
Creating Spatio-temporal Spectrum Maps from
Sparse Crowdsensed Data

Md. Shaifur Rahman, Himanshu Gupta, Ayon Chakraborty† and Samir Das
Stony Brook University, NY. †NEC Lab, USA.

Abstract—Shared spectrum systems is an emerging paradigm
to improve spectrum utilization and thus address the unabated
increase in mobile data consumption. The paradigm allows the
“unused” spectrum bands of licensed Primary Users (PUs) to
be shared with Secondary Users (SUs), without causing any
harmful interference to the PUs. Allocation of spectrum to
the SUs is done based on spectrum availability at the SUs’
locations; such allocation of spectrum is greatly facilitated by
spectrum occupancy maps. In this work, we address the problem
of creating spectrum occupancy maps from spectrum occupancy
data over a large number of instants, in the challenging scenario
of dynamically (temporally) changing spectrum occupancy due
to intermittent transmission of primary users. The problem is
particularly challenging when the available occupancy data is
very sparse spatially, i.e., only very few locations report sensing
data at any particular instant. We design various techniques to
create spectrum maps in the above context, including a promising
correlation-based merging method that merges observation vec-
tors iteratively in conjunction with careful interpolation. Using
extensive simulation over data including real data from cellular
and deployed WiFi settings, we show that the correlation-based
method is very effective in generating high-accuracy spatio-
temporal spectrum maps even with very sparse observation
vectors (as long as the number of such vectors is large enough).

I. INTRODUCTION

Radio frequency (RF) spectrum is a natural resource in great
demand, due to our unabated increase in mobile (and hence,
wireless) data consumption. Some projections estimate a 1000-
fold increase in capacity within a decade [1]. Researchers
have been addressing this impending capacity crunch using
various mechanisms — one of most effective being devel-
opment of shared spectrum paradigm (e.g., white spaces).
The paradigm improves the spectrum utilization efficiency by
allowing unlicensed/secondary users (SUSE) to exploit unused
spectrum bands of licensed primary users (PUs). That is,
SUs can opportunistically use unused spectrum bands (aka
spectrum holes or white spaces) as long as their use does not
cause harmful (wireless) interference to PUs. This is typically
facilitated by a (centralized) spectrum manager (SM) who
allocates available spectrum to a request SU based on avail-
able information about spatio-temporal spectrum occupancy or
availability information.

To facilitate the above shared spectrum paradigms, there is a
need to deduce or generate spectrum occupancy maps that can
be used to allocate available (i.e., without causing interference
to the PUs). Fundamentally, there are two ways to do this:
(i) Use PUs’ information such as location, transmit power,
intended receivers, etc. along with assumption of a wireless

Fig. 1. (a) Spectrum map generated from sensor data (b) Commodity spectrum
sensors used for our data-collection

propagation (signal attenuation) model [2] to deduce spectrum
power that can be allocated at a request location, (ii) Use sens-
ing reports from geographically distributed spectrum sensors
(SS nodes) to deduce spectrum occupancy map, and allocated
spectrum at locations with spectrum availability in the map.
The first strategy suffers from obvious shortcomings—need to
assume a wireless propagation model, and in many applica-
tions, PU information is not available, e.g., for strategic PUs
such as naval carriers in 3.5GHz band in US where the privacy
of these PUs is fully preserved [3]. In this paper, we consider
the second model, wherein spectrum power to be allocation
is estimated based on the spectrum occupancy map generated
from sensing reports of geographically distributed spectrum
sensors (SS). In particular, to facilitate high granularity spec-
trum data collection via relatively inexpensive means, we
consider crowdsourced spectrum sensors. The practicality of
crowdsourcing has been demonstrated in research projects [4]
as well as commercial ventures such as Flightaware [5].
Figure 1(a) shows a generated spectrum map using spectrum
sensors; note that irregular pattern of received power and
also interference-free zone for opportunistic spectrum access.
Moreover, the cost of cognitive radios such as [6] has fallen
recently. There has been even cheaper (<25$) small form-
factor devices such as RTL-SDR dongle [7] which can be
attached to a smartphone and used to collect spectrum data as
the users roam. Figure 1(b) shows commodity devices and a
mobile app used for spectrum sensing,

