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Abstract

Mechanism design enables a social planner to obtain a desired outcome by leveraging the
players’ rationality and their beliefs. It is thus a fundamental, yet unproven, intuition that the
higher the level of rationality of the players, the better the set of obtainable outcomes.

In this paper we prove this fundamental intuition for players with possibilistic beliefs, the
traditional model of epistemic game theory. Specifically,

• We define a sequence of monotonically increasing revenue benchmarks for single-good
auctions, G0 ≤ G1 ≤ G2 ≤ · · · , where each Gi is defined over the players’ beliefs and G0

is the second-highest valuation (i.e., the revenue benchmark achieved by the second-price
mechanism).

• We (1) construct a single, interim individually rational, auction mechanism that, without
any clue about the rationality level of the players, guarantees revenue Gk if all players
have rationality levels ≥ k + 1, and (2) prove that no such mechanism can get even close
to guarantee revenue Gk when at least two players are at most level-k rational.
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1 Introduction

Mechanism design traditionally models beliefs as probability distributions, and the players as
expected-utility maximizers. By contrast, epistemic game theory has successfully and meaning-
fully studied possibilistic (i.e., set-theoretic) beliefs and more nuanced notions of rationality. In this
paper we embrace the epistemic model and prove that, in single-good auctions, “more revenue is
obtainable from more rational players.” Let us explain.

Possibilistic (Payoff-type) Beliefs Intuitively, for a player i:

• i’s level-0 beliefs consist of his own (payoff) type;
• i’s level-1 beliefs consist of the set of all type subprofiles of his opponents that he considers
possible (although he may be unable to compare their relative likelihood);
• i’s level-2 beliefs consist of the set of level-1 belief subprofiles of his opponents that he considers
possible;
• and so on.

As usual, beliefs can be wrong1 and beliefs of different players may be inconsistent; furthermore,
we do not assume the existence of a common prior, or that a designer has information about the
players’ beliefs.

Rationality Following Aumann [4], we do not assume that the players are expected utility max-
imizers, and let them choose actions that are “rational in a minimal sense”. Intuitively,
• A player is (level-1) rational if he only plays actions that are not strictly dominated by some
fixed pure action in every world he considers possible.2

• Recursively, a player is level-(k+1) rational if he (a) is rational and (b) believes that all his
opponents are level-k rational.

We do not assume that a mechanism (designer) has any information about the players’ rationality
level.

Intuitive Description of Our Revenue Benchmarks For auctions of a single good, we con-
sider a sequence of demanding revenue benchmarks, G0, G1, . . . .

Intuitively, for any non-negative value v,

• G0 ≥ v if and only if there exist at least two players valuing the good at least v.
(Note that G0 is the benchmark achieved by the second-price mechanism.)

• G1 ≥ v if and only if there exist at least two players
believing that there exists a player (whose identity need not be known)
valuing the good at least v.3

• G2 ≥ v if and only if there exist at least two players
believing that there exists a player (whose identity need not be known)
believing that there exists a player (whose identity need not be known)
valuing the good at least v.

• And so on.
1That is a player’s belief —unlike his knowledge— need not include the true state of the world.
2Due to this notion of rationality, it is without loss of generality to restrict to possibilistic beliefs. If players had

probabilistic beliefs, the support of these beliefs alone determines whether a player is rational.
3Note that G1 is the benchmark achieved by the mechanism of [15].
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Example 1. Let there be three players, with respective true valuations 0, 50, and 100. Then
G0 = 50. �

Example 2. Let there be three players, with respective true valuations 0, 0, and 100. Each player
believes that the valuation subprofile for his opponents is either (0, 100) or (100, 0).4 Then G0 = 0
and G1 = 100. �

Example 3. Let there be two players, each valuing the good 0, with the following beliefs.
Player 1 believes that player 2

(a) values the good 100 and
(b) believes that player 1 values it 200.

Player 2 believes that player 1
(a′) values the good 100 and
(b′) believes that player 2 values it 300.

Then G0 = 0, G1 = 100, and G2 = 200. �

It is intuitive (and easily verifiable from the formal definitions of our benchmarks) that

(i) G0 coincides with the second-highest valuation;

(ii) G0 ≤ G1 ≤ · · · , and each Gk+1 can be arbitrarily higher than Gk;

(iii) If the players’ beliefs are correct, then each Gk is less than or equal to the highest valuation,
and even G1 can coincide with this valuation;

(iv) If the players’ beliefs are wrong, then even G1 can be arbitrarily higher than the highest
valuation.

Our Results We prove that each additional level of rationality enables one to guarantee a stronger
revenue benchmark. Intuitively,

Theorem 1 proves the existence of a single, interim individually rational mechanism M that, for all
k and all ε > 0, guarantees revenue ≥ Gk − ε whenever the players are level-(k + 1) rational;
and

Theorem 2 proves that, for any k and any δ > 0, no interim individually rational mechanism can
guarantee revenue ≥ Gk − δ if at least 2 players are at most level-k rational.

Recall that a mechanism is interim individually rational if each player i, given his true value, has
an action guaranteeing him non-negative utility no matter what his opponents might do.

Let us point out that Theorem 1 generalizes to infinitely rational players (see Section 7).
4That is, each player believes that one of his opponents values the good for 100 and the other one values it 0, but

does not know which of the two has higher valuation.
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1.1 Discussion

A Separation Result (and Two Open Problems) Mechanism design enables a social planner
to obtain a desired outcome by leveraging the players’ rationality and their beliefs. It is thus a
fundamental intuition that “the higher the level of rationality of the players, the better the set of
obtainable outcomes”. Theorems 1 and 2 prove this intuition. Indeed, for the case of revenue in
single-good auctions, they separate the power of different player-rationality levels in mechanism
design. To the best of our knowledge, no such separation was previously known.5

We stress that Theorems 1 and 2 prove the desired separation without figuring out the optimal
revenue achievable under each rationality level. Figuring out such revenue remains an open problem.

Another open problem is whether Theorem 2 continues to hold if only a single player is at most
level-k rational and all other players are at least level-(k + 1) rational.

An Unusual Guarantee The guarantee of Theorem 1 is stronger than “For each k there exists
a mechanism Mk guaranteeing revenue ≥ Gk − ε whenever the players are level-(k + 1) rational.”
Indeed, in the latter case, each Mk might know that every player has a rationality level ≥ k + 1.

