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One of the useful approaches to exploit redundancy in a sensor network is to keep active only a

small subset of sensors that are sufficient to cover the region required to be monitored. The set of
active sensors should also form a connected communication graph, so that they can autonomously

respond to application queries and/or tasks. Such a set of active sensors is known as a connected
sensor cover, and the problem of selecting a minimum connected sensor cover has been well studied

when the transmission radius and sensing radius of each sensor is fixed. In this article, we address
the problem of selecting a minimum energy-cost connected sensor cover, when each sensor node

can vary its sensing and transmission radius; larger sensing or transmission radius entails higher
energy cost.

For the above problem, we design various centralized and distributed algorithms, and compare
their performance through extensive experiments. One of the designed centralized algorithms

(called CGA) is shown to perform within an O(logn) factor of the optimal solution, where n is the
size of the network. We have also designed a localized algorithm based on Voronoi diagrams which

is empirically shown to perform very close to CGA, and due to its communication-efficiency results
in significantly prolonging the network lifetime. We also extend the above algorithms to incorpo-

rate fault tolerance. In particular, we show how to extend the algorithms to address the minimum
energy-cost connected sensor k-cover problem, in which every point in the query region need to

be covered by at least k distinct active sensors. The CGA preserves the approximation bound
in this case. We also propose a localized topology control scheme to preserve k-connectivity, and

use it to extend the Voronoi based approach to computing a minimum energy-cost k1-connected
k2-cover. We study the performance of our proposed algorithms through extensive simulations.
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1. INTRODUCTION

Wireless sensor networks are often deployed for passive gathering of sensor data
in a geographical region. The “grand challenge” of sensor network design for data
gathering activities is to maintain the fidelity of the gathered data while minimizing
energy usage in the network. Energy is spent due to message transmissions by the
radio interface, or due to the sensing activities by the signal processing electronics.
Energy can be saved if these activities are used only to the extent absolutely needed,
and no more.

Two important properties of a sensor network play critical roles in the design
approach. They are coverage and connectivity. Loosely speaking, coverage describes
how well sensors in the network can monitor a geographical region in question.
This can include multiple parameters, such as whether every point in the region
can be monitored by at least one sensor within a given confidence. The confidence
typically depends on the physical distance of the point from the monitoring sensor,
as distance weakens the signal and thus worsens the signal-to-noise ratio introducing
measurement errors. In a simplified model, this confidence can be specified in terms
of a sensing range [Charkrabarty et al. 2002]. Connectivity, on the other hand,
simply describes the connectivity properties of the underlying network topology.
It is often desirable that the network is connected. If the network is partitioned,
the entire sensor network data cannot be gathered to a central decision-making
node. Moreover, in some applications, the desired accuracy of sensed data and
fault tolerance make it often necessary to require each point in the query region to
be within the sensing region of at least k sensors. This fault tolerance is integrated
into connectivity by requiring the network to be k-connected, i.e., the network
remains connected even if k nodes failt.

It is expected that in most deployment scenarios, it will be cost-effective to
deploy the sensors randomly in a redundant fashion ([Ye et al. 2003; Wang et al.
2003]). The sensor hardware is cheap, relative to the logistics or opportunity cost
of deployment. Thus, it is useful to deploy the sensors redundantly, and employ
sophisticated protocol support so that only a “minimally sufficient subset” of the
sensors is actually active at a time – thus conserving energy and prolonging the
sensor network lifetime. Also, in many scenarios the logistics for designed placement
of sensor nodes at specific geographical locations will be very complex. Thus, in
these scenarios, random deployment is the only feasible method. This means that
the “minimally sufficient subset” cannot be pre-determined. The sensor nodes must
be able to compute this on-line, by executing appropriate algorithms.