In the context of above described generation of spectrum
occupancy map via sensing data from crowdsourced spectrum
sensors, we address two specific challenges in this paper: (i)
sparse density of spectrum sensors at any instant, (ii) dynamic
(i.e., temporally changing) spectrum map, e.g., due to change
in transmit powers or powering on/off of fixed PUs. See Figure
2. Construction of spatio-temporal spectrum maps from sparse
crowdsourced (and hence, mobile) spectrum sensors boils

down to the problem of clustering high-dimensional vectors,
with each vectors having only a small number of dimensions
with known values. We solve this clustering problem effi-
ciently by leveraging a large amount of historical data— which
is practical in our context, due to the crowdsourced nature of
the data collection model. We propose a clustering method that
first interpolates some of the unknown values in each vector,
and then “merges” vectors based on appropriately defined
correlations. Via extensive simulations, we demonstrate that
our simple approach outperforms other potential approaches.

The rest of the work is organized as follows. We formally
define used terms and our problem in Section §III, and present
our algorithm for constructing spatio-temporal spectrum maps
in Section §IV. We present our performance results in Sec-
tion §V, and present concluding remarks in Section §VI.

II. RELATED WORKS

A large number of recent works [8]–[14] have addressed
creating a single spectrum map from sparse sensor measure-
ments via interpolation (often using Ordinary Kriging) tech-
niques. In particular, [4], [15] uses Kriging-based approaches
and [16] uses Kriged Kalman Filter to generate spectrum
maps. Various machine learning techniques have also been
used to generate spectrum maps from sparse sensors [17]–[21].
However, as mentioned above, these works implicitly assume
a temporally static spectrum map and thus, the problem
addressed is different than our problem of creating multi-
ple spectrum maps in the context of dynamically changing
spectrum maps. Authors in [22] do consider a temporally
changing spectrum map, but considers a different problem
of establishing an upper-bound on difference between known
and unknown spatio-temporal power values. To the best of our
knowledge, the only work that considers the dynamic scenario
as ours is [23] which uses Hidden Markov Models (HMM)
to classify the measurement data depending on the combined
state of each PU which can be either active or idle. In essence,
they assume that the temporal sequence of the on/off states
of the PUs has a “pattern” and exploit this pattern via an
HMM based technique. In contrast, our setting and techniques
do not assume any pattern in the temporal sequence of the
configurations.

In other works, spectrum occupancy detection method is
explored in [24], [25] with a comprehensive survey on spec-
trum sensing and related issues in [26]. Large scale spectrum
monitoring using high-end sensors is presented in [27]–
[30]. Mobile-based crowdsourcing applications for spectrum
monitoring are considered in [9], [31], [32].

III. SPECTRUM MAP GENERATION PROBLEM

In this section, we define some preliminary terms, and
formally define the problem addressed in the paper. For
simplicity, throughout this paper, we assume that all PUs
transmit in the same channel or frequency band; different
channels can be handle independently.

PU State, and Configuration. As suggested in the previous
section, a primary user (PU) is a licensed incumbent user. At

Fig. 2. Spectrum maps generated for ON/OFF states of two nearby TXs

any instant of time, each primary user has a state characterized
by certain parameters that influences its received signal, e.g.,
location, transmit power, antenna orientation, etc. For most
primary users which are fixed at a location, the state will be
generally characterised by its transmit power. Now, consider
a set of n PUs in a given region. At any instant of time, the
configuration of the system is defined as the combination of
the states of the PUs in that instant. Thus, if each PU pi is in a
state si at a given instant, then the configuration of the system
at that instant is (s1, s2, . . . , sn). In general, if each PU pi
can be in qi different states, then the total number of possible
configurations of the system is q1 × q2 . . .× qn. However, in
reality, only a subset of these potential configurations may
manifest or be observed. We use C to denote the set of
observed configurations. Note that each observed configuration
will have a different spectrum map, as described below.