By contrast, our mechanism M has no information about the players’ rationality levels. It
automatically guarantees revenue ≥ Gk − ε when the rationality level of each player happens to be
≥ k + 1. That is, M returns revenue
≥ G0 − ε if the players are level-1 rational;
≥ G1 − ε if the players are level-2 rational;
≥ G2 − ε if the players are level-3 rational;
and so on.

This guarantee is somewhat unusual: typically a mechanism is analyzed under only one specific
solution concept, and thus under one specific rationality level.

Leveraging Higher-Level Beliefs Higher-level beliefs routinely affect people’s strategic choices.
In the stock market traders may buy some stocks at prices higher than they value them only because
they believe that someone else (whose identity they may not know) will later on buy those stocks at
even higher prices. It is thus important for mechanism design to develop conceptual frameworks and
techniques enabling a social planner to use the players’ higher-level beliefs in order to achieve more
goals. As we shall explain in our next section, robust mechanisms [8] consider higher-level beliefs,
but not for broadening the set of implementable outcomes. By contrast, mechanism M of Theorem
1 uses higher-level beliefs in order to increase the revenue obtainable in single-good auctions.

Epistemic vs. Bayesian Frameworks Our mechanism M is also applicable in a Bayesian
framework, by simply forming the players’ possibilistic beliefs as the support of their probabilis-
tic beliefs.6 In a Bayesian framework, however, the players are assumed to have very structured
information about each other. In particular, the level-1 beliefs of a player specify not only which

5Indeed, while epistemic game theory has always dealt with very nuanced notions of rationality, all mechanisms
designed so far envisaged very coarse rationality levels: namely, either 1 or infinite. The only exception was the
mechanism of [15], which considered players with rationality level 2.

6In Bayesian settings it has been widely assumed that the support of a player’s probabilistic beliefs coincides with
the whole type space of all players —the “full-support” assumption. Under this assumption the support of a player’s
probabilistic beliefs do not contain information about others, since he believes that “everything is possible”. But the
full-support assumption is without loss of generality only when there is a common prior, in which case (a) any state
not in the support of the prior can simply be removed from the state space and (b) it is common knowledge that
this has been done. If, as in this paper, no common prior is assumed, it is unclear why different players’ probabilistic
beliefs must have the same support. When the supports are different, they can be very informative.
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type subprofiles are possible for his opponents in his mind, but also the exact relative likelihood
of any pair of such subprofiles. Thus, a properly chosen Bayesian mechanism should be able to
utilize this richer information better than ours, if relying on a stronger notion of rationality (e.g.,
expected-utility maximization).7 The advantage of mechanism M is in non-Bayesian settings of
incomplete information, when a player is unable to compare the relative likelihood of his opponents’
type subprofiles. In such settings our mechanism successfully elicits the players’ beliefs whether or
not they are consistent with each other, and whether or not they are correct.

Each approach and each mechanism indeed has its own range of applicability.

2 Related Work

Ever since Harsanyi [25], the players’ beliefs in settings of incomplete information traditionally use
probabilistic representations (see Mertens and Zamir [28], Brandenburger and Dekel [14], and the
survey by Siniscalchi [30].)

Beliefs that are not probabilistic and players that do not maximize expected utilities have been
considered by Ellsberg [20]. He considers beliefs with ambiguity, but in decision theory. Thus
his work does not apply to higher-level beliefs or multi-player games. Higher-level beliefs with
ambiguity in multi-player games have been studied by Ahn [1]. His work, however, is not concerned
with implementation, and relies on several common knowledge assumptions about the internal
consistency of the players’ beliefs. Bodoh-Creed [12] characterizes revenue-maximizing single-good
auction mechanisms with ambiguity-averse players, but without considering higher-level beliefs, and
using a model quite different from ours.8 For more works on ambiguous beliefs, see Bewley [11] and
the survey by Gilboa and Marinacci [23].

As we shall see in a moment, our belief model is a set-theoretic version of Harsanyi’s type
structures. Set-theoretic information has also been studied by Aumann [3], but assuming that
a player’s information about the “true state of the world” is always correct. Independently, set-
theoretic models of beliefs have been considered, in modal logic, by Kripke [27] (see [22] for a well
written exposition).

Robust mechanism design, as initiated by Bergemann and Morris [8], is close in spirit to our
work, but studies questions different from ours. In particular, it provides additional justification for
implementation in dominant strategies. Although defining social choice correspondences over the
players’ payoff types only (rather than their arbitrary higher-level beliefs), Bergemann and Morris
[9] explicitly point out that such restricted social choice correspondences cannot represent revenue
maximizing allocations.

Chen and Micali [15] have considered arbitrary (possibly correlated) valuations in single-good
auctions when the players’ beliefs are possibilistic. However, their work uses only the players’ first
two levels of beliefs. Although our mechanism can be viewed as a generalization of theirs, our and
their respective analysis are very different. Indeed, we analyze our mechanism using standard epis-
temic solution concepts with respect to a very weak notion of rationality, whereas [15] introduced a
new solution concept which assumes mutual belief of rationality with respect to the players being
expected-utility maximizers. In fact, it is easy to see that our notion of level-2 rational implemen-
tation (a special case of our notion) implies their notion of conservative strict implementation, but

7As mentioned, if we stick to our weak notion of Aumann rationality [4], only the support of the beliefs matters
and probabilistic beliefs collapse down to possibilistic ones.

8In his model, the players have preferences of the Maximin Expected Utility form, the designer has a prior
distribution over the players’ valuations, the players’ beliefs are always correct (i.e., they all consider the designer’s
prior plausible), actions coincide with valuations, and the solution concepts used are dominant strategy and Bayesian-
Nash equilibrium.
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not vice versa.
Finally, it is also easy to see that our notion of level-1 rational implementation implies imple-

mentation in undominated strategies [26], but not vice versa.

3 Our Epistemic Model

Our model is directly presented for single-good auctions, although it generalizes simply to other
strategic settings.

An auction is decomposed into two parts: a context, describing the set of possible outcomes and
the players (including their valuations and their beliefs), and a mechanism, describing the actions
available to the players and the process leading from actions to outcomes.

We focus on contexts with finitely many types and on deterministic normal-form mechanisms
assigning finitely many (pure) actions to each player.