In this paper, our goal is to investigate such algorithms for energy-efficient con-
nectivity and coverage. We investigate the situation where both sensing and trans-
mission range can be varied in the sensors. This uncovers an interesting design
problem, where a minimally sufficient subset of sensors must be selected along with
the assignment of sensing and transmission ranges for individual sensors, such that
both coverage and connectivity are guaranteed with a minimum total energy cost.
The assumption here is that the energy cost for an individual sensor increases with
higher sensing range or transmission range. This is because with a larger sensing
range, more energy is needed for appropriate filtering and signal processing meth-
ods to improve the signal-to-noise ratio in order to achieve the desired confidence
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level. Similarly, with a larger transmission range, transmission power is to be in-
creased to reach larger distances. It is expected that with sophisticated sensors
that can control their sensing and transmission ranges, the overall energy budget
of the network can be reduced relative to the case where sensors have fixed sens-
ing and transmission ranges. Note that a similar problem has been investigated in
literature by varying transmission ranges of the nodes for minimum energy topol-
ogy construction in wireless ad hoc networks ([Wieselther et al. 2000; Cagalj et al.
2002; Cartigny et al. 2003; Wan et al. 2001]); however, this line of work does not
involve any notion of sensing range. The model of sensors with variable sensing
range has been used in [Dhawan et al. 2006; Younis et al. 2007; Cardei et al. 2005;
Wu and Yang 2004], and sensors with variable sensing range are also commercially
available [Osi ].

The rest of the paper is organized as follows. We start in Section 2 by describing
our sensor network model, and formally defining the variable radii connectivity
and coverage problem addressed in this article. In the next section, we present a
discussion on related work. In Section 4, we present a fully localized algorithm based
on Voronoi diagrams for computing a variable radii connected sensor cover. We
extend our Voronoi based approach to incoporate fault-tolerance, i.e., to compute
a set of sensors that is k1-connected and a k2-cover. Section 6 presents centralized
and distributed greedy algorithms. We present simulation results in Section 7,
and end with concluding remarks in Section 8.

2. PROBLEM FORMULATION

In this section, we motivate and formulate the variable radii connected sensor cover
problem addressed in this paper. We start with describing the sensor network model
used in this paper.

A sensor network consists of a large number of sensors distributed randomly in
a geographical region. Each sensor I has a unique ID, and is associated with a
maximum sensing radius S∗ and a maximum transmission radius T ∗. We assume
that the maximum radii associated are same for all the sensors in the network.1

Each sensor I also chooses (or, is assigned) a sensing radius S(I) (≤ S∗) and a
transmission radius T (I) (≤ T ∗), such that it is capable of sensing up to a distance
of S(I) and can communicate directly to sensors that are within a distance of T (I)
units. The assigned sensing region θ(I) associated with a sensor I is a disk of radius
S(I) centered at the location of sensor I. Throughout this article, we use d(x, y)
to denote the euclidean distance between points x and y.

The variable radii connected sensor cover (VRCSC) problem in the above de-
scribed sensor model can be informally stated as follows. Given a sensor network
and a query region, select a subset of sensors with specified sensing and transmis-
sion radii, such that (a) each point in the query region can be sensed by at least
one of the selected sensors, and (b) the selected sensors form a connected communi-
cation graph using their assigned transmission radii (considering only bidirectional
link). Our goal is to minimize the total energy cost of the selected sensors, i.e.,
the sum of the sensing and communication energy costs of all the selected sensor
nodes. Essentially, for a given query region in a sensor network, we wish to select

1This assumption is needed only for the Voronoi based approach presented in Section 4.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.



4 · Zongheng Zhou et al.

a subset of sensors to be powered ON and assign them sensing and transmission
radii, such that the given query region is covered and the selected set of sensors
form a connected communication graph. The query region can also be thought of
as a surveillance region that needs to be monitored by the sensor network.

Motivation for Variable Radii. Energy is a critical resource in sensor networks.
One of the key characteristics in wireless communication is that the energy con-
sumption increases with the transmission distance. Thus, a wireless device can
change its transmission range to save energy [Cagalj et al. 2002; Wan et al. 2001;
Wieselther et al. 2000]. In conventional sensor design, the energy spent in sensing
has an inverse relationship with the amount of signal energy received by the sensor.
This is because, if the signal energy is weak, the signal to noise ratio needs to be
suitably improved for reliable detection via appropriate signal processing methods.2

Note also that the signal energy decays with distance of the sensor from the signal
source according to an inverse power law. Thus, it is fair to model the energy spent
in sensing as an increasing function of a power of the sensing radius. The same
model is also used in [Pattem et al. 2003; Dhawan et al. 2006; Younis et al. 2007;
Cardei et al. 2005; Wu and Yang 2004], and sensors with variable sensing radii are
also commercially available [Osi ].

