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Abstract. Constructing identification schemes is one of the fundamen-
tal problems in cryptography, and is very useful in practice. An identity-
based identification (IBI) scheme allows a prover to identify itself to a
public verifier who knows only the claimed identity of the prover and
some common information. In this paper, we propose a simple and effi-
cient framework for constructing IBI schemes. Unlike some related frame-
work which constructs IBI schemes from some standard identification
schemes, our framework is based on some more fundamental assump-
tions on intractable problems. Depending on the features of the underly-
ing intractable problems presumed in our framework, we can derive IBI
schemes secure against passive, active and concurrent adversaries. We
show that the framework can capture a large class of schemes currently
proposed, and also has the potential to cover many newly constructed
schemes. As an example, based on the Katz-Wang standard signature
scheme, we propose a new IBI scheme that is secure against active ad-
versaries in a concurrent manner. It can be seen that our framework also
help simplify the security proofs for new IBI schemes. Finally, and of
independent interest, we define a new notion for proof systems called
Witness Dualism. This notion is weaker than that of witness indistin-
guishable and we show that it is enough for constructing an IBI scheme
secure against the most powerful type of adversaries defined.

Keywords: Identity-based cryptography, Identification schemes,
Concurrent attacks.

1 Introduction

In an identity-based cryptosystem, there is an authority having a master pub-
lic/secret key pair. This authority can provide a user with a user secret key which
is derived from the user’s identity and the master secret key. In an identity-based
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identification (IBI) scheme, a user, playing the role of a prover, identifies itself
to a verifier, who knows only the prover’s identity and the master public key.

There are three notions for the security of IBI schemes: security against im-
personation under passive attacks (id-imp-pa), active attacks (id-imp-aa), and
concurrent attacks (id-imp-ca). In a passive attack, an adversary can obtain
communication transcripts between the real prover and a verifier. In an active
or concurrent attack, the adversary can directly communicate with the prover
by playing the role of a cheating verifier. The difference between id-imp-aa and
id-imp-ca is that in the former case, the adversary can have only one active ses-
sion at a time, but in a concurrent attack, the adversary can have concurrent
(or parallel) active sessions.

In this paper, we propose a simple and efficient method to construct IBI
schemes. Our method is based on two notions, namely trapdoor weak-one-more
relation and trapdoor strong-one-more relation. We show that the former one
can be constructed from intractable problems such as trapdoor one-way per-
mutations and the Computational Diffie-Hellman (CDH) problem; and the lat-
ter one can be constructed from the factoring problem, the RSA problem and
any strongly unforgeable [1] (referred to as non-malleability in [17]) signature
schemes. By applying a trapdoor weak-one-more relation with an honest verifier
zero knowledge proof of knowledge, we get an IBI scheme secure against passive
attacks. While if we apply a trapdoor strong-one-more relation with a witness
dualism proof of knowledge, we obtain an IBI scheme secure against active and
concurrent attacks. Since the notion of witness dualism is weaker than that of
witness indistinguishability [9], any proof system which is witness indistinguish-
able can readily be used in our framework as a witness dualism proof system.
Besides proposing the generic framework for constructing IBI schemes with vari-
ous levels of security, we also propose a concrete scheme. The scheme is based on
the Katz-Wang strongly unforgeable signature scheme. The concrete IBI scheme
falls in our framework and can be shown easily to be id-imp-ca secure.

1.1 Related Work

Since Shamir introduced the identity-based cryptosystems [16], a lot of IBI
schemes have been proposed. A survey can be found in [2]. In [2], the authors
proposed a method to construct IBI schemes by using digital certificates: the
master key generation center (or called authority) picks a public/secret key pair
(pk, sk) for a standard identification (SI) scheme, and provides these to prover I
along with a certificate cert consisting of the authority’s signature on (I, pk). The
prover sends pk, and cert to a verifier and identifies itself using the SI scheme.
The verifier needs to know only I and the public key of the authority. Although
simple, this method (named certificate-based IBI) is inefficient, and its signifi-
cance is to answer a fundamental question: secure IBI schemes (in the standard
model) exists if and only if one-way function exists. In [2], another framework
is proposed that transforms any standard identification scheme which satisfies
certain conditions (referred to as convertible SI schemes) to IBI schemes in the
random oracle model [4].
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Independently in [14], a transformation is proposed that converts some digital
signature scheme to an IBI scheme. The authors showed that the resulting IBI
scheme is id-imp-pa secure if the underlying signature scheme is existentially
unforgeable against adaptive chosen message attack [10]. One aspect of this
transformation is that it is not necessarily to be in the random oracle model,
however, the signature scheme (the BLS short signature scheme [7]) they used
to construct a concrete IBI scheme is only proven secure in the random oracle
model.

In this paper, we propose a more “natural” and efficient method to construct
IBI schemes. Comparing with the approach of[2] which requires a underlying
provably secure convertible standard indentification (SI) scheme, our method
starts directly from the definitions of some intractable problems. And more im-
portantly, our construction explicitly explains the features a hard problem should
have in order to achieve passive and active/concurrent security.

Our method is also more generic than that of [14], in the sense that construct-
ing IBI schemes from standard signature schemes is just one of the many possible
instantiations in our framework. Additionally, we can construct IBI schemes se-
cure against active and concurrent attacks from strongly unforgeable signature
schemes. In Sec. 5, we also construct a concrete IBI scheme that is secure against
concurrent attacks from the Katz-Wang signature scheme [13].

