

2. player 1 announces K1
i = TVi(ω

?) for each player i.

Proof. We first prove Implication 2, that is, (actually no matter what ω? is,) player 1 announces K1
i = TVi(ω

?)
for each player i. We proceed by contradiction. Assume there exist a subgame perfect equilibrium σ such
that at node N , σ1 consists of player 1 announcing K1 such that K1

i 6= TVi(ω
?) for some player i. Consider

the following alternative strategy σ̂1.

Strategy σ̂i

Step 1. Announce ω̂? = ω?.

Announce K̂1
` = TV`(ω

?) for each player `.

Step n+1. If P ?1 = 0 or bip1 = 1, announce nothing.
If bip1 6= 1, P ?1 > 0, and TV1(ω?) ≥ P ?1 , announce YES.
If bip1 6= 1, P ?1 > 0, and TV1(ω?) < P ?1 , announce NO.

To emphasize the difference between execution σ and execution σ̂1 t σ−1, we write σ as σ1 t σ−1. We prove
that E[u1(M(σ1 t σ−1))] < E[u1(M(σ̂1 t σ−1))], which implies that σ1 is not a subgame-perfect strategy of
player 1 in G, contradicting our hypothesis about σ1.

To do so, notice that the two executions σ1 t σ−1 and σ̂1 t σ−1 differ from Step 1. Accordingly, for every
variable in the mechanism, we use different notations to refer to it in the two executions (ω? and ω̂?, K1 and
K̂1, ∆` and ∆̂`, P ? and P̂ ?, etc). It should be clear from the context to which execution a notation belongs.

We have the following three observations:

O1: in both executions, in Step n+1, every player ` announces YES or NO consistently with Lemma 1′.

O2: every player ` 6= 1 announces ∆` and ∆̂` in Step ` in both executions consistently with Lemma 2′. That is,
for each player k 6= `, ` announces ∆`

k (respectively, ∆̂`
k) to be 0 if K1

k+
∑`−1

j=2 ∆j
k ≥ TVk(ω

?) (respectively,
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if K̂1
k +
∑`−1

j=2 ∆̂j
k ≥ TVk(ω̂

?)), and TVk(ω
?)− (K1

k +
∑`−1

j=2 ∆j
k) (respectively, TVk(ω̂

?)− (K̂1
k +
∑`−1

j=2 ∆̂j
k))

otherwise.

O3: in execution σ̂1 t σ−1, every player ` 6= 1 announces ∆̂`
k = 0 for each k 6= `; and for every player

` (including player 1 himself), b̂ip` = 1, player ` announces YES in Step n+1, and player 1 is never
punished.

O4: in execution σ1 t σ−1, K1
1 +

∑n
k=2 ∆k

1 ≥ TV1(ω?).

Here O1 is by our hypothesis of σ1 t σ−1, by construction of σ̂1, and by Lemma 1′; O2 is by our hypothesis
of σ−1 and by Lemma 2′; O3 is by O2 and O1, and by construction of σ̂1; and O4 is directly implied by O2.

We distinguish 4 exhaustive cases according to σ1.

Case 1: there exists j 6= 1 such that K1
j > TVj(ω

?).
Without loss of generality, assume that j is the only such player. In this case, in execution σ1 t τ−1,∑

lK
1
l ≥ K1

j > 0, and the mechanism M does not end at Step a. Therefore bipj = 1 by O2 and the

mechanism, and P ?j = K1
j > TVj(ω

?). According to O1, j announces NO in Step n+ 1, and player 1 is

punished by 2K1
j when c1 = Heads. Because P ?1 ≥ TV1(ω?) by O4, the utility that player 1 can get in

Step f (when c1 = Tails and c2 = Heads) is at most ε. Further because the reward that player 1 can get
in Step g is less than ε+ 2ε

∑
`K

1
` , we have that

E[u1(M(σ1t τ−1))] < −(1− ε)2K1
j +

εY

Bn
· ε+ ε+2ε

∑
`

K1
` < −(1−3ε)2K1

j +2ε+2ε
∑
` 6=j

K1
` < 2ε

∑
6̀=j
K1
` ,

where the second inequality is because Y ≤ n − 1 < n, B ≥ K1
j ≥ 1, and ε < 1; and the last one is

because K1
j ≥ 1 and ε < 1/5.

In execution σ̂1 t τ−1, if
∑

l K̂
1
l = 0, then M ends at Step a with ω = ⊥ and P1 = 0, therefore

E[u1(M(σ̂1 t τ−1))] = 0.

But then
∑
6̀=jK

1
` = 0, and thus E[u1(M(σ1 t τ−1))] < 0.