Contexts A context C consists of four components, C = (n, V, T , τ), where
• n is a positive integer, the number of players, and [n] , {1, . . . , n} is the set of players.
• V is a positive integer, the valuation bound.
• T , the type space, is a tuple of profiles T = (T,Θ, ν, B) where for each player i,

- Ti is a finite set, the set of i’s possible types;
- Θi = {0, 1, . . . , V } is the set of i’s possible valuations;
- νi : Ti → Θi is i’s valuation function; and
- Bi : Ti → 2T−i is i’s belief correspondence.

• τ , the true type profile, is such that τi ∈ Ti for all i.
Note that T is a possibilistic version of Harsanyi’s type structure [25]. As usual, in a context
C = (n, V, T , τ) each player i privately knows his own true type τi and his beliefs. Player i’s beliefs
are correct if τ−i ∈ Bi(τi). The profile of true valuations is θ , (νi(τi))i∈[n].

An outcome is a pair (w,P ), where w ∈ {0, 1, . . . , n} is the winner and P ∈ Rn is the price
profile. If w > 0 then player w gets the good, otherwise the good is unallocated. If Pi ≥ 0 then
player i pays Pi to the seller, otherwise i receives −Pi from the seller. Each player i’s utility function
ui is defined as follows: for each valuation v ∈ Θi and each outcome (w,P ), ui(v, (w,P )) = v − Pi
if w = i, and = −Pi otherwise. i’s utility for an outcome (w,P ) is ui(θi, (w,P )), and sometimes
written as ui(w,P ). The revenue of outcome (w,P ), denoted by rev(w,P ), is

∑
i Pi.

The set of all contexts with n players and valuation bound V is denoted by Cn,V .

Mechanisms An auction mechanism M for Cn,V specifies
• The set A , A1 × · · · ×An, where each Ai is i’s set of actions. We set A−i , ×j 6=iAj .
• An outcome function, typically denoted by M itself, mapping A to outcomes.

For each context C ∈ Cn,V , we refer to the pair (C,M) as an auction.
In an auction, when the mechanism M under consideration is clear, for any player i, valuation

v, and action profile a, we may simply use ui(v, a) to denote ui(v,M(a)), and ui(a) to denote
ui(M(a)).

A mechanism is interim individually rational (IIR) if, for every context C = (n, V, T , τ) and
every player i, there exists some action ai ∈ Ai such that for every a−i ∈ A−i,

ui(a) ≥ 0.
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Rationality In a normal-form game with possibilistic beliefs, the notion of (higher-level) ratio-
nality of our introduction corresponds to a particular iterative elimination procedure of players’
actions; and we demonstrate this characterization in a companion paper [16]. Namely, for every
rationality level k, the k-round elimination procedure yields the actions compatible with the players
being level-k rational, as follows.

Let Γ = ((n, V, T , τ),M) be a single-good auction, where T = (T,Θ, ν, B). For each player i,
each type ti ∈ Ti and each k ≥ 0, we inductively define RAT ki (ti), the set of level-k rationalizable
actions for ti, in the following manner:

• RAT 0
i (ti) = Ai.

• For each k ≥ 1, RAT ki (ti) is the set of actions ai ∈ RAT k−1i (ti) for which there does not exist
an alternative action a′i ∈ Ai such that ∀t−i ∈ Bi(ti) and ∀a−i ∈ RAT k−1−i (t−i),

ui(νi(ti)), (a
′
i, a−i)) > ui(νi(ti), (ai, a−i))

where RAT k−i(t−i) = ×j 6=iRAT kj (tj).

The set of level-k rationalizable action profiles for auction Γ is RAT k(τ) , ×iRAT ki (τi).

Epistemic Implementation An (epistemic) revenue benchmark b is a function mapping contexts
to reals.

Definition 1. A mechanism M level-k rationally implements a revenue benchmark b for Cn,V if, for
every context C ∈ Cn,V and every profile a of level-k rationalizable actions in the auction (C,M),

rev(M(a)) ≥ b(C).

Notice that our notion of implementation does not require the players have the same level of
rationality. Since RAT k′(τ) ⊆ RAT k(τ) for any k′ ≥ k, if a mechanism level-k rationally implements
b, then it guarantees b as long as all players have rationality levels ≥ k.

Furthermore, our notion of implementation does not depend on common belief of rationality (a
very strong assumption); does not require any consistency about the beliefs of different players; and
is by definition “closed under Cartesian product.” 9

Finally, let us stress that in our notion the mechanism knows only the number of players and
the valuation bound. (One may consider weaker notions where the mechanism is assumed to know
—say— the entire underlying type space, but not the players’ true types. Of course more revenue
benchmarks might be implementable under such weaker notions.)

4 Our Epistemic Benchmarks

Below we recursively define the epistemic revenue benchmarks Gk for single-good auctions, based
on the players’ level-k beliefs. Each Gk is a function mapping a context C = (n, V, T , τ) to a real
number. For simplicity we let max{v} , max{v1, . . . , vn} for every profile v ∈ Rn.

9For a given solution concept S this means that S is of the form S1 × · · · × Sn, where each Si is a subset of i’s
actions. This property is important from an epistemic perspective, because it overcomes the “epistemic criticism” of
the Nash equilibrium concept, see [6, 5, 2]. It is also important from an implementation perspective. In particular,
implementation at all Nash equilibria is not closed under Cartesian product, and thus mismatches in the players’
beliefs (about each other’s equilibrium actions) may easily yield undesired outcomes.
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Definition 2. Let C = (n, V, T , τ) be a context where T = (T,Θ, ν, B). For each player i and each
integer k ≥ 0, the function gki is defined as follows: ∀ ti ∈ Ti,

g0i (ti) = νi(ti) and gki (ti) = min
t′−i∈Bi(ti)

max{(gk−1i (ti), g
k−1
−i (t′−i))} ∀k ≥ 1.

We refer to gki (ti) as the level-k guaranteed value of i with type ti.
The level-k revenue benchmark Gk maps C to the second highest value in {gki (τi)}i∈[n].
For any ε > 0, Gk − ε is the revenue benchmark mapping every context C to Gk(C)− ε.

Note that, if gki (ti) ≥ c, then player i with type ti believes that there always exists some player j(1)

—possibly unknown to i— who believes that there always exists a player j(2) ... who believes that
there always exists some player j(k) whose true valuation is at least c.

Example Let us illustrate the above definition, in a simple case involving three players, with the
aid of three figures.

Figure 0 shows a context C with its level-0 guaranteed values. Starting with a “world" in which
the true-type profile of the players is τ = (t11, t21, t31), the figure shows all the worlds that are
possible according to the higher-level beliefs of our three players.