2 Identity-Based Identification Schemes

An interactive proof system (P,V) is said to be canonical if it follows a three-
move structure where prover P initiates a communication with verifier V by
sending a commitment Cmt, distributed uniformly over a set CmtSet, to V; V
then replies with a challenge Ch chosen uniformly from a set ChSet; and P fin-
ishes the communication by sending a response Rsp to V. V accepts or rejects ac-
cording to the output of a deterministic function 1/0 ← Dec(StV , Cmt‖Ch‖Rsp)
where StV is the initial state of V. The bitstring Cmt‖Ch‖Rsp is called a
conversation between P and V.

Let k ∈ N be a security parameter. A canonical interactive proof system
(P,V) has commitment length β(·) if |CmtSet| ≥ 2β(k), has challenge length
�(·) if |ChSet| ≥ 2�(k), and is non-trivial if the function 2−β(k) is negligible in k.

Definition 1 (Identity-Based Identification (IBI)). An identity-based
identification (IBI) scheme consists of four probabilistic polynomial-time (PPT)
algorithms (MKGen,UKGen,P,V).

1. MKGen: On input1k, it generates amaster public/secret keypair (mpk, msk).
2. UKGen: On input msk and some identity I of a user, it outputs a user

secret key usk[I].
3. (P,V) – User Identification Protocol: The prover with identity I runs

interactive algorithm P with initial state usk[I], and the verifier runs V with
initial state (mpk, I). The first and last messages of the protocol belong to
the prover. The protocol ends when V outputs either ‘accept’ or ‘reject’.



310 G. Yang et al.

We require that for all k ∈ N, I ∈ {0, 1}∗, (mpk, msk) ← MKGen(1k), and
usk[I] ← UKGen(msk, I), V (initialized with mpk, I) always outputs ‘accept ’
after interacting with P (initialized with usk[I]).

The security of an IBI scheme is commonly considered against three types of
attacks: impersonation under passive attacks (id-imp-pa), active attacks
(id-imp-aa) and concurrent attacks (id-imp-ca). The following definitions are due
to [2].

Definition 2 (id-imp-pa). For an IBI scheme (MKGen,UKGen,P,V), the
id-imp-pa security is defined by the following game, which is carried out by a
simulator against an adversary A.

1. (mpk, msk) ← MKGen is executed and mpk is given to A. Two sets are
maintained: HU and CU. Initially, both HU and CU are empty.

2. A can make queries to the following oracles:

(a) INIT(I) – create a user with identity I: If I ∈ HU ∪ CU , ⊥ is re-
turned indicating that I has already been created. Otherwise, usk[I] ←
UKGen(msk, I) is executed and I is added into HU. A symbol ‘1’ is
returned indicating that the creation is successful.

(b) CORR(I) – corrupt a user with identity I: If I /∈ HU , ⊥ is returned,
otherwise, I is deleted from HU and added into CU, and usk[I] is re-
turned.

(c) CONV(I) – get a conversation between a user (as the prover) and a
verifier: If I /∈ HU , ⊥ is returned, otherwise, a conversation between a
prover with initial state usk[I] and a verifier with initial state (mpk, I)
is returned.

3. A can adaptively query INIT, CORR and CONV, and then output an iden-
tity Ib ∈ HU , which corresponds to the user that A wants to impersonate.
After receiving Ib, the simulator removes Ib from HU and adds it into CU.

4. A begins a run of the user identification protocol with a verifier V (initialized
with (mpk, Ib)) which is simulated by the simulator. A can continue querying
INIT, CORR and CONV. The simulate halts when V outputs ‘accept’ or
‘reject’.

The id-imp-pa advantage of A on security parameter k is defined as the probability
that V outputs ‘accept’. The IBI scheme (MKGen,UKGen,P,V) is said to be
id-imp-pa secure if the id-imp-pa advantage is negligible for any PPT adversary A.

id-imp-aa and id-imp-ca security. The id-imp-aa security is defined by a sim-
ilar game, but the conversation oracle, CONV, is replaced by a proving oracle,
PROV. A can select any identity I ∈ HU and start a conversation with PROV
which is the simulation of P(usk[I]). The difference between id-imp-aa and id-
imp-ca is that in the former case, A can have only one active session with PROV
at a time, but in the latter case, A can have concurrent (or parallel) active
sessions.
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3 A Generic IBI Scheme Secure Against Passive Attacks

In this section, we propose a generic construction of IBI schemes that can be
proven secure against passive attacks (namely, id-imp-pa secure in the sense of
Def. 2). In the following, we define a relation called trapdoor weak-one-more
relation, which enables our generic construction to capture many concrete IBI
schemes which include GQ-IBI [11], Sh-IBI [16] (under the RSA assumption)
and Hs-IBI [12], ChCh-IBI [8] (under the CDH assumption)1.

A binary relation R on W × Δ is a finite set of ordered pairs (x, y) such that
x ∈ W and y ∈ Δ. x is called a witness of y. We denote the set of witnesses of
y by W (y).

Definition 3 (Trapdoor Weak-One-More Relation Family). A family
of trapdoor weak-one-more relations R is a triple of PPT algorithms (Gen,
Ver, Inv):

1. Gen: On input 1k, where k ∈ N is the security parameter, Gen generates
(〈R〉, t) where 〈R〉 denotes the description of relation R on W × Δ and t a
trapdoor information.