Observation Vectors. Consider a given area A. To limit the
number of locations of interest, we divide the given area A into
a grid of cells, and concern ourselves with only one spectrum
power value/distribution per cell. The goal of our work is to
develop techniques to create spectrum maps (formally defined
below) for each of the observed configurations with sufficient
accuracy. The input to this problem is a set of “observation
vectors”, with each observation vector being a vector of sensed
spectrum powers at various locations at a given instant (based
on the configuration active at that instant). More formally, an
observation vector at a given instant is a vector (o1, o2, . . . , ok)
of sensed spectrum powers, where oi is either an observed
value at ith cell or an unknown value (if there no spectrum
sensor was present at any location in the ith cell). We assume
that observed value at any location is an aggregate of the signal
powers from various PUs in the region, and is perturbed by a
zero-mean random noise (thus, the power value at a location
may not be same across multiple instants, even if the system
is at the same configuration across these instants).

Spectrum Map. For a given area and a configuration c ∈ C,
the spectrum map denoted by Mc is a vector (d1, d2, . . . , dk)
where k is the number of cells (locations of interest) in the
area, and di denotes the parameters (mean and variance) of
the received power distribution in the ith cell, in the given
configuration c. The set of all spectrum maps, one for each
observed configuration, is denoted by M = {Mc|c ∈ C}.
Creation of Dynamic Spectrum Maps (CDSM) Problem.
Given an area with a set of observable configuration C, and
a large number of observation vectors, the CDSM problem is
to create a set of spectrum maps M with a spectrum map for
each of observed configuration c ∈ C, such that the overall
“accuracy” (e.g., with respect to the “ground truth”) of the
created spectrum maps is maximized. We discuss appropriate
accuracy measures, in the subsection below.

As an example, Figure 2 shows three spectrum maps gen-
erated by the ON/OFF states of two PUs. Signal reception
at each point in the 4km×4km area is affected by both the
PUs. A hilly region between the PUs is reflected in the
irregular pattern of the received powers in the 3 maps. Given
a large number of crowdsensed observation vectors over time,
the CDSM problem is to construct each of the 3 maps as
accurately as possible.

A. Performance Metrics
We propose to use two metrics for measurement of accuracy

of created spectrum maps: (i) Average Error (AE) when the
“ground truth” or true spectrum maps (i.e., the actual spectrum
maps based on the PUs’ parameters and propagation model, or
observed power distribution at each cell) are known, as is the
case of simulations or controlled experiments; (ii) Prediction
Error (PE) [33] when the true spectrum maps are not unavail-
able. In addition, we use Adjusted Rand Index (ARI) [34] to
measure the quality of clustering of all the methods presented
here. We now briefly describe these metrics.
Average Error (AE). Consider a given set of k true spectrum
maps, and a set of l spectrum maps output by a CDSM algo-
rithm, we define the Average Error (AE) metric by associating
each output spectrum map with one of the true spectrum
maps, computing the errors for each of these associations,
and adding up the errors. Note that l may not be equal to
k, and hence, creating the associations between the two sets
is not obvious. We propose the following method to create
associations. We create a bipartite graph between the two sets
of spectrum maps, with true spectrum maps forming one set
of nodes and output spectrum map forming the other set.
We can represent the associations via an edge between the
nodes, one from each set. Each edge between nodes i and j
is given a weight w(i, j) equal to the “error” between the two
corresponding spectrum maps, as described below. To create
most effective associations, we (i) first, run a greedy minimum-
cost matching algorithm on the above bipartite graph to find
a set of associations that covers all the maps of the smaller
set, and (ii) then, if the set of output spectrum maps is larger
than the set of true spectrum maps, run a greedy minimum-
cost algorithm to create additional associations/edges to cover

the remaining output spectrum maps. The “average error”
(AE) is then computed by by averaging the weight of all the
edges/associations created above. That is,

AE =

∑
∀(i,j)∈S w(i, j)

|S|
(1)

where S is the set of created associations in the greedy
algorithm above and w(i, j)) is the error between the two
maps. The error w(i, j) between two spectrum maps is defined
as:

w(i, j) =

∑d
m=1 |vm(i)− vm(j)|∑d

m=1 |vm(i)|
(2)

where d is the total number of cells, vm(i) is the power value
at cell m in the ith map.
Prediction Error (PE). If the true spectrum maps are not
known, then we can compute the “prediction” error of the
output spectrum maps as follows [33]. For each observed
vector o=[o1, . . . , oi, . . . , od], we pick a random dimension
i with known value and use it eventually computing the
prediction error; only the remaining (i.e., other than i) known
values of o are the used by a CDSM algorithm to generate
the output spectrum maps. Let W be the set of values (one
from each observation vector) kept for computing the eventual
prediction error. Once the output spectrum maps have been
created, we compute the overall prediction error PE:

PE =
1

|W |
∑

∀oi∈W

|oi − ôi|
oi

(3)

Above, ôi is the predicted value of the original value oi,
computing using the spectrum map Mc to which the vector
o is clustered into by the CDSM algorithm.
Adjusted Rand Index (ARI). Let n be the total number
of observation vectors to be clustered. Then, for a clustering
solution, the Rand Index (RI) is defined as m/nC2, where m
is the number of pairs of observation vectors a and b such
that they are in the same (or different) configuration(s) in the
ground truth as well as the output clusters. The value of RI can
be anywhere between 0 (worst) and 1 (perfect). The Adjusted
Rand Index (ARI) is the normalized version of RI, defined as:

ARI =
RI - ExpectedRI

MaximumRI - ExpectedRI
(4)

The value of ARI can varying between -1 and 1, with a positive
value signifying better than random clustering, and a negative
value signifying a worse than random clustering. A value close
to 1 is regarded as good clustering performance.

IV. OUR APPROACH

Any potential solution to the CDSM problem essentially
involves clustering the high-dimensional observation vectors,
with one cluster for each configuration and its spectrum map.
There are many well-known techniques for clustering such as
K-Means, Expectation-Maximization (EM) method etc. [34].
However, the unique challenges in our context is that the given
observation vectors might have very few known values, due to

sparse availability of spectrum sensors in a large area; using
interpolation techniques to estimate the missing values for
a vector will most certainly introduce prohibitive estimation
errors. In addition, the observation values are noisy, and the
number of spectrum maps, i.e., configurations, is generally
unknown. In the below subsection, we describe a correlation-
based clustering method based on merging of similar vectors.
In the following subsection, we describe modified K-Means
and EM methods adapted to our context.

A. Correlation-based Merging (CBM) Method

The correlation-based merging (CBM) merges two vectors
at a time based on their similarity to form a representative
clustered vector which in turn is iteratively merged with other
vectors. This repeated merging is continued until all the given
observation vectors have been merged, and a terminating
condition satisfied. To facilitate the merging process, in each
vector, we interpolate the unknown values that are spatially
close to the known values; here, by spatially we mean whose
corresponding locations/cells are geographically close. We
use only the spatially close known values for interpolation
purposes. Second, the terminating condition obviates the need
to know the number of desired clusters. Below, we describe
the three key details in the above described Correlation Based
Merging (CBM) method: (i) a diffusion method to interpolate
unknown values and determine correlation between vectors
with otherwise few common known values, (ii) a distance or
dissimilarity metric between the diffused observation vectors,
and (iii) the merging process, and (iv) the threshold and
terminating condition.

Diffusion. Since the observation vectors are gathered from
crowdsensed geographically distributed spectrum sensors, the
known values within an observation vectors can be assumed
to be randomly distributed among the vector dimensions, due
to the random motion of the participating crowd. In addition,
each vector has very few known values. Thus, for any two
observation vectors, it is very likely that they would have
very few, if any, common dimensions with known values.
This makes determination of putting them in the same cluster
(and thus, “merging” them) challenging. However, as spatial
correlation exists within in close vicinity for observed re-
ceived power values, we can use interpolation techniques to
estimate unknown values and thus, increase the likelihood of
common dimensions between a pair of observations vectors.
In particular, interpolation methods such as Inverse Distance
Weighting (IDW), K-nearest, Original Kriging [4], [12] are
commonly used in the context of spectrum maps. We term this
interpolation step as “diffusion”. In particular, we interpolate
any location l that is ≤ ∆d distance away from one or more
locations with known values. We use all the locations that
are at most ∆d distance away in the interpolation such as
IDW. We find that ∆d ≤ 4 grids are sufficient for merging
datapoints in clustering. We present the sensitivity analysis
and the interpolation scheme in Section V.