For each type tik of player i, we explicitly show the corresponding valuation νi(tik) under it. For
conciseness, if a type of a player appears multiple times, we show its corresponding valuation only
once.

If in a world ω a player i believes that a world ω′ is possible, then we draw an arrow, with label
i, from ω to ω′. More precisely, there is an arrow labeled by i from a type (sub)profile t to another
type subprofile t′ if and only if t′ ∈ Bi(ti).

From Figure 0 it is easy to see that G0(C) = 3: the second highest among 3, 1, and 5.

(t11, t22) (t22, t34)(t14, t34)
10, 0

1 11

3
--
(t14, t22)

(t11, t31)
(t22, t32)

7, 4

2 44

2 **

3
OO

(t22, t35)(t15, t35)
0, 10

1 11

3
--
(t15, t22)τ : (t11, t21, t31)

ν(= g0) : 3, 1, 5

1

55

1 ))

2

OO

3
��

(t26, t33)(t16, t26)
15, 0

1 11

2
--
(t16, t33)

(t11, t21)
(t23, t33)

0, 9

3 44

3 **2��
(t27, t33)(t17, t27)

17, 0

1 11

2
--

(t11, t33) (t17, t33)

Figure 0: The context C and its level-0 guaranteed values.

From the level-0 guaranteed values of Figure 0, it is easy to compute the level-1 guaranteed
values of the worlds in C. In particular,

g11(t11) = min {max{g01(t11), g
0
2(t22), g

0
3(t32)},max{g01(t11), g

0
2(t23), g

0
3(t33)}} = min{7, 9} = 7.

All level-1 guaranteed values are shown in Figure 1. From this figure it is apparent that G1(C) =
5. Indeed, 5 is the second highest value among 7, 5, and 5.

Finally, from the level-1 guaranteed values of Figure 1, it is easy to compute the level-2 guaran-
teed values in C, shown in Figure 2. From this figure it is apparent that G2(C) = 7.
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2
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3
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15, 15

1 11

2
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(t16, t33)

(t11, t21)
(t23, t33)
9, 15

3 44

3 **2��
(t27, t33)(t17, t27)

17, 17
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2
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Figure 1: The level-1 guaranteed values of C.
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3
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10, 10

2 44

2 **

3
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(t22, t35)(t15, t35)
10, 10

1 11

3
--
(t15, t22)τ : (t11, t21, t31)

g2 : 10, 7, 7

1
77

1 ''

2

OO

3
��

(t26, t33)(t16, t26)
15, 15

1 11

2
--
(t16, t33)

(t11, t21)
(t23, t33)
15, 15

3 44

3 **2��
(t27, t33)(t17, t27)

17, 17

1 11

2
--

(t11, t33) (t17, t33)

Figure 2: The level-2 guaranteed values of C.

Remark Note that the values gki ’s are monotonically non-decreasing in k. Indeed,

gki (ti) = min
t′−i∈Bi(ti)

max{(gk−1i (ti), g
k−1
−i (t′−i))} ≥ min

t′−i∈Bi(ti)
gk−1i (ti) = gk−1i (ti).

Thus Gk(C) ≥ Gk−1(C) for every context C and k > 0. G0(C) is the second highest true valuation.
It is easy to see that, for every context C, if the players’ beliefs are correct, then for each player i
and each k ≥ 0, we have gki (τi) ≤ maxj θj , and thus Gk(C) ≤ maxj θj .

5 Our First Theorem

While the players’ beliefs may be arbitrarily complex, we now show that they can be successfully
leveraged by a normal-form mechanism that asks the players to report very little information.
Roughly speaking, our mechanism pays the players to receive information about their beliefs, and
then uses such information to set a sophisticated reserve price in an otherwise ordinary second-price
auction. The idea of buying information from the players is not new (see, e.g., [17], [19], and [15]).
We are not aware, however, of any mechanism where higher-level beliefs are being bought. In some
sense, our mechanism pays to hear even the faintest rumors.
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A bit more precisely, the mechanism elicits the players’ beliefs up to some level bound K that
can be arbitrarily high.10 That is, if K = 99, then our mechanism elicits the players’ level-0 up
to level-99 beliefs about valuations when they happen to be respectively level-1 up to level-100
rational, but does not elicit the players’ level-100 beliefs even if they happen to be level-101 rational
or more.

Our mechanism is uniformly constructed on parameters n, V , K, and a constant ε > 0. An
action of a player i has three components: his own identity (for convenience only), a belief-level
`i ∈ {0, 1, . . . ,K}, and a value vi ∈ {0, 1, . . . , V }. In the description below, the players act only in
Step 1, and Steps a through c are just “conceptual steps taken by the mechanism”.

The expression “X := x” denotes the operation that sets or resets variable X to value x.

Mechanism Mn,V,K,ε

1: Each player i, publicly and simultaneously with the others, announces a triple (i, `i, vi) ∈
{i} × {0, 1, . . . ,K} × {0, 1, . . . , V }.

a: Order the n announced triples according to v1, . . . , vn decreasingly, and break ties according
to `1, . . . , `n increasingly. If there are still ties, then break them according to the players’
identities increasingly.

b: Let w be the player in the first triple, Pw := 2ndv , maxj 6=w vj, and Pi := 0 ∀i 6= w.

c: ∀i, Pi := Pi − δi, where δi , ε
2n

[
1 + vi

1+vi
− `i

(1+`i)(1+V )2

]
.

The final outcome is (w,P ). We refer to δi as player i’s reward.

Note that our mechanism never leaves the good unsold.

Remark Allegedly, if i is level-k rational, then vi = gk−1i (τi) and `i = min{` : g`i (τi) = gk−1i (τi)}.
That is, vi is the highest value v such that i believes “there exists some player who believes” . . . (k−1
times) some player values the good v, and `i is the smallest level of beliefs about beliefs needed to
attain vi. Roughly speaking, vi is the highest “rumored” valuation according to player i’s level-(k−1)
beliefs, and `i is the “closeness” of the rumor.

Theorem 1. For each n, V,K and ε > 0, the mechanism Mn,V,K,ε is IIR and, for each k ∈
{0, 1, . . . ,K}, level-(k + 1) rationally implements the benchmark Gk − ε for Cn,V .