If
∑

l K̂
1
l > 0, then by O3, Ŷ = n and P̂ ?1 = K̂1

1 = TV1(ω?). Accordingly, E[u1(M(σ̂1 t τ−1))] =

TV1(ω?)−P̂ ?1 +ε = ε before Step g, and player 1 gets reward at least 2ε
∑

` K̂
1
` in Step g. By assumption,

K̂1
` = TV`(ω

?) ≥ K1
` for each ` 6= j, which implies

E[u1(M(σ̂1 t τ−1))] ≥ ε+ 2ε
∑
`

K̂1
` ≥ ε+ 2ε

∑
`6=j

K1
` .

Therefore in Case 1 we have that E[u1(M(σ1 t τ−1))] < E[u1(M(σ̂1 t τ−1))].

Case 2: K1
l ≤ TVl(ω?) for all l 6= 1, but there exists j 6= 1 such that K1

j < TVj(ω
?).

In this case, in execution σ1 t τ−1, by O2, for each player l 6= 1, no matter whom bipl is, we have that
P ?l = TVl(ω

?) and l announces YES in Step n+ 1.

If K1
1 > TV1(ω?), then by O2, ∆l

1 = 0 for each player l 6= 1, bip1 = 1, and P ?1 = K1
1 . By the mechanism,

player 1 announces YES “by default”, therefore Y = n, and

E[u1(M(σ1 t τ−1))] = TV1(ω?)− P ?1 + ε = TV1(ω?)−K1
1 + ε
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before Step g. Since the reward that player 1 gets in Step g is less than ε+ 2ε
∑

`K
1
` , we have that

E[u1(M(σ1 t τ−1))]

< TV1(ω?)−K1
1 + 2ε+ 2ε

∑
`

K1
`

= −(1− 2ε)(K1
1 − TV1(ω?)) + 2ε+ 2ε

∑
`6=1

K1
` + 2εTV1(ω?)

≤ −1 + 4ε+ 2ε
∑
` 6=1

K1
` + 2εTV1(ω?)

< 2ε
∑
6̀=1

K1
` + 2εTV1(ω?),

where the second inequality is because K1
1 − TV1(ω?) ≥ 1, and the last inequality is because ε < 1/4.

But
E[u1(M(σ̂1 t τ−1))] ≥ ε+ 2ε

∑
`

K̂1
` ≥ ε+ 2ε

∑
` 6=1

K1
` + 2εTV1(ω?),

where the first inequality is as in Case 1. Thus E[u1(M(σ1 t τ−1))] < E[u1(M(σ̂1 t τ−1))].

If K1
1 ≤ TV1(ω?), then E[u1(M(σ1 t τ−1))] = 0 if

∑
lK

1
l = 0. If

∑
lK

1
l > 0, then by O2, no matter

whom bip1 is, we have that P ?1 = TV1(ω?), and player 1 always announces YES in execution σ1 t τ−1.

Therefore E[u1(M(σ1 t τ−1))] = ε+ ε+ 2ε
∑

`K
1
` − ε

fr(ω?)
nr

. That is,

E[u1(M(σ1 t τ−1))] ≤ 2ε+ 2ε
∑
`

K1
` − ε

fr(ω
?)

nr

no matter what
∑

lK
1
l is. While in execution σ̂1 t τ−1, by O3,

E[u1(M(σ̂1 t τ−1))] = 2ε+ 2ε
∑
`

K̂1
` − ε

fr(ω
?)

nr
.

Since K̂1
l = TVl(ω

?) ≥ K1
l for all l 6= j and K̂1

j = TVj(ω
?) > K1

j , we have that E[u1(M(σ1 t τ−1))] <
E[u1(M(σ̂1 t τ−1))].
In sum, in Case 2 we have E[u1(M(σ1 t τ−1))] < E[u1(M(σ̂1 t τ−1))].

Case 3: K1
j = TVj(ω

?) for all j 6= 1, but K1
1 > TV1(ω?).

In this case, similar to Case 2 when K1
1 > TV1(ω?), we have that

E[u1(M(σ1 t τ−1))] < 2ε
∑
`6=1

K1
` + 2εTV1(ω?) < E[u1(M(σ̂1 t τ−1))].

Case 4: K1
j = TVj(ω

?) for all j 6= 1, but K1
1 < TV1(ω?).

In this case, similar to Case 2 when K1
1 ≤ TV1(ω?), we have that

E[u1(M(σ1 t τ−1))] ≤ 2ε+ 2ε
∑
`

K1
` − ε

fr(ω
?)

nr
< E[u1(M(σ̂1 t τ−1))].

To summarize, we have that E[u1(M(σ1tτ−1))] < E[u1(M(σ̂1tτ−1))] in all four cases. Therefore Implication
2 holds.