2. Ver: For any k ∈ N, (〈R〉, t)←Gen(1k), Ver(1k, 〈R〉, x, y) = 1 if and only
if (x, y) ∈ R, otherwise, it outputs 0.

3. Inv: On input (1k, 〈R〉, y, t), it outputs x such that (x, y) ∈ R for any y ∈ Δ.
4. Weak-one-more resistance: Consider the following game against an ad-

versary A which is given 〈R〉 but not t, and has access to two oracles:
(a) A challenge oracle RAM that on any input returns a new random target

point y ∈ Δ.
(b) An inversion oracle INV that on any input y,

i. if y is an output of RAM, a witness of y is returned, and the same
witness is returned if the same value of y is queried again;

ii. if y is not an output of RAM, ⊥ is returned indicating that the input
is invalid.

A wins if A finds witnesses for all the target points output by RAM and
makes strictly fewer queries to INV. We say that (〈R〉, t) is a trapdoor weak-
one-more relation if the probability to win the game is negligible in k for any
PPT A.

The trapdoor weak-one-more relation family can be instantiated easily and in
many different ways. In the following, we describe several methods and show
that they satisfy the definition of trapdoor weak-one-more relation family.

3.1 Instantiations of Trapdoor Weak-One-More Relations

Trapdoor One-way Permutation Based. Let f : Δ → Δ be a trapdoor
one-way permutation. The following theorem describes a method to construct a
trapdoor weak-one-more relation from any trapdoor one-way permutation.
1 The abbreviations of these IBI schemes were first used by Bellare, Namprempre and

Neven in [2].
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Theorem 1. The binary relation RTOP = {(x, y) : x, y ∈ Δ; f(x) = y} is a
trapdoor weak-one-more relation.

Proof. It is obvious that RTOP is efficient to generate, verify, and find witness
with trapdoor. Now we show that it also satisfies the weak-one-more resistance.
Suppose there exists an adversary A which breaks the weak-one-more resistance.
We build an adversary B to break the one-wayness of f . B is given a random
instance y∗ ∈ Δ, and B is to find the inverse x∗ ∈ Δ such that f(x∗) = y∗.
Suppose A makes at most Q(k) queries to RAM. Initially, B randomly selects
a number 1 ≤ i ≤ Q(k) and simulates the weak-one-more resistance game as
follows:

To answer j-th query to RAM, if j �= i, B randomly selects xj ∈ Δ and returns
yj = f(xj) to A; if j = i, y∗ is returned. When A makes a query to INV on yj ,
if yj �= y∗, xj is returned; otherwise, B aborts. If A finds a witness x̃ such that
f(x̃) = y∗, B outputs x̃ and halts. If A halts, B halts.

It is easy to see that if A wins with probability at least ε, B breaks the one-
wayness of f with probability at least ε/Q(k). �

Computational Diffie-Hellman (CDH) Assumption Based. To be more
concrete, and also make our weak-one-more relation family more explicitly linked
to the techniques of some actual IBI schemes (e.g. Hs-IBI [12] and ChCh-IBI [8]),
we describe another instantiation of the weak-one-more relation defined above
in Def. 3.

For a security parameter k ∈ N, let q be a k-bit prime. Let G1 be an additive
cyclic group of order q and G2 be a multiplicative cyclic group of the same order.
Let P be a generator of G1. A bilinear map is defined as e : G1 × G1 → G2 with
the following properties: bilinear : For any U, V ∈ G1, and a, b ∈ Zq, e(aU, bV ) =
e(U, V )ab; non-degenerate: e(P, P ) �= 1; and computable: there exists an efficient
algorithm to compute e(U, V ) for any U, V ∈ G1.

The Computational Diffie-Hellman (CDH) problem in G1 is to compute abP
from 〈P, aP, bP 〉 where a, b are randomly selected from Zq. Based on the CDH
problem, we can construct a trapdoor weak-one-more relation as follows: on input
1k, Gen outputs (G1, G2, q, P, e, Ŝ = sP ) where s is randomly selected from Zq,
the relation is defined as RCDH = {(x, y) : x, y ∈ G1; e(P, x) = e(Ŝ, y)} and s is
the trapdoor information.

Theorem 2. If the CDH problem is hard, RCDH is a trapdoor weak-one-more
relation.

The proof is similar to that for Theorem 1 and is omitted here.

Digital Signature Schemes Secure under Known Message Attacks. Be-
sides trapdoor one-way permutation based and some concrete CDH assumption
based instantiations, we now show that the trapdoor weak-one-more relation
can also be constructed from a signature scheme which is only existentially un-
forgeable against known message attack (euf-kma) in the sense of [10]. This also
demonstrates that the trapdoor weak-one-more relation defined above can be
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very useful for capturing some potentially new concrete construction methods
of IBI schemes. This is also a new application for signature schemes which are
proven secure under the weak notion of existential unforgeability, namely, against
only known message attacks.

Let SIG = (KG, S, V) be a signature scheme defined on some message space
MS. Here, we assume that |MS| ≥ 2�(k) where �(k) is super logarithmic in k.
The security of euf-kma [10] is defined as follows: an adversary has signatures for
a set (denoted by Mknown) of messages which are uniformly selected from MS,
the adversary’s goal is to produce a signature for a message in MS \ Mknown.