Note that Mn,V,K,ε does not depend on k and is not told what the players’ rationality level is.
Rather, Mn,V,K,ε automatically produces revenue Gk − ε in every play in which the players happen
to be level-(k + 1) rational. Indeed (1) such players use only level-(k + 1) rationalizable strategies
and, (2) at each profile a of such strategies (as per Definition 1)

rev(Mn,V,K,ε(a)) ≥ Gk − ε.
In both our intuitive analysis and our proof we arbitrarily fix n, V , K, ε and a context C =

(n, V, T , τ) with T = (T,Θ, ν, B); and simply denote Mn,V,K,ε by M .
10The reliance on K is not crucial —in fact, if we are willing to make the action space infinite, then we do not need

K and our mechanism can elicit the players’ beliefs up to any level.
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5.1 Intuition for Theorem 1

Showing thatM is IIR is easy. In fact, for each player i, let ai , (i, 0, θi). Then i’s utility ui(ai, a′−i)
is always non-negative, no matter which action subprofile a′−i the other players choose.

Let us now sketch the proof of our revenue lowerbound, namely,

rev(M(a)) ≥ Gk(C)− ε

for every k ∈ {0, 1, . . . ,K} and every action profile a ∈ RAT k+1(τ).
Notice that

vi ≥ gki (τi) for all i implies 2ndv ≥ Gk(C),

and that the second inequality immediately implies the desired revenue lowerbound, because each
reward δi is at most ε

n . Therefore it only remains to show that

vi ≥ gki (τi) for every action ai = (i, `i, vi) ∈ RAT k+1
i (τi).

We proceed by contradiction. Assuming vi < gki (τi), we derive a contradiction by proving
the existence of another action âi such that for each type subprofile t−i ∈ Bi(τi) and each action
subprofile a′−i ∈ RAT k−i(t−i),

ui(ai, a
′
−i) < ui(âi, a

′
−i).

Set âi = (i, v̂i, ˆ̀
i), where v̂i = gki (τi) and ˆ̀

i = min{` : g`i (τi) = gki (τi)}, and refer to âi as the alleged
action.

To begin with, because v̂i > vi by construction, no matter what the other players do, using âi
gives player i a higher reward than using ai. But getting a higher reward is not enough to prove
the desired inequality. In particular, when gki (τi) > g0i (τi), the following may occur.

“Bad Case”: Player i does not get the good with ai, but gets the good and pays a price greater
than θi with âi.

In this case i’s utility is positive with ai, while negative with âi. However, we show that the bad
case never occurs according to player i’s belief. That is, assuming level-(k+ 1) rationality, we show
that

(∗) if gki (τi) > g0i (τi), then player i believes that he never gets the good by using âi.

We derive (∗) by proving, by induction, the following two properties: for each player j, each type
tj , and each level-k rationalizable action aj = (j, `j , vj),

1. vj ≥ gk−1j (tj), and

2. if vj = gk−1j (tj), then `j ≤ min{` : g`j(tj) = gk−1j (tj)}.
We omit sketching the proofs of these properties, but explain why they imply (∗).

By the definition of gki (τi), for any type profile t = (τi, t−i) with t−i ∈ Bi(τi), there exists some
player j whose level-(k − 1) guaranteed value gk−1j (tj) is at least gki (τi). Since i believes that such
a player j uses level-k rationalizable actions, by Property 1 he also believes that vj ≥ gk−1j (tj). We
now distinguish two cases.

If vj > gki (τi) = v̂i, then of course j 6= i, and player i cannot get the good by using âi. Thus (∗)
trivially holds. What if vj = gki (τi)?

In this case, because vj ≥ gk−1j (tj) ≥ gki (τi), we have vj = gk−1j (tj) as well. According to
Property 2, player j, who uses level-k rationalizable actions in i’s belief, announces `j ≤ min{` :

g`j(tj) = gk−1j (tj)}. Because gki (τi) > g0i (τi), it can be proved that `j is at most ˆ̀
i − 1, that is,

`j < ˆ̀
i. Given how the players’ announced triples are ordered, j’s triple is ordered before i’s. Thus

i cannot get the good and (∗) holds.

10



To summarize, if player i believes that his opponents are going to use level-k rationalizable
actions, then he also believes that it is “safe” for him to use his alleged action, which gives him the
biggest reward without any risk of being over-charged. Thus bidding any value strictly less than
gki (τi) is interim strictly dominated by the alleged action, and cannot be level-(k+1) rationalizable.
This concludes our intuitive analysis.

5.2 Proof of Theorem 1

We break our proof into simpler claims.

Claim 1. M is IIR.

Proof. Arbitrarily fix i ∈ [n] and a′−i ∈ A−i, and let ai = (i, 0, θi). We need to prove

ui(ai, a
′
−i) ≥ 0. (1)

In the play of (ai, a
′
−i), if w 6= i, then we have Pi = −δi, and thus ui(ai, a′−i) = −Pi = δi > 0.

If w = i, then we have θi ≥ 2ndv and Pi = 2ndv − δi. Thus

ui(ai, a
′
−i) = θi − Pi = θi − 2ndv + δi ≥ δi > 0.

Therefore Equation 1 holds, and so does Claim 1. �

To prove our revenue lowerbound, we make use of the following relations. For any two pairs of
non-negative integers (`, v) and (`′, v′), we write

(`, v) � (`′, v′)

if v > v′ or (v = v′ and ` < `′). We write (`, v) � (`′, v′) if (`, v) � (`′, v′) or (`, v) = (`′, v′).

Claim 2. Let δi and δ′i respectively be the rewards that player i gets in Step c according to the action
profiles (ai, a−i) and (a′i, a−i), where ai = (i, `i, vi) and a′i = (i, `′i, v

′
i). Then,

(`i, vi) � (`′i, v
′
i) implies δi > δ′i.

Proof. By definition, (`i, vi) � (`′i, v
′
i) means that either vi > v′i, or vi = v′i and `i < `′i.

If vi > v′i, then we have

δi − δ′i =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + V )2

]
− ε

2n

[
1 +

v′i
1 + v′i

− `′i
(1 + `′i)(1 + V )2

]
=

ε

2n

[
vi − v′i

(1 + vi)(1 + v′i)
− `i − `′i

(1 + `i)(1 + `′i)(1 + V )2

]
>

ε

2n

[
1

(1 + V )2
− `i − `′i

(1 + `i)(1 + `′i)(1 + V )2

]
>

ε

2n

[
1

(1 + V )2
− 1

(1 + V )2

]
= 0,

where the first inequality holds because v′i < vi ≤ V , and the second because `i−`′i
(1+`i)(1+`′i)

≤ `i
1+`i

< 1.
Thus δi > δ′i as desired.