Distance Metric. After each value has been diffused for a
given distance ∆d, we find “distance” metric s(i, j) for a pair
of observation vectors hi and hj as follows.

s(i, j) =
∑
l∈Lij

(
wi(l) + wj(l)∑

l∈Lij
(wi(l) + wj(l))

)
× |vi(l)− vj(l)|

Here, Lij is a set of locations that have values (either known
or diffused) for vectors hi and hj , vi(l) is the received power
(dBm) at location l in vector hi and wi(l) is a “weight” metric
for location l in vector hi that is defined as follows: if location
l has a known value, then wi(l) is inverse of a small constant c
such as 0.001; if l has a diffused value, then wi(l) is inverse of
the distance to the closest location with a known value used
to interpolate its value. The intuition is that, the difference
in the values at location l i.e. |vi(l) − vj(l)| is weighted by
the “quality” of the location values in the two vectors. E.g.,
if both vectors have known value for the location, then the
weight is highest (2/c), but if one of the vectors has diffused
value from a location with known value that is dt (minimum)
distance away, then the weight is (1/c+1/dt). Thus, both the
difference in values and the quality of the values contribute
to the above defined distance metric. Finally, the weights are
normalized by dividing by the sum of all such weights for
a set of locations Lij . In this way, we can derive distance
metric for clustering for extremely sparse datapoints without
introducing significant interpolation error in the pre-processing
step of clustering.

Merging. Once distance metric has been calculated for each
pair of vectors, we start clustering the vectors by iteratively
merging the pair of vectors with minimum distance metric
value. In particular, vectors hi and hj are merged to form
a new merged vector hij as follows: each location l ∈ Lij

with known values are copied into hij . If l has known values
for both the vectors, both the known values are saved in a
list1. Then, the diffusion step is re-run for this new vector hij .
The vector hij replaces both hi and hj in the given set of
observation vectors. Distance metric s((i, j), k) is calculated
between hij and the rest of the vectors hk ∈ H−{hi, hj} and
the merging process is repeated for the new set of observation
vectors.
Threshold and Termination. One important factor in termi-
nation of the above iterative merging is a threshold distance
smax. Two vectors are only merged if the distance metric
between them ≤ smax. This threshold smax has a bearing on
the number of output clusters—if the threshold is too small,
then the number of resulting clusters or maps may be too many,
and vice-versa. We also note that, initially, the datapoints are
extremely sparse, therefore the distance between the vectors
is relatively high due to much contribution from the diffused
values; however, as the merging progresses, the resulting

1During merging process, the list for a location may grow with known
values. We assume a Gaussian distribution of known values in presence of
sensor noise. Therefore, a Gaussian fit is derived for such a set of known
values and the resulting mean is used for subsequent diffusion or interpolation.

vectors have more and more known values resulting in lower
and lower distance with other vectors. To incorporate the above
progression of distance metric, we tie the threshold smax

with the total number of known values in the vectors under
consideration. In particular, when comparing vectors hi and hj
with ki and kj number of known values respectively, we set the
threshold for their merging as θ(i, j) = smax

(
1− e

ki+kj
M

)
where N is the total number of known values in all the
originally given observation vectors. This formulation ensures
that the threshold approaches smax as the merging process
progresses. In our simulations, we used the standard deviation
of all known values in the history as the smax value.

Algorithm 1: Correlation-based Merging (CBM) Method
Data: Set of observation vectors H, diffusion parameter

∆d
Result: Set of Clusters or Spectrum Maps M
repeat

Diffuse ∀hi ∈ H by ∆d;
Calculate Distance s(i, j) and threshold
θ(i, j) ∀hi, hj ∈ H;

Find min(s(i, j)) s.t. s(i, j) ≤ θ(i, j);
Merge hi and hj into hij ;
Update H ← H∪ {hij} − {hi, hj};

until s(i, j) > θ(i, j)∀hi, hj ∈ H;

Time Complexity. The number of iterations can be up to
|H|, and the most expensive step within each iteration is the
Calculate step which can take O(|H|2d) time in worst case,
where d is the dimension of each vector. Thus, the worst-case
time complexity of Algorithm 1 is O(|H|3d).

B. Adapting Known Clustering Approaches

Here, we present two other clustering approaches and their
adaptation to our context. We choose K-Means (KM) clus-
tering for its simplicity and suitability for high-dimensional
clustering [34]. Also, we can consider the transmitter states
as “latent” variables and the resulting spectrum maps as
outcomes. As a result, it is natural to use Expectation Maxi-
mization (EM) algorithm for clustering [34]. In the following,
we present the two algorithms and describe the way the
missing values in the input vectors are handled in each case.
For both the cases, the number of clusters i.e spectrum maps
is derived from our method first.