We can construct a trapdoor weak-one-more relation from SIG as follows:
on input 1k, Gen runs the key generation algorithm KG to generate a pub-
lic/private key pair (pk, sk), the relation is defined as RSIG = {(x, y) : y ∈
MS; V(pk, y, x) = 1} and sk is the trapdoor information.

Theorem 3. If SIG is euf-kma, RSIG is a trapdoor weak-one-more relation.

Proof. Suppose there exists an adversary A which breaks the weak-one-more re-
sistance. We build another adversary F which breaks SIG under the known mes-
sage attacks. Suppose A makes at most Q(k) queries to RAM. Initially, F obtains
Q(k) − 1 message-signature pairs {(m1, σ1), · · · , (mQ(k)−1, σQ(k)−1)} where mj

(1 ≤ j ≤ Q(k) − 1) is uniformly selected from MS. Thus, Mknown =
{m1, · · · , mQ(k)−1}). F then uniformly selects m∗ from MS, and randomly in-
serts m∗ into the message sequence. For simplicity, we assume any two messages
in Mknown ∪ {m∗} are different. The proof then proceeds as in the proof of The-
orem 1, F answers A’s queries to RAM and INV by simply sending back the cor-
responding message/signature, F fails if A makes a query to INV on message m∗.

If A wins the weak-one-more resistance game with probability at least ε, F
breaks the signature scheme with probability at least ε/Q(k). �

3.2 Our Generic Construction of IBI Schemes

We now start describing our method of constructing an IBI scheme. The method
is based on the trapdoor weak-one-more-relation family (Def. 3) and the Honest
Verifier Zero-Knowledge (HVZK) proof with special soundness defined as follows.

Definition 4. A trapdoor weak-one-more relation R on W × Δ has an HVZK
proof with special soundness if there exists a non-trivial canonical proof system
(P̃, Ṽ) such that for any y ∈ Δ,

1. Completeness. If P̃ knows x such that (x, y) ∈ R, then Pr(Ṽaccepts) = 1.
2. Special Soundness. A witness of y can be computed from any two accept-

able transcripts (Cmt, Ch1, Rsp1) and (Cmt, Ch2, Rsp2) such that Ch1 �=
Ch2.

3. Honest Verifier Zero Knowledge. There exists a polynomial time algo-
rithm SIM such that on input (〈R〉, y) its output distribution is computa-
tionally indistinguishable from the distribution of a real conversation between
P̃(initialized with a witness of y) and Ṽ(initialized with 〈R〉, y).
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Let H : {0, 1}∗ → Δ be a hash function that is considered to be a random oracle
[4] for security analysis. We construct an IBI scheme as follows.

1. MKGen: (〈R〉, t) ← Gen(1k). Set mpk = 〈R〉 and msk = t.
2. UKGen: on input I ∈ {0, 1}∗, run x ← Inv(1k, 〈R〉, H(I), t) and set

usk[I] = x.
3. (P,V): set P to be the prover algorithm P̃ of the HVZK proof with initial

state x, and V the verifier algorithm Ṽ of the HVZK proof with initial state
(〈R〉, H(I)).

The following theorem states that an IBI scheme constructed as above is id-imp-
pa secure (Def. 2).

Theorem 4. Let R be a trapdoor weak-one-more relation which has an HVZK
interactive proof with special soundness. If the challenge length �(k) of the HVZK
proof is super logarithmic in k, the IBI scheme constructed above is id-imp-pa
secure in the random oracle model.

Proof. Given an adversary A that can break the IBI scheme with advantage ε,
we construct an adversary B which breaks the weak-one-more resistance of the
underlying trapdoor weak-one-more relation with advantage ε′ ≥ (ε − 2−�(k))2.

B simulates the id-imp-pa game by setting the mpk = 〈R〉. B maintains two
user lists HU and CU, which are empty at the beginning. B also maintains a
table T, each row of T contains an identity I and the value of H(I). T is also
empty at the beginning. B answers A’s queries as follows:

1. H-query: On input I ∈ {0, 1}∗, B checks if I is in table T. If I is not in
T, B asks its challenge oracle RAM to get a random point y ∈ Δ, and sets
H(I) = y by putting (I, y) in table T. If I is already in table T, the existing
value is returned.

2. INIT(I): If I ∈ HU ∪ CU, ⊥ is returned. Otherwise, B checks whether I is
in table T. If I is in T, I is added into HU and a symbol ‘1’ is returned.
Otherwise, B asks RAM to get a random point y ∈ Δ, and sets H(I) = y
by putting (I, y) in table T, I is then added into HU and a symbol ‘1’ is
returned.

3. CORR(I): If I /∈ HU, ⊥ is returned. Otherwise, B asks INV to generate a
witness w for H(I) and returns w to A. I is then deleted from HU and added
into CU.

4. CONV(I): If I /∈ HU, ⊥ is returned. Otherwise, B runs the simulation algo-
rithm SIM in Def. 4 to generate a simulated transcript and returns it to A.