We now prove Implication 1, that is, player 1 announces ω? to be the lexicographically first state ω such that∑
` TV`(ω) = MSW . We again proceed by contradiction. Assume there exists a subgame perfect equilibrium
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σ such that at node N , σ1 consistes of player 1 announcing ω? either with
∑

` TV`(ω
?) < MSW , or with∑

` TV`(ω
?) = MSW but ω? not being the lexicographically first such state.

By Implication 2, we have that K1
` = TV`(ω

?) for each player `. Consider the following alternative
strategy σ̂1 for player 1.

Strategy σ̂i

Step 1. Announce ω̂? = argmaxo∈Ω

∑
l TVl(o), with ties broken lexicographically.

Announce K1
l = TVl(ω̂

?) for each player l.

Step n+ 1. If P ?1 = 0 or bip1 = 1, announce nothing.
If bip1 6= 1, P ?1 > 0, and TV1(ω?) ≥ P ?1 , announce YES.
If bip1 6= 1, P ?1 > 0, and TV1(ω?) < P ?1 , announce NO.

We prove that E[u1(M(σ1 t σ−1))] < E[u1(M(σ̂1 t σ−1))], which implies that σ1 is not a subgame-perfect
strategy of player 1 in G, contradicting our hypothesis about σ1.

Similar to the proof of Lemma 2′, for each variable in the mechanism, we refer to it using different
notations in the two executions σ1 t σ−1 and σ̂1 t σ−1 (K1 and K̂1, ω? and ω̂?, P ? and P̂ ?, etc). It should
be clear from the context to which execution a notation belongs.

By Lemmas 1′ and 2′, we have that for each player l 6= 1, l announces ∆l
k = ∆̂l

k = 0 for each k 6= l.

Therefore bipl = b̂ipl = 1 for each player l, and l announces YES in Step n + 1 in both executions. Similar
to Case 2 of Implication 2, we have that

E[u1(M(σ̂1 t σ−1))] = 2ε+ 2ε
∑
`

K̂1
` − ε

fr(ω̂
?)

nr
.

If E[u1(M(σ1 t σ−1))] < MSW , then

E[u1(M(σ1tσ−1))] ≤ 2ε+2ε
∑
`

K1
`−ε

fr(ω
?)

nr
≤ 2ε+2ε

∑
`

K̂1
`−2ε−εfr(ω

?)

nr
≤ 2ε

∑
`

K̂1
` < E[u1(M(σ̂1tσ−1))].

If
∑

` TV`(ω
?) = MSW , then

E[u1(M(σ1 t σ−1))] = 2ε+ 2ε
∑
`

K1
` − ε

fr(ω
?)

nr
= 2ε+ 2ε

∑
`

K̂1
` − ε

fr(ω
?)

nr
< E[u1(M(σ̂1 t σ−1))],

since fr(ω
?) > fr(ω̂

?) by hypothesis.

In sum, we have that E[u1(M(σ1 t σ−1))] < E[u1(M(σ̂1 t σ−1))]. Therefore Implication 1 holds �

Proving Lemma 3 based on Lemmas 1 and 2 is almost the same as proving Lemma 3′ based on Lemmas 1′

and 2′, and thus ignored here.

B The Complexity of the GP Mechanism

In this appendix we give an example in which the GP mechanism requires an exponential number of rounds,
although the number outcomes is two, there are five players, each player can have at most two types, and
the mechanism is only required to succeed with constant probability (The same example also requires a
double-exponential amount of communication in the AM mechanism).
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Context Sketch We give an informal description of the context of the AM [1] and GP [11, 24] mechanisms.
Let n denote the number of players. Each player pi has a set Ti of all possible types for this player. The
set Ti is finite, and is known to the designer. In the example we present |Ti| = 2 for every i. There is also
a set of outcomes A, and for ti ∈ Ti, and α ∈ A we denote by ti(α) how much player i values the outcome
α if his type is ti. The GP mechanism requires that if s, t ∈ Ti, then there exists an outcome α such that
s(α) 6= t(α). In addition, each player has a true type Θi ∈ Ti, which is unknown to the designer.

The designer is also given as input a Social Choice Function, which is a function from the type of all the
players to outcomes

SCC : T1 × T2 × . . .× Tn → A.

The goal of the designer is to guarantee that with probability at least 1− ε the output of the mechanism is
SCC(Θ1, . . . ,Θn).

Sketch of the GP Mechanism Following Abreu and Matsushima, Glazer and Perry design rely on a
function f from types of the players to probability distribution over outcomes, such that for every two types
ti, t̃i ∈ Ti, we have that if the player’s true valuation is ti, then he strictly prefers f(ti) to f(t̃i). The GP
mechanism then proceeds by performing k + 1 rounds, where in each round all the players speak, one after
the other. In the first k rounds, every player declares the types of all the players, while in the last round each
player declares only his own type. Finally, the mechanism chooses the outcome in the following manner:

1. Choosing the outcome:

(a) With probability ε: round k+1 is chosen. Pick a random player i, and let ti denote his declaration
in round k + 1. The outcome is f(ti) up to fines (which will be described later)

(b) With probability 1 − ε: pick a random round 1 ≤ j ≤ k. If at least n − 1 players declared the
same vector of types (t1, . . . , tn) in this round, select the outcome SCC((t1, . . . , tn)). Else, pick
an arbitrary outcome O.