If vi = v′i and `i < `′i, then we have

δi − δ′i =
ε

2n
· `′i − `i

(1 + `i)(1 + `′i)(1 + V )2
> 0.

Thus again δi > δ′i.
Therefore Claim 2 holds. �

Let us now prove that a player i never “underbids his beliefs”.

11



Claim 3. ∀ k ∈ {1, . . . ,K + 1} and ∀ai = (i, `i, vi) ∈ RAT ki (τi),

(`i, vi) � (min{` : g`i (τi) = gk−1i (τi)}, gk−1i (τi)).

Proof. We prove Claim 3 by induction on k. Because the analyses for the Base Case (k = 1) and
the Inductive Step (k > 1) are almost the same, below we focus on the Inductive Step, and point
out the differences with the Base Case when needed.

Assume that Claim 3 holds for all k′ < k. To prove it for k we proceed by contradiction. Letting
ˆ̀
i = min{` : g`i (τi) = gk−1i (τi)} and assuming (ˆ̀

i, g
k−1
i (τi)) � (`i, vi), we shall prove that there is

another action âi such that, arbitrarily fixing t−i ∈ Bi(τi) and a′−i ∈ RAT
k−1
−i (t−i), we have

ui(θi, (âi, a
′
−i)) > ui(θi, (ai, a

′
−i)), (2)

contradicting the fact ai ∈ RAT ki (τi). Let v̂i = gk−1i (τi) and set

âi , (i, ˆ̀
i, v̂i).

To prove Equation 2, let δ̂i and δi respectively be the rewards that player i gets in Step c in the
plays of (âi, a

′
−i) and (ai, a

′
−i). Because (ˆ̀

i, v̂i) � (`i, vi), by Claim 2 we have

δ̂i > δi.

Let (ŵ, P̂ ) and (w,P ) respectively be the outcomes of the two plays, and denote a′j by (j, `′j , v
′
j) for

each j 6= i. We distinguish two cases.

Case 1. ˆ̀
i = 0.

This case applies to both the Base Case (k = 1) and the Induction Step (k > 1). In this case
we have v̂i = gk−1i (τi) = g0i (τi) = θi, and we further distinguish three subcases.

Subcase 1.1. w = i.
In this subcase, we have ŵ = i as well, since according to M the triple (i, ˆ̀

i, v̂i) is ordered
before (i, `i, vi). Therefore Pi = maxj 6=i v

′
j − δi and P̂i = maxj 6=i v

′
j − δ̂i. Accordingly,

ui(θi, (âi, a
′
−i)) = θi − P̂i = θi −max

j 6=i
v′j + δ̂i > θi −max

j 6=i
v′j + δi

= θi − Pi = ui(θi, (ai, a
′
−i)),

where the inequality holds because δ̂i > δi. Thus Equation 2 holds.
Subcase 1.2. w 6= i and ŵ = i.

In this subcase, v̂i ≥ maxj 6=i v
′
j , Pi = −δi, and P̂i = maxj 6=i v

′
j − δ̂i. Accordingly,

ui(θi, (âi, a
′
−i)) = θi − P̂i = θi −max

j 6=i
v′j + δ̂i = v̂i −max

j 6=i
v′j + δ̂i ≥ δ̂i

> δi = −Pi = ui(θi, (ai, a
′
−i)),

Thus Equation 2 holds.
Subcase 1.3. w 6= i and ŵ 6= i.

In this subcase, Pi = −δi and P̂i = −δ̂i. Accordingly,

ui(θi, (âi, a
′
−i)) = −P̂i = δ̂i > δi = −Pi = ui(θi, (ai, a

′
−i)),

and again Equation 2 holds.
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Case 2. ˆ̀
i ≥ 1.

This case applies to the Induction Step only. (In the Base Case we have ˆ̀
i = 0.)

In this case, we shall prove that ŵ 6= i. To do so, first note that, by the definition of ˆ̀
i,

g
ˆ̀
i−1
i (τi) < g

ˆ̀
i
i (τi). (3)

Because t−i ∈ Bi(τi), we have

g
ˆ̀
i
i (τi) = min

t′−i∈Bi(τi)
max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t′−i)

)}
≤ max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t−i)

)}
. (4)

Combining Equations 3 and 4, we have

g
ˆ̀
i−1
i (τi) < max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t−i)

)}
.

Letting t = (τi, t−i) and j = argmaxr∈[n] g
ˆ̀
i−1
r (tr) with ties broken lexicographically, we have

g
ˆ̀
i−1
j (tj) = max

{(
g
ˆ̀
i−1
i (τi), g

ˆ̀
i−1
−i (t−i)

)}
.

Accordingly,
j 6= i and g

ˆ̀
i−1
j (tj) ≥ g

ˆ̀
i
i (τi),

and thus
(ˆ̀
i − 1, g

ˆ̀
i−1
j (tj)) � (ˆ̀

i, g
ˆ̀
i
i (τi)). (5)

Because ˆ̀
i ≤ k − 1 and a′j ∈ RAT k−1j (tj), we have a′j ∈ RAT

ˆ̀
i
j (tj). Thus by the inductive

hypothesis11 we have

(`′j , v
′
j) � (min{` : g`j(tj) = g

ˆ̀
i−1
j (tj)}, g

ˆ̀
i−1
j (tj)) � (ˆ̀

i − 1, g
ˆ̀
i−1
j (tj)),

which together with Equation 5 implies

(`′j , v
′
j) � (ˆ̀

i, g
ˆ̀
i
i (τi)) = (ˆ̀

i, g
k−1
i (τi)) = (ˆ̀

i, v̂i). (6)

By Equation 6 we have that the triple (j, `′j , v
′
j) is ordered before (i, ˆ̀

i, v̂i) according to M , and
thus ŵ 6= i. Since (ˆ̀

i, v̂i) � (`i, vi), we have w 6= i as well. Therefore Pi = −δi and P̂i = −δ̂i,
which implies

ui(θi, (âi, a
′
−i)) = −P̂i = δ̂i > δi = −Pi = ui(θi, (ai, a

′
−i)).