If A successfully impersonates a user Ib that is created but not corrupted (i.e.
H(Ib) is returned by RAM, but the witness of H(Ib) is still not known to B) with
probability ε, by the Reset Lemma (Appendix A) and the special soundness, B
can extract a witness of H(Ib) with probability at least (ε − 2−�(k))2. Thus B
breaks the weak-one-more resistance of R with a non-negligible probability. �

By applying the generic construction above, we can derive the id-imp-pa securiy
of GQ-IBI [11], Sh-IBI [16] under the RSA assumption, and Hs-IBI [12], ChCh-
IBI [8] under the CDH assumption.
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4 Transforming to a Generic IBI Scheme Secure Against
Active and Concurrent Attacks

To construct an IBI scheme secure against active and concurrent attacks (namely,
id-imp-aa secure and id-imp-ca secure), we do not need to do so from scratch.
Interestingly, as described in this section, we only need to replace the trap-
door weak-one-more relation of our generic construction described in Sec. 3 with
a trapdoor strong-one-more relation and the HVZK proof with a witness in-
distinguishable proof, for transforming our generic construction secure against
passive attacks (i.e. id-imp-pa) to a generic IBI scheme secure against active and
concurrent attacks.

4.1 Trapdoor Strong-One-More Relations

Definition 5 (Trapdoor Strong-One-More Relation). A family of trapdoor
strong-one-more relations R is a triple of PPT algorithms (Gen′, Ver′, Inv′)
such that the following properties hold:

1. Gen′: On input 1k, where k ∈ N is the security parameter, the probabilistic
polynomial-time algorithm Gen′ outputs (〈R〉, t) where 〈R〉 denotes the de-
scription of a binary relation R on W ×Δ and t is the trapdoor information
of R.

2. Ver′: For every k ∈ N, (〈R〉, t)←Gen′(1k), Ver′(1k, 〈R〉, x, y) = 1 if and
only if (x, y) ∈ R.

3. Inv′: It is a (probabilistic or deterministic) polynomial-time algorithm such
that on input (1k, 〈R〉, y, t), it outputs an x such that (x, y) ∈ R for any
y ∈ Δ.

4. Non triviality: |Δ| is greater than p(k) where p(·) is any positive polyno-
mial.

5. Strong-one-more resistance: It is defined by a game. The adversary A is
given 1k, 〈R〉 as input where (〈R〉, t)←Gen′(1k) and access to two oracles:
(a) A challenge oracle RAM that on any input returns a new random target

point y ∈ Δ.
(b) An inversion oracle INV that on any input y:

i. If y is from the output of RAM, INV returns a witness of y, and the
same witness is returned if y is queried again later.

ii. If y is not from the output of RAM, a symbol ⊥ is returned indicating
that the input is invalid.

The adversary wins if he can find a pair (x′, y′) ∈ R such that y′ is one
output of RAM but (x′, y′) does not appear in the input/output pairs of the
inversion oracle (i.e. the adversary can find one more distinct pair than the
pairs given by the inversion oracle)2. A relation is a trapdoor strong-one-
more relation if the probability to win the game is negligible in k for any
polynomial-time adversary.

2 There are two cases: in the first case, y′ has never been queried to the inversion
oracle; in the second case, the inversion oracle has returned a witness x of y′ before,
but x′ �= x.
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In the following, we describe some primitives that can be used to construct
trapdoor strong-one-more relations.

Factoring Assumption Based. A Blum-Williams generator is a modulus
generator that returns Blum-Williams (BW) moduli N [18,5], meaning that
N = pq with p ≡ q ≡ 3 mod 4. Let QRN = {x2 mod N |x ∈ Z

∗
N} be the set of

all quadratic residues modulo N . It is known that if N is a BW modulus, then
squaring is a permutation on QRN . Let Z

∗
N [+1] = {x ∈ Z

∗
N |JacN (x) = +1}

where JacN (x) is the Jacobi symbol of x with respect to N . We also know that
if N is a BW modulus, −1 is a non-square modulo N with Jacobi symbol +1,
and for every element x ∈ Z

∗
N [+1], either x or −x is a square modulo N .

We construct a trapdoor strong-one-more relation as follows: on input 1k, Gen′

runs the Blum-Williams generator to generate (N, p, q). (p, q) is the trapdoor for
relation RSQ = {(X, Y ) ∈ Z

∗
N × Z

∗
N [+1] : X > (N − 1)/2; Y ≡ ±X2 mod N}.

On input Y ∈ Z
∗
N [+1], Inv′ uniformly chooses an X ∈ Z

∗
N over the two square

roots (greater than (N − 1)/2) of ±Y (remember either Y or −Y is a square).

Theorem 5. Assume the factoring problem is hard, RSQ is a trapdoor strong-
one-more relation.

Proof. The proof is by contradiction. Assume there exists an adversary A which
can break the strong-one-more resistance, then we can build an adversary B to
factor N . Here is the simulation.

When A asks a challenge query, B uniformly selects an x ∈ Z
∗
N at random

such that x > (N − 1)/2, and returns y
R← ±x2 mod N to A. When A asks the

inversion query on y, B returns x to A. If A aborts, B also aborts.
Suppose A wins the strong-one-more resistance game, then one of the following

two events must occur3. E1 : A outputs a witness x′ for a challenge y that has
appeared in an inversion query. Denote the witness selected by B in the challenge
query by x, then x′ �= ±x, and B is able to factor N . E2 : A outputs a witness
x′ for a challenge y that has not appeared in an inversion query. Denote the
witness selected by B in the challenge query by x, if x′ = x, B aborts with
failure. Otherwise, x′ �= ±x, and B is able to factor N . Since x is uniformly
selected at random, Pr[x′ �= ±x] = 1/2.