2. Choosing the fines:

(a) Let t1, . . . , tn be the vector of types declared by the players in the final round.

(b) Let p be the last player not to declare t1, . . . tn, in the previous k rounds. That player pays a small
fine δ.

Analysis of their Mechanism In order for this scheme to work, one must be careful about the choice
of parameters. To define these parameters, for ti, t̃i ∈ Ti, let Lf (ti, tj) = U(ti, f(ti)) − U(ti, f(tj)) be the
advantage that a player whose true type is ti gains from reporting ti and not tj , where in computing Adv
we take the minimum over all players i and pairs of types. In addition, let Adv = minΘi,Θj Lf (Θi,Θj) be
the minimum such advantage. Also, let B denote the maximal difference in valuation between the default
outcome O, and the outcome dictated by the social choice SCC(Θ1, . . .Θn). We require

εAadv/n ≥ δ ≥ B
1

k

Given these constraints, the proof of Glazer Perry uses a backward induction argument to prove the existence
of a unique subgame perfect equilibrium. In the last round, it is better for a player i to report his true valuation
regardless of anything which happened in the previous rounds, as the small probability that the result will
be f(Θi) and not f(ti) for some ti 6= Θi is enough to overcome any fine which the player will need to bear.
Given that we assume that all the players report the truth in the last round, a backwards induction shows
that no player has incentive to deviate from the truth. Indeed, let i denote the last player to deviate from
the truth, and suppose he does so in round j. In this case, consider the case in which the player does not
deviate from the truth in that round. By telling the truth, player i can decrease the fine he pays, but also
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changes the output of the mechanism if round j is chosen in step 2. While decreasing the fine is always good
for player i, he may either gain or loose by the new outcome. To guarantee that he doesn’t loose too much
by the new outcome, the GP mechanism relies on the low probability of this event, which is proportional to
1/k. This requires k to be large.

Our Example Finally, we can present our example. There are two possible outcomes, α, β. We have
T1 = T2 = T3 = T4, and T1 = {tα, tβ}, where

tα(α) = 1, tα(β) = 0

and similarly
tβ(α) = 0, tβ(β) = 1.

That is, each one of the first four players has a slight preference for one of the alternatives. The fifth player
is similar, except that he has a strong preference, that is T5 = {t̂α, t̂β}, where

t̂α(α) = 2n, t̂α(β) = 0

and similarly
t̂β(α) = 0, t̂β(β) = 2n.

Note that this preference only requires O(n) bits to describe; still the number of rounds will be exponential.
Finally, the required SCC picks the alternative which is worse for most of the players. That is, if a

majority of the players have type tα or t̂α the SCC requires to output β, and vice versa.

Analysis of Our Example We begin by showing that the fine has to be less than ε. We do so by
considering player 1. Let f1 denote the function the mechanism uses to decide on the outcome in the k + 1
round, given that player 1 was picked at random in the last round. Any such function must give Adv ≤ 1 (this
can be obtained by f1(tα) = α, and f1(tβ) = β, which is essentially giving player 1 his preferred outcome).
However, since the proof requires that the player is truthful at the last round even if this makes him pay a
fine, we must require that the fine δ < ε/5, his expected utility gain from being truthful.

Consider O, the default outcome outputted by the mechanism in case that round j is chosen at random,
and there are no n− 1 = 4 players who declared the same vector of valuations in that round. Since the types
of the players and the SCC function are symmetric, we can assume wlog that O = α. Suppose that the true
types of the players are Θ1 = Θ2 = Θ3 = Θ4 = tα, and Θ5 = t̂α. Following the induction proof, we can safely
assume that since the fine is small, all the players will be truthful in round k + 1. But what will happen in
round k?

Consider the case in which the first three players declared the truth, and the fourth player lied. We want
to argue that in this case the fifth player should declare the truth. If the fifth player declares the truth, and
the k’th round is chosen, the outcome of the mechanism will be β. In this case, player 5 will not be punished,
and player 4 will be.

On the other hand, if he chooses to lie, and the mechanism chooses round k, the outcome will be α.
However, whether round k is being picked or not, player 5 will have to pay a fine of δ < ε/5. The expected
difference in the expected utility between these options is 2n

k − δ. To make this negative (so that the truthful
option is chosen), we require δ > 2n

k , which gives k > 5 · 2n/ε > 2n, as required.
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