Formal Problem Definition. We now formally define the variable radii con-
nected sensor cover (VRCSC) problem. We start with a few definitions.

Definition 1. (Energy Cost) Consider a sensor I with an assigned sensing ra-
dius of S(I) and a transmission radius of T (I). We model the energy cost of I
as E(I) = f(S(I)) + g(T (I)) + C, where f(x) and g(x) are monotonically non-
decreasing functions in x, and C is a constant that represents the idle-state energy
cost.

Definition 2. ((Full) Communication Graph) Given a set of sensors M in a
sensor network, the communication graph of M is an undirected graph with M as
the set of vertices and an undirected edge between any two sensors if they can
directly communicate with each other using their assigned transmission radii. The
full-communication graph of a set I of sensors is the communication graph of I
when each node in I is assigned the maximum transmission radius T ∗.

Definition 3. (Communication Distance) A path of nodes/sensors between Ii

and Ij in the communication graph is called a communication path between the
sensors Ii and Ij. The communication distance between two sensors Ii and Ij is the
weight of the minimum node-weighted path between Ii and Ij in the communication
graph, where the weight at an intermediate sensor node I is the transmission energy
cost g(T (I)) of the sensor node.

Definition 4. (Variable Radii Connected Sensor Cover) Consider a sensor net-
work. Let S∗ and T ∗ be the maximum sensing and transmission radius respectively.
Given a query region RQ in the network, a set of sensors M = {I1, I2, . . . , Im} in
the sensor network, where each sensor Ij is assigned a sensing radius S(Ij) (≤ S∗)

2The actual relationship between the energy spent in sensing and signal energy incident on the
sensor cannot be easily generalized, as it is dependent on the sensor technology and electronic

circuitry for detection, but it is not important for our purposes.
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and a transmission radius T (Ij) (≤ T ∗), is said to be a variable radii connected
sensor cover for the query region RQ if the following two conditions hold:

(1) RQ ⊆ θ(I1) ∪ θ(I2) ∪ . . . θ(Im), where θ(Ij) is the sensing region of Ij, i.e., a
circular region of radius S(Ij) centered around the sensor Ij , and

(2) the communication graph of M is connected.

A set of sensors that satisfies only the first condition is called a variable radii sensor
cover.

The variable radii connected sensor cover problem of computing a minimum
energy-cost variable radii connected sensor cover is NP-hard as the less general
problem of connected sensor cover with fixed radii is known to be NP-hard [Gupta
et al. 2003].

Fault tolerance is a major conscern in sensor networks, since sensor nodes are
often error prone. In order to combine fault tolerance into consideration, we give a
general definition of the variable radii connected sensor cover, namely variable radii
k1-connected k2-cover. Beside fault tolerance, having multiple sensors covering each
point improves the accuracy of tracking, masks the false activation of sensors, and
is necessary for the purposes of classification [Kumar et al. 2004].

Definition 5. (k-Connectivity) The communication graph of a given set of sen-
sors M is k-connected if for any two vertices Ii and Ij in M , there are k vertex-
disjoint paths from Ii to Ij . A equivalent definition is, after the removal of any
k − 1 nodes the communication graph of M is still connected.

Definition 6. (Variable Radii k1-Connected k2-Cover) Consider a sensor net-
work consisted of a set I of sensors and a query region RQ. A set of sensors M ⊆ I,
M = I1, I2, . . . , Im, is chosen to be active, where each sensor Ij is assigned a sens-
ing radius S(Ij )(≤ S∗) and a transmission radius T (Ij)(≤ T ∗). M is said to be a
k1-connected k2-cover for the query region RQ if the following two conditions are
satisfied:

(1) each point p in RQ is covered by at least k2 distinct sensors in M .

(2) the communication graph induced by M is k1-connected.