Thus, if A can break the strong-one-more resistance with probability ε, B can
factor N with probability at least ε/2. �

RSA Assumption Based. On input 1k, the RSA key generator outputs a
modulus N that is the product of two distinct odd primes p, q where |p| = |q| =
k/2, and exponents e, d such that ed ≡ 1 mod ϕ(N) where ϕ(N) = (p−1)(q−1) is
the Euler’s totient function. A prime-exponent RSA key generator only outputs
keys with e prime. The RSA problem is hard if

Advrsa
A (k)=Pr[(N, e, d) R← Krsa(1k); y R← Z∗

N ; x←A(1k, N, e, y) : xe ≡y mod N ]

is negligible in k for all polynomial-time algorithm A.
3 There is a chance that y and -y are returned in two challenge queries, but this only

happens with a negligible probability.
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We construct a trapdoor strong-one-more relation as follows: on input 1k,
Gen′ first runs the prime-exponent RSA key generator to generate (N, e, d)
such that e > 2�(k) where �(k) is super-logarithmic in k, and then randomly
picks g

R← Z
∗
N . (N, d) is the trapdoor for relation RRSA = {((x1, x2), Y ) ∈

(Ze × Z
∗
N ) × Z

∗
N : g−x1x−e

2 ≡ Y mod N . On input Y ∈ Z
∗
N , Inv′ randomly

chooses x1
R← Ze, and then calculates x2 = (gx1Y )−d mod N .

Theorem 6. Assume the RSA problem is hard, RRSA is a trapdoor strong-one-
more relation.

Proof (Sketch). Assume there exists an adversary A which can break the strong-
one-more resistance with probability ε, then we can build another adversary B
which solves the RSA problem with probability at least (1 − 1/e)ε.

Given the RSA challenge y, adversary B sets g = y and simulates the strong-
one-more resistance game as follows:

When A asks a challenge query, B randomly selects x1
R← Ze, x2

R← Z
∗
N , and

returns Y = g−x1x−e
2 mod N to A. When A asks the inversion query on Y , B

returns (x1, x2) to A. If A aborts, B also aborts.
If B can obtain two different witnesses (x1, x2) and (x̂1, x̂2) for the same

challenge Y , since e is prime and 0 < |x1− x̂1| < e, two integers a, b can be found
such that a(x1 − x̂1) + be = 1, then B outputs gb(x2x̂

−1
2 )a mod N . By analyzing

the probability of two similar events E1 and E2 in the proof of Theorem 5, we
can see that B breaks the RSA problem with probability at least (1 − 1/e)ε. �

Strongly Unforgeable Signature Based. Let SIG be defined as in Sec. 3.1,
SIG is strongly unforgeable [1] under known message attack [10] (seuf-kma) if
no polynomial-time adversary is feasible to produce a message-signature pair
(m, σ) such that (m, σ) is not in his known list of message-signature pairs.

By using the same construction as in Sec. 3.1, we can get the following
theorem.

Theorem 7. If SIG is strong unforgeable under known message attack, and for
any message m ∈ MS4 there are more than one valid signatures, RSIG is a
trapdoor strong-one-more relation.

Proof (Sketch). Assume there exists an adversary A which can break the strong-
one-more resistance, we build a forger F as follows.

Suppose A asks at most Q(k) challenge queries. F first gets Q(k) message-
signature pairs (the messages are not chosen by him). Then F answers A’s
challenge/inversion queries by simply sending back the corresponding message/
signature.

By analyzing the probability of two similar events E1 and E2 in the proof of
Theorem 5, we can see that F has a non-negligible probability to win the strong
unforgeability game. �

4 Again, we assume |MS| ≥ 2�(k) where �(k) is super logarithmic in k.
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4.2 Transformation to a Generic IBI Scheme Secure Against Active
and Concurrent Attacks

With reference to the generic construction of IBI schemes with id-imp-pa security
described in Sec. 3.2, we use it to construct a generic IBI scheme with id-imp-
aa security and id-imp-ca security, by replacing the original R with a trapdoor
strong-one-more relation (Def. 5) and (P̃, Ṽ) with a non-trivial interactive proof
with witness dualism defined below.

Definition 6 (Witness Dualism). Let R be a trapdoor strong-one-more rela-
tion. We say that R has Witness Dualism if there exists a non-trivial interactive
proof system (P, V ) with special soundness such that for every y ∈ Δ, and for every
x ∈ W (y), there exists at least one x′ ∈ W (y) such that x′ �= x and for any verifier
V ′ and any auxiliary input z for V ′, the ensembles, V ′

P (y,x)(y, z) and V ′
P (y,x′)(y, z),

generated as V ′s view of the interactive proof, are indistinguishable.

The notion of Witness Dualism is related to Witness Indistinguishability [9]. For
witness dualism, given a witness x of y, the notion only requires it to be indistin-
guishable with another witness x′, rather than with all other witnesses in W (y).
Hence it is a weaker notion when compared with witness indistinguishability.

Theorem 8. Let R be a trapdoor strong-one-more relation which has Witness
Dualism, if the challenge length �(k) of the interactive proof system is super
logarithmic in k, then the generic IBI scheme in Sec. 3.2 (replace the HVZK
proof by (P, V)) is id-imp-aa and id-imp-ca secure in the random oracle model.

Proof. Given an adversary A that can break the IBI scheme, we construct an
adversary B which breaks the strong-one-more resistance of the underlying trap-
door strong-one-more relation.