K-Means Algorithm.
1) Initialization Step: Determine the missing values in each

d-dimensional input vector using interpolation. Randomly
assign the vectors to one of the maps and initialize the
spectrum maps as the mean of the vectors.

2) Clustering Step Run K-Means clustering [34] using the
distance metric e(i, j) between vector i and map j as
defined in Equation 2.

EM Algorithm. EM algorithm has two interlocking steps: (i)
E-step: the value of the map-membership (latent variable) of

the input vectors are estimated using parameters such as mean
and variance of values at each dimension; (ii) M-step: vectors
that are clustered probabilistically in the E-Step, are used to
update the parameter values. These two steps are repeated until
the convergence is reached or the marginal improvement is
insignificant. We adopt the EM algorithm to handle missing
values in the input vectors as follows:

1) Initialization: Determine the missing values in each
d-dimensional input vector ot using interpolation. Ran-
domly choose mean µ and variance σ2 for each dimension
of each map Mc.

2) E-step: For each vector ot and each map Mc, using the
parameters µ and σ2, find the likelihood lt,c for ot ∈Mc.

3) M-step: For each map Mc, update the parameter values
µ and σ2 using the likelihood values lt,c

4) I-step: Interpolate each missing value vm at dimension
m in vector ot as follows:

vm =

∑
j∈S (lj,c × vm(j))∑

j∈S lj,c
(5)

where S is the set of vectors that belong to the same
map Mc as ot and each vector oj ∈ S has a known
value vm(j) at dimension m.

5) Go back to Step 2 until convergence.
Note added Step 4 (Interpolation or I-step) to handle extremely
sparse input vectors.

V. RESULTS

In this section, we compare the performance of the three
methods described both by simulation (with ground truth) and
using real data (without ground truth).
Simulation. Here, we generate the input vectors by simulation.
As such, the ground truth or the true map-membership of each
input vector is available for computation of AE metric.
Experiment Setting. We used data generated from a terrain-
based wireless pathloss analyzer tool SPLAT! [35] and used
terrain database of US Geological Survey [36]. We put certain
number of transmitters in an area of 4km×4km and tuned
their Effective Radiated Power (ERP) accordingly such that the
transmitters do not interfere with each other. We considered
800MHz frequency band and at most 100 feet antenna height.
We divided the area into 100×100 grid. The receiver height
was constant at 5 feet over the terrain surface. We created
different configurations by turning these transmitters on and
off, changing the ERP and both. We than sub-sampled the
resulting received power maps to created sparse datapoints.
We then added zero-mean Gaussian noise with variance up to
10dB to simulate sensor noise.
Observation. As shown in Figure 3, our method Correlation-
based Merging (CBM) is compared with K-Means (KM) and
EM-algorithm (EM) for varying (a) known dimensions, (b)
configurations (c) sensor noise levels and (d) number of input
vectors. The suffixes “AE” and “ARI” indicate the error and
the clustering metric respectively. Here, the default parameter
values are as follows: %known values = 0.5, # of configuration

Fig. 3. Performance Comparison for simulation data for varying (a) % known values (b) # of configurations (c) Sensor noise variance (d) # of training data

Fig. 4. Performance Comparison for WiFi data for varying (a) % known values (b) # of configurations (c) Sensor noise variance (d) # of training data

Fig. 5. Performance Comparison for LTE data for varying # of sensors

= 6 and noise variance = 2.5dB and # of training data = 1K. We
observe that CBM outperforms both KM and EM algorithms
in all cases. In particular, For extremely sparse datapoints such
as 0.1% of full dimension, the gap both in AE and ARI metrics
are significant. Also, this observation holds for varying number
of configurations, sensor noise levels and input vectors. We
note that the gap between performance decreases for call cases
with the increase in input size, as expected.
Real Data. Here, we apply the methods on real data collected
by commodity sensors. We use two dataset as described below.
WiFi Data. We set two WiFi transmitters in the outdoor and
collect received powers using commodity sensors shown in
Figure 1 equipped with GPS. We turn the two WiFi trans-
mitters on and off to create a total of 4 configurations and
collect data with high spatial granularity for each case. We
then subsample the data to create input vectors with required
% known values for the dimensions. As shown in Figure 4,
CBM outperforms the rest in all metrics, even though, the
other two perform better compared to simulated case, due to
small number of configurations.