Thus Equation 2 holds.
In sum, Equation 2 holds in all possible cases, contradicting the fact ai ∈ RAT ki (τi). Therefore

Claim 3 holds. �

Following Claim 3, we have that for every action profile a ∈ RAT k+1(τ), 2ndv is at least the
second highest value in the set {gki (τi)}i∈[n], which is precisely Gk(C). Because for each player i

δi =
ε

2n

[
1 +

vi
1 + vi

− `i
(1 + `i)(1 + V )2

]
≤ ε

2n
· 2 =

ε

n
,

we have

rev(M(a)) = 2ndv −
∑
i

δi ≥ Gk(C)−
∑
i

δi ≥ Gk(C)−
∑
i

ε

n
= Gk(C)− ε.

This concludes the proof of Theorem 1.

11Claim 3 is stated with respect to context C and player i. But due to the arbitrary choice of C and i, the claim
applies also to context C′ = (n, V, T , (τ−j , tj)) and player j.
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5.3 Discussion of Theorem 1

Right Reasoning and Wrong Beliefs In mechanism M , when a player’s beliefs are correct,
he always has a “safe” action that is consistent with level-k rationality and gives him positive
utility against all other players’ actions consistent with level-(k−1) rationality, and our mechanism
generates a lot of revenue under such safe actions. However, a player with wrong beliefs may receive
negative utility in our mechanism. Indeed, if the players are level-(k + 1) rational, their beliefs are
wrong, and Gk exceeds the highest valuation, then at least one player has negative utility, because
in this case our mechanism generates revenue higher than the highest valuation. Nonetheless, when
a player chooses his action, he believes that his utility will be non-negative, and thus willingly
participates in our mechanism. This situation is not too dissimilar from that of a rational player
who willingly enters the stock market, yet might end up losing money if his beliefs are wrong.

(This exploitation by M of the players’ wrong beliefs may appear somewhat unfair. However,
we should keep in mind that, when constructing a revenue generating mechanism, a designer works
for the seller, and would not do his job properly if he leaves some money on the table.)

Let us now point out that M can generate more revenue from players with higher rationality,
even when their beliefs are correct.

Higher Revenue from Higher Rationality and Correct Beliefs Consider the type space in
Figure 3. Both players have correct beliefs at the true type profile τ : player 1 believes that player
2’s true type is either t2 or t21 , and player 2 believes that player 1’s true type is t1. At τ :

- Player 1 values the good 0 whereas player 2 values it 100.
- Player 2 knows the true state of the world.
- Player 1 believes that either (a) player 2 values the good 100, or (b) player 2 values it 1.
- Player 1 believes that either (a) player 2 values the good 100, or (b) player 2 believes that
player 1 values it 2.

- Etc.
Roughly speaking, at τ , if the players are:

- level-1 rational, then M gets bids 0 and 100, and sells the good for 0.
- level-2 rational, then M gets bids 1 and 100, and sells the good for 1.
- level-3 rational, then M gets bids 2 and 100, and sells the good for 2.
- . . .
- level-101 rational, then M gets bids 100 and 100, and sells the good for 100.

That is, although the players’ values and beliefs do not change, more revenue is extracted by the
seller the more rational they are. Moreover, the highest revenue in the type space (i.e., 100) is
extracted with a high enough but finite level of rationality (i.e., level-101).

t2

τ : (t1, t2)
ν : 0, 100

1

OO

2

��

1 //t
1
2
1

2 //t
2
1
2

1 //t
3
2
3

2 // · · · 1 //t
99
2
99

2 //t
100
1

100

1 //t1002
1002

oo

t1

Figure 3: A type space with correct beliefs.
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Notice that in the type space of Figure 3, although both players’ beliefs are correct, a player
may believe that the other may have wrong beliefs.12 For example, player 1 believes that player 2
may believe that player 1 values the good 2, while player 1 actually values it 0.

Correct Beliefs vs. Common Knowledge of Correct Believes If we considered a type space
where at every possible type profile the players have correct beliefs —i.e., in every type profile t ∈ T ,
every player i considers t−i possible—, then all our higher-level benchmarks would collapse down to
the first level G1. In this case for our mechanism there is only a gap between the revenue obtained
under level-1 rationality and that obtained under level-2 rationality. In fact, level-k rationality, with
k > 2, yields the same revenue as level-2 rationality. However, in such a type space the players not
only have correct beliefs, but actually have common knowledge of correct beliefs, which is a much
stronger requirement. In particular, standard characterizations of, e.g., rationalizability [13, 31],
also do not apply if we restrict to structures where common knowledge of correct beliefs holds [24].

6 Our Second Theorem

Let us now prove that level-(k + 1) rationality is necessary to guarantee the benchmark Gk.

Theorem 2. For every n, V, k, and c < V , no IIR mechanism level-k rationally implements Gk − c
for Cn,V (even if only two players are level-k rational and all others’ rationality levels are arbitrarily
higher than k).

Proof. We first prove the theorem for n = 2. Arbitrarily fix V, k > 0 (the case where k = 0 is
degenerated and will be briefly discussed at the end), c < V , and an IIR mechanism M . We need
to prove the following statement:

There exist C = (2, V, T , τ) ∈ C2,V and a ∈ RAT k(τ) s.t. rev(M(a)) < Gk(C)− c. (7)

To prove statement 7, we set T = (T,Θ, ν, B) where for each player i = 1, 2,
• Ti = {ti,` : ` ∈ {0, 1, . . . , k}};
• νi(ti,`) = 0 ∀` < k, and νi(ti,k) = V ; and
• Bi(ti,`) = {t3−i,`+1} ∀` < k, and Bi(ti,k) = {t3−i,k}.

We set τi = ti,0 for each i. The type space T is illustrated in Figure 4.
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Figure 4: Type space T

Let us now introduce an auxiliary type space T ′ = (T ′,Θ, ν ′, B′) where for each player i,
• T ′i = {t′i,` : ` ∈ {0, 1, . . . , k}};
• ν ′i(t′i,`) = 0 ∀`; and
• B′i(t′i,`) = {t′3−i,`+1} ∀` < k, and B′i(t

′
i,k) = {t′3−i,k}.
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Figure 5: Type space T ′

Let C ′ = (2, V, T ′, τ ′) where τ ′i = t′i,0 for each i. The type space T ′ is illustrated in Figure 5.
In context C, we have g0i (ti,k) = g1i (ti,k−1) = · · · = gk−1i (ti,1) = gki (ti,0) = V for each i. Thus

Gk(C) = V, and Gk(C)− c = V − c > 0.