B simulates the id-imp-aa (id-imp-ca) game by setting the mpk = 〈R〉. B
maintains two user lists HU and CU, which are empty at the beginning. B also
maintains a table T, each row of T contains an identity I and the value of H(I)
and a witness of H(I). T is also empty at the beginning. B answers A’s oracle
queries as follows:

1. H-query: On input I ∈ {0, 1}∗, B checks if I is in table T. If I is not in T,
B asks RAM to get a random point y ∈ Δ, then B sets H(I) = y by putting
(I, y, ⊥) in table T5. If I is already in table T, the existing value is returned.

2. INIT(I): If I ∈ HU∪CU, ⊥ is returned. Otherwise, B checks if I is in table T.
If I is in table T, I is added into HU and a symbol ‘1’ is returned. Otherwise,
B asks RAM to get a random point y ∈ Δ, then B sets H(I) = y by putting
(I, y, ⊥) in T, I is then added into HU and a symbol ‘1’ is returned.

3. CORR(I): If I /∈ HU, ⊥ is returned. Otherwise, B finds the row correspond-
ing to I in table T. If the witness is unknown, B asks the inversion oracle for
a witness x of H(I), and replaces the ⊥ symbol in that row by x. B returns
x to A. I is then deleted from HU and added into CU.

5 The symbol “⊥” denotes the value is unknown yet.
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4. PROV(I): If I /∈ HU, ⊥ is returned. Otherwise, B finds the row correspond-
ing to I in table T and retrieves x. If the witness is unknown, B asks the
inversion oracle for a witness x of H(I), and replaces the ⊥ symbol in that
row by x. then B runs a copy of P with initial state x.

Finally, if A can successfully impersonate a user Ib that is created but not
corrupted (i.e. H(Ib) is returned by RAM, but A does not ask for its witness),
by the Reset Lemma (Appendix A) and the special soundness, B can extract a
witness xb of H(Ib) with probability at least (ε − 2−�(k))2.

If B has never asked the inversion oracle for a witness of H(Ib), B successfully
breaks the strong-one-more resistance. Otherwise, because of the Witness Du-
alism, with probability at least 1/2, the witness extracted (with the help of A)
is different from the one in table T (by following the same proof of [9], witness
dualism is also preserved under concurrent composition).

Thus B breaks the strong-one-more resistance of the underlying trapdoor
strong-one-more relation with probability at least 1/2(ε − 2−�(k))2. �

By applying the RSA-based trapdoor strong-one-more relation together with a
witness indistinguishable interactive proof with special soundness [15], we can
derive the Okamoto-RSA-IBI scheme [15,2] that is imp-ca secure.

In the next section, we construct a concrete IBI scheme that is imp-ca secure
from strong unforgeable signature schemes.

5 A Concrete IBI Scheme Secure Against Concurrent
Attacks

In this section, we construct an IBI scheme from the Katz-Wang signature
scheme [13] which is shown to be strongly unforgeable under the DDH assump-
tion [6] for any message space MS ⊂ {0, 1}∗. Let G be a cyclic group of prime
order q with generator g, H : {0, 1}∗ → {0, 1}k and H ′ : {0, 1}∗ → {0, 1}k be
hash functions which are assumed to behave as independent random oracles for
security analysis. Let k ∈ N be the security parameter and k < |q|. We first
review the signature scheme due to Katz and Wang.

The Katz-Wang Signature Scheme: To generate a public/secret key pair,
h ∈ G and x ← Z

∗
q are first chosen randomly. y1 = gx and y2 = hx are then

computed and the public key is set to PK = (h, y1, y2) and the secret key to x.
To sign a message m, the following steps are carried out.

1. Choose random r ← Zq.
2. Compute A = gr, B = hr, and c = H ′(A, B, m).
3. Compute s = cx + r mod q and set signature σ = (c, s).

To verify the signature, A = gsy−c
1 and B = hsy−c

2 are computed and if c =
H ′(A, B, m), the signature is valid.

The IBI Scheme: Based on the Katz-Wang signature scheme, we build an IBI
scheme with id-imp-ca security. The scheme is described in Fig. 1. Next, we prove
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MKGen: Choose a cyclic group G of prime order q with generator g
such that |q| > k. Choose hash functions H : {0, 1}∗ → {0, 1}k and
H ′ : {0, 1}∗ → {0, 1}k. Randomly choose h ∈ G

∗ and x ← Z
∗
q . Compute

y1 = gx and y2 = hx. Set master public key to MPK = (G, q, g, h, y1, y2,
H, H ′) and master secret key to x.

UKGen: Randomly choose r ← Zq , compute A = gr, B = hr, c = H ′(A,
B, H(I)), and s = cx + r mod q. The user secret key is σ = (c, s).

User Identification Protocol: randomly choose r′ ∈ Zq, and compute
A ← gsy−c

1 , B ← hsy−c
2 , A′ ← gr′

, B′ ← hr′
, c′ ← H ′(A′, B′, H(I)).

Prover P (c, s) Verifier V (MPK, I)
λ

R← Zq, T1 ← gλ, T2 ← hλ

z′ R← Zq, α
′ R← Zq

T ′
1 ← gz′

(A′yc′
1 )−α′

T ′
2 ← hz′

(B′yc′
2 )−α′

A, B, A′, B′, T1, T2, T
′
1, T

′
2

�
c ← H ′(A, B, H(I))
c′ ← H ′(A′, B′, H(I))
U ← Ayc

1, R ← Byc
2

U ′ ← A′yc′
1 , R′ ← B′yc′

2
α0

R← Zqα0�
α ← α0 − α′ mod q
z ← λ + αs mod q

z, z′, α, α′
�

α + α′ ?= α0
T1

?= gzU−α

T2
?= hzR−α

T ′
1

?= gz′
U ′−α′

T ′
2

?= hz′
R′−α′

Fig. 1. The IBI scheme based on Katz-Wang signature scheme

its security by following our framework described in the previous section. It can
be seen that the user identification protocol in Fig. 1 is actually a proof that the
prover knows at least one of two valid signatures.