Cellular Data. Using the commodity sensors, we collected re-
ceived powers for the LTE downlink at 751MHz band (2MHz
bandwidth) of a popular cellular company. Samples were
collected in 1500 locations spanning indoors and outdoors
covering a an area of about 15K sq-meters. Since the ground
truth regarding the transmitters states are unknown, we use
prediction error (PE) as performance metric. Our algorithm
outputs two spectrum maps. We also observed from the time-
stamped data that, one map occurs during 8am to 12am, the
other one for the rest of the time. As shown in Figure 5, CBM
outperforms the rest in this metric. With the increase in sensor
density, the performance gap diminishes. However, using only
2 sensors, we are able to construct spatio-temporal spectrum
maps with ≤ 5dB error margin, which is the typical noise
variance of the sensors we used.

VI. CONCLUSION

In this work, we presented a novel clustering method for
generating spectrum maps from spatio-temporal data. In par-
ticular, we addressed both the time-varying spectrum maps and
sparse datapoints. We adopted diffusion method and distance
metric for a correlation-based clustering. We show that our
method result in high-accuracy maps without requiring any
information regarding the transmitters, propagation model, en-
vironment etc. In future, we plan to explore a robust prediction
mechanism based on spatio-temporal datapoints.

VII. ACKNOWLEDGEMENT

This work was supported by NSF awards #1642965.

REFERENCES

[1] J. Andrews et al., “What will 5G be?” IEEE JSAC, 2014.
[2] A. Goldsmith, Wireless Communications. Cambridge University Press,

2005.

[3] Federal Communications Commission, “3.5 GHz Band / Citizens Broad-
band Radio Service,” https://tinyurl.com/y9krqbvr.

[4] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das, “SpecSense:
Crowdsensing for efficient querying of spectrum occupancy,” in IEEE
INFOCOM, 2017, pp. 1–9.

[5] “FlightFeeder for Android, FlightAware,”
http://flightaware.com/adsb/android/.

[6] Ettus Research, “USRP Bus Series,” https://tinyurl.com/nqb67oh.
[7] RTL-SDR Project, “RTL2832U,” https://www.rtl-sdr.com/.
[8] A. Achtzehn, J. Riihijarvi, and P. Mahonen, “Improving

accuracy for TVWS geolocation databases: Results from
measurement-driven estimation approaches.” in Proc. IEEE
DySPAN, 2014. [Online]. Available: http://www.inets.rwth-
aachen.de/fileadmin/templates/images/PublicationPdfs/2014/DySPAN-
2014-TVWS-Estimation.pdf

[9] A. Achtzehn, J. Riihihjärvi, I. A. Barriı́a Castillo, M. Petrova, and
P. Mähönen, “CrowdREM: Harnessing the power of the mobile crowd
for flexible wireless network monitoring,” in Proc. ACM HotMobile,
2015.

[10] M. Molinari, M. Fida, M. K. Marina, and A. Pescapè, “Spatial interpo-
lation based cellular coverage prediction with crowdsourced measure-
ments,” in Proc. SIGCOMM Workshop on C2B(I)D, 2015.

[11] C. Phillips, M. Ton, D. Sicker, and D. Grunwald, “Practical
radio environment mapping with geostatistics,” in Proc. IEEE
DySPAN, 2012. [Online]. Available: http://www.eecs.berkeley.edu/ sa-
hai/Papers/DySpAN09.WhitespaceCapacity.pdf

[12] X. Ying, S. Roy, and R. Poovendran, “Incentivizing crowdsourcing
for radio environment mapping with statistical interpolation,”
in Proc. IEEE DySPAN 2015, 2015. [Online]. Available:
http://dx.doi.org/10.1109/DySPAN.2015.7343932

[13] X. Ying, C. W. Kim, and S. Roy, “Revisiting TV coverage estimation
with measurement-based statistical interpolation,” in Proc. IEEE COM-
SNETS, 2015.