Accordingly, to prove statement 7 it suffices to prove the following two propositions:

RAT k(τ) = RAT k(τ ′); (8)

and
there exists a ∈ RAT k(τ ′) such that rev(M(a)) ≤ 0. (9)

To prove Equation 8, recall that by definition

RAT 0
i (ti,`) = RAT 0

i (t′i,`) = Ai for each i and each ` ≤ k,

where Ai is the set of actions for player i in M . Because νi(ti,`) = ν ′i(t
′
i,`) = 0 for each i and each

` < k, according to our iterated deletion procedure and the construction of T and T ′, by induction
we have that for each `′ ≤ k,

RAT `
′
i (ti,`) = RAT `

′
i (t′i,`) for each i and each ` ≤ k − `′.

In particular, for `′ = k we have RAT ki (ti,0) = RAT ki (t′i,0), that is, RAT
k
i (τi) = RAT ki (τ ′i), for each

i. Thus Equation 8 holds.
To prove statement 9, note that τ ′i = 0 for each i. Thus for each action profile a, we have

rev(M(a)) = −u1(0, a)− u2(0, a). Accordingly, it suffices to prove the following statement:

there exists a ∈ RAT k(τ ′) such that ui(0, a) ≥ 0 for each i. (10)

To do so, note that M is IIR, which implies that for each player i = 1, 2 there exists an action ai
such that

ui(0, (ai, a
′
3−i)) ≥ 0 ∀a′3−i ∈ A3−i.

This equation and the definition of RAT 1
i (τ ′i) together imply that for each i there exists an action

a1i ∈ RAT 1
i (τ ′i) such that

ui(0, (a
1
i , a
′
3−i)) ≥ 0 ∀a′−i ∈ A3−i = RAT 0

3−i(t
′
3−i,1).

(Indeed, if ai ∈ RAT 1
i (τ ′i) then a1i = ai, else a1i is the action interim strictly dominating ai.)

Because B′i(τ
′
i) = B′i(t

′
i,0) = {t′3−i,1}, by induction we conclude that for each i there exists an

action aki ∈ RAT ki (τ ′i) such that

ui(0, (a
k
i , a
′
3−i)) ≥ 0 ∀a′3−i ∈ RAT k−13−i (t′3−i,1).

12Indeed, the players’ beliefs are correct if they believe that the true world is possible, not that it is the only
possible world.
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Note that ak ∈ RAT k(τ ′). Accordingly, to prove Statement 10 it suffices to show that ak3−i ∈
RAT k−13−i (t′3−i,1) for each i, or equivalently,

aki ∈ RAT k−1i (t′i,1) ∀i, (11)

because then we have ui(0, ak) ≥ 0 for each i, as desired. To prove Equation 11, again recall that
by definition

RAT 0
i (t′i,`) = RAT 0

i (t′i,`+1) = Ai for each i and each ` < k.

Because the players’ valuations are always 0 in T ′, we have

RAT 1
i (t′i,`) = RAT 1

i (t′i,`+1) for each i and each ` < k − 1.

By induction, we finally have

RAT k−1i (t′i,0) = RAT k−1i (t′i,1) for each i.

Accordingly, we have aki ∈ RAT ki (τ ′i) = RAT ki (t′i,0) ⊆ RAT k−1i (t′i,0) = RAT k−1i (t′i,1) for each i.
Thus Equation 11 holds, and so does statement 10 and statement 9.

Combining Equation 8 and statement 9, we have that statement 7 holds, and thus Theorem 2
holds for n = 2 and k > 0.

In the degenerated case where n = 2 and k = 0, the analysis is very similar. We consider context
C = (2, V, T , τ) with T = (T,Θ, ν, B), such that for each player i:

Ti = {ti}; νi(ti) = V ; and Bi(ti) = {t3−i}.

Also consider the auxiliary context C ′ = (2, V, T ′, τ ′) with T ′ = (T ′,Θ, ν ′, B′), such that for each
player i:

T ′i = {t′i}; ν ′i(t
′
i) = 0; and B′i(t

′
i) = {t′3−i}.

Because M is IIR, in auction (C ′,M) there exists an action profile a such that ui(0, a) ≥ 0 for each
i. But then rev(M(a)) ≤ 0 < V − c = G0(C) − c. Because a ∈ A = RAT 0(τ), M cannot level-0
rationally13 implement G0 − c.

In sum, Theorem 2 holds for n = 2. For n > 2, we construct the desired type spaces (and
contexts) by adding dummy players to the type spaces T and T ′ of the 2-player case. The analysis
is essentially the same, and thus omitted.

7 Variants, Extensions, and Conclusions

Different Reward Functions The total reward given to the players by our mechanism is upper-
bounded by an absolute value ε > 0. A similar analysis shows that the mechanism could choose to
reward the players with an ε fraction of the price charged to the winner. In this case, the guaranteed
revenue would be (1− ε)Gk rather than Gk − ε.

13Level-0 rationality naturally means that the players are “irrational” and may use any actions.
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Infinitely Rational Players Some readers may wonder how much revenue our mechanism gen-
erates if the players are infinitely rational —that is, level-k rational for every k ≥ 0. To answer this
question, let g∞i = maxk g

k
i for each i, and let G∞ be the second highest of the g∞i ’s. Since the

highest value the players may have is upper bounded by V , each g∞i is finite and can be attained
at some finite belief level ki.14 Roughly speaking, g∞i is the highest “rumored” valuation according
to player i’s beliefs and ki is the “closeness” of the rumor.

To leverage the players’ infinitely high rationality levels, without having any information about
such ki’s!, our mechanism is almost the same as before, except that in Step 1, each player i announces
`i ∈ Z+, where Z+ is the set of non-negative integers. Thus, allegedly, each player i announces (a)
vi = g∞i , the highest value v such that i believes “there exists some player who believes” . . . some
player values the good v, and (b) `i = ki, the smallest level of beliefs about beliefs needed to attain
vi. The analysis of the mechanism is almost the same. In particular, our mechanism guarantees the
revenue benchmark G∞ − ε under common knowledge of rationality.

Conclusions Although studied for generating revenue in single-good auctions, our approach is
quite general. In applications where the setting is not Bayesian, it may be important to consider the
players’ higher-level set-theoretic beliefs. Indeed, attractive social choice correspondences defined
over such beliefs may be studied and successfully implemented.
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