Lemma 1. The user identification protocol in Fig. 1 has special soundness.

Proof. Given two successful conversations where V outputs ‘accept’:

(A, B, A′, B′, T1, T2, T
′
1, T

′
2, α0, z, z′, α, α′)

(A, B, A′, B′, T1, T2, T
′
1, T

′
2, α̂0, ẑ, ẑ′, α̂, α̂′)

such that α0 �= α̂0, it must be the case that at least one of the inequalities
α �= α̂ and α′ �= α̂′ take place. For example, if α �= α̂, (s, c) can be obtained from
s = (z − ẑ)(α − α̂)−1 and c = H ′(A, B, H(I)). Hence we can see that at least
one of (s, c) and (s′, c′) can be extracted. �
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Lemma 2. The user identification protocol in Fig. 1 is witness dualism (Def. 6).

Proof. For the two valid signatures σ = (c, s) (with respect to r) and σ′ = (c′, s′)
(with respect to r′) of the message H(I), the ensembles, V ′

P (y,σ)(y, z) (with
illusive witness σ′) and V ′

P (y,σ′)(y, z) (with illusive witness σ), generated as V ′s
view of the protocol, are identically distributed, where y refers to (MPK, I) and
z is any auxiliary input for V ′. �

Remark: In this IBI scheme, the user is required to use the same illusive witness
(c′, s′) (with respect to r′) in all the conversations, and the ‘Dual Witness’ of
(c, s) is exactly (c′, s′).

By combining these two lemmas and Theorem 8, we obtain the following
theorem.

Theorem 9. The IBI scheme in Fig. 1 is secure against impersonation under
concurrent attacks (id-imp-ca).

References

1. Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature
and encryption. In EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 83–107. Springer, 2002.

2. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for
identity-based identification and signature schemes. In EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 268–286. Springer, 2004.

3. Mihir Bellare and Adriana Palacio. GQ and schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks. In CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 162–177. Springer,
2002.

4. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security (CCS), pages 62–73, 1993.

5. Manuel Blum. Coin flipping by telephone. In CRYPTO 1981, pages 11–15, 1981.
6. D. Boneh. The decision Diffie-Hellman problem. In Proc. of the Third Algorithmic

Number Theory Symposium, pages 48–63. Springer-Verlag, 1998. LNCS 1423.
7. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.

In ASIACRYPT, pages 514–532, 2001.
8. Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-

hellman groups. In Public Key Cryptography 2003, pages 18–30, 2003.
9. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding proto-

cols. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing (STOC), 1990.

10. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing, 17(2):281–308, April 1988.

11. Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based
signature scheme resulting from zero-knowledge. In CRYPTO 1988, volume 403 of
Lecture Notes in Computer Science, pages 216–231. Springer, 1990.

12. Florian Hess. Efficient identity based signature schemes based on pairings. In
Selected Areas in Cryptography, SAC 2002, pages 310–324, 2002.



322 G. Yang et al.

13. Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes
with tight security reductions. In ACM CCS ’03: Proceedings of the 10th ACM
conference on Computer and communications security, pages 155–164, 2003.

14. Kaoru Kurosawa and Swee-Huay Heng. From digital signature to id-based identifi-
cation/signature. In Public Key Cryptography 2004, volume 2947 of Lecture Notes
in Computer Science, pages 248–261. Springer, 2004.

15. Tatsuaki Okamoto. Provably secure and practical identification schemes and cor-
responding signature schemes. In CRYPTO 1992, volume 740 of Lecture Notes in
Computer Science, pages 31–53. Springer, 1993.

16. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO
1984, volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer,
1985.

17. Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws
in applying proof methodologies to signature schemes. In CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 93–110. Springer, 2002.

18. Hugh C. Williams. A modification of the RSA public-key encryption procedure.
IEEE Trans. Inf. Theory, 26(6), 1980.

A Reset Lemma

Lemma 3 (Reset Lemma [3]). Let CP be a prover in a canonical IBI scheme
with challenge set ChSet and challenge length �(·). StV and StCP are the initial
states of the verifier and CP, respectively. Let acc(StCP , StV ) be the probability
that the verifier accepts, and res(StCP , StV ) the probability that the following
reset experiment returns 1:

Choose random tape ρ for CP; (Cmt, St′
CP ) ← CP(StCP , ρ)

Ch1
R← ChSet(StV ); (Rsp1, St′′

CP ) ← CP (Ch1, St′
CP );

d1 ← Dec(StV , Cmt‖Ch1‖Rsp1)
Ch2

R← ChSet(StV ); (Rsp2, St′′′
CP ) ← CP (Ch2, St′

CP );
d2 ← Dec(StV , Cmt‖Ch2‖Rsp2)
If (d1 = 1 and d2 = 1 and Ch1 �= Ch2) then return 1 else return 0

Then,

res(StCP , StV ) ≥ (acc(StCP , StV ) − 2−�(k))2.
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