[14] V. Atanasovski, J. van de Beek, A. Dejonghe, D. Denkovski,
L. Gavrilovska, S. Grimoud, P. Mhnen, M. Pavloski, V. Rakovic,
J. Riihijarvi, and B. Sayrac, “Constructing radio environment maps with
heterogeneous spectrum sensors,” in IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN), 2011, pp. 660–661.

[15] Y. Hu and R. Zhang, “Secure crowdsourced radio environment map
construction,” in IEEE ICNP, 2017.

[16] S. Kim, E. Dall’Anese, and G. B. Giannakis, “Cooperative spectrum
sensing for cognitive radios using kriged kalman filtering,” Journal on
Selected Topics in Signal Processing, vol. 5, 2011.

[17] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Transaction on
Signal Processing, vol. 58, 2010.

[18] J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Group-lasso on splines
for spectrum cartography,” IEEE Transaction on Signal Processing,
vol. 59, 2011.

[19] J. A. Bazerque and G. B. Giannakis, “Nonparametric basis pursuit via
sparse kernel-based learning: A unifying view with advances in blind
methods,” IEEE Signal Processing Magazine, vol. 30, 2013.

[20] B. A. Jayawickrama, E. Dutkiewicz, I. Oppermann, G. Fang, and J. Ding,
“Improved performance of spectrum cartography based on compressive
sensing in cognitive radio networks,” in IEEE ICC, 2013.

[21] S. Kim and G. B. Giannakis, “Cognitive radio spectrum prediction using
dictionary learning,” in IEEE GLOBECOM, 2013.

[22] A. Ahuja, V. J. Ribeiro, R. Chandra, and A. Kumar, “SpectraMap:
Efficiently Constructing a Spatio-temporal RF Spectrum Occupancy
Map,” in Communication Systems and Networks. Springer International
Publishing, 2017, pp. 53–71.

[23] K. Ichikawa and T. Fujii, “Radio environment map construction using
hidden markov model in multiple primary user environment,” in 2017
International Conference on Computing, Networking and Communica-
tions (ICNC), 2017.

[24] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy
detection of unknown signals over fading channels,” IEEE Transactions
on Communications, vol. 55, pp. 21–24, 2007.

[25] K. Kim, I. A. Akbar, K. K. Bae, J. S. Um, C. M. Spooner, and J. H.
Reed, “Cyclostationary approaches to signal detection and classification
in cognitive radio,” in IEEE DySPAN, 2007, pp. 212–215.

[26] F. Hu, B. Chen, and K. Zhu, “Full spectrum sharing in cognitive radio
networks toward 5g: A survey,” IEEE Access, vol. 6, pp. 15 754–15 776,
2018.

[27] “Microsoft Spectrum Observatory project,”
https://observatory.microsoftspectrum.com/.

[28] A. Iyer, K. K. Chintalapudi, V. Navda, R. Ramjee,
V. Padmanabhan, and C. Murthy, “SpecNet: Spectrum sensing
sans frontieres.” in Proc. NSDI, 2011. [Online]. Available:
http://research.microsoft.com/pubs/142837/SpecNet-NSDI11.pdf

[29] J. Naganawa, H. Kim, S. Saruwatari, H. Onaga, and H. Morikawa,
“Distributed spectrum sensing utilizing heterogeneous wireless devices
and measurement equipment,” in Proc. IEEE DySPAN, 2011.

[30] T. Zhang and S. Banerjee, “A Vehicle-based Measurement Framework
for Enhancing Whitespace Spectrum Databases.” in Proc. ACM Mobi-
Com, 2014.

[31] J. Shi, Z. Guan, C. Qiao, T. Melodia, D. Koutsonikolas, and G. Challen,
“Crowdsourcing access network spectrum allocation using smart-
phones,” in Proc. ACM HotNets, 2014.

[32] D.-H. Shin, S. He, and J. Zhang., “Joint sensing task and subband
allocation for large-scale spectrum profiling,” in Proc. IEEE INFOCOM,
2015.

[33] A. Rencher and W. Christensen, Methods of Multivariate Analysis.
Wiley, 2012.

[34] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[35] John Magliacane, KD2BD, “ Signal Propagation, Loss, And Terrain
(SPLAT) ,” http://www.qsl.net/kd2bd/splat.html.

[36] US Geological Survey, “SRTM,” https://tinyurl.com/zwkpk9h.