3. RELATED WORK

Connectivity is a fundamental issue in wireless ad hoc environment, and many
schemes have been addressed to conserve energy while maintaining connectivity in
the network topology. One of the most related problem in the above context is the
minimum connected dominating set problem [Guha and Khuller 1998]. The work
in wireless network research community ([Wan et al. 2002; Das et al. 1997; Laouiti
et al. 2002; Wu and Li 2001; Alzoubi et al. 2002; Chen and Liestman 2002; Wu and
Dai 2003]) has primarily focused on developing energy-efficient distributed algo-
rithms to construct a near-optimal connected dominating set. All the above works
assume fixed transmission range for each sensor node. The works in [Wieselther
et al. 2000; Cagalj et al. 2002; Cartigny et al. 2003; Wan et al. 2001] address the
related NP-complete problem of constructing a minimum energy broadcast tree in
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a network, where every node can adjust its transmission power/range. Along this
same line, some recent works also address the problem of fault tolerant topology
control [Hajiaghayi et al. 2003; Bahramgiri et al. 2002; Li and Hou 2004; Li et al.
2003]. Of particular interest to us is the protocol in [Li et al. 2005] that proposes a
cone based topology control (CBTC) scheme. The CBTC scheme is to assign the
minimum transmission range to a node I such that the maximum angle between
any pair of its two consecutive neighbors is at most 2π/3. It is shown that the
CBTC scheme preserves the connectivity of the given network. Furthermore, it
is shown in [Bahramgiri et al. 2002] that CBTC actually preserves k-connectivity
of the whole network, when the maximum angle between any pair of consecutive
neighbors of each node is at most 2π/3k. However, none of the above described
works involve any notion of sensing range or coverage.

Recently, there has been a lot of research done to address the coverage prob-
lem in sensor networks. In particular, the authors in [Slijepcevic and Potkonjak
2001] design a centralized heuristic to select mutually exclusive sensor covers that
independently cover the network region. In [Charkrabarty et al. 2002], the au-
thors investigate linear programming techniques to optimally place a set of sensors
on a sensor field (three dimensional grid) for a complete coverage of the field.
Meguerdichian et al. ([Meguerdichian et al. 2001; Meguerdichian et al. 2001]) con-
sider a slightly different definition of coverage and address the problem of finding
maximal paths of lowest and highest observabilities in a sensor network. A localized
protocol is proposed in [Yan et al. 2003] that aims at choosing minimal sensors to
be active at any time point, while guaranteeing the coverage of the grid points.
Some work ([Hsin and Liu 2004; Shakkottai et al. 2003; Kumar et al. 2004]) try
to address the asymptotic coverage problem, in which they derive the necessary
conditions such that the query region can be covered with high probability, while
using simple scheduling scheme to coordinate sensor nodes duty cycles. Among
them, [Kumar et al. 2004] analyzes the asymptotic coverage for the common case
of k-coverage. However, all of the above works only consider fixed sensing radii.
Moreover, they do not incorporate the requirement of connectivity.

Recently, researchers have also considered connectivity and coverage in an in-
tegrated platform. In particular, the authors in [Shakkottai et al. 2003] consider
an unreliable sensor network, and derive necessary and sufficient conditions for the
coverage of the region and connectivity of the network with high probability. The
PEAS protocol [Ye et al. 2003] considers a probing technique that maintains only
a necessary set of sensors in working mode to ensure coverage and connectivity
with high probability under certain assumptions. Wang et al. [Wang et al. 2003]
present a localized heuristic in which they use the SPAN [Chen et al. 2001] proto-
col to maintain connectivity, and a separate CCP protocol to maintain coverage,
which can be extended for k-coverage. In our prior work [Gupta et al. 2003], we
designed a greedy approximation algorithm that delivers a connected sensor cover
for a sensor network with fixed transmission and sensing ranges. The above work
was extended for k-coverage in [Zhou et al. 2004]. In this article, we consider the
network model wherein each sensor node has the ability to adjust its transmission
and sensing power/radii. We also extend our work to incorporate fault tolerance
by addressing the problem of selecting k1-connected k2-cover sets.
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4. VORONOI BASED ALGORITHM

In this section, we design a localized distributed algorithm for the variable radii
connected sensor cover problem based on the computational geometric concepts of
Voronoi diagram and Relative-Neighbor Graph (RNG). The developed algorithm is
a localized algorithm in the sense that each sensor makes decisions based only upon
local neighborhood information. Below, we recall definitions of Voronoi diagrams
and Relative-Neighbor Graphs.

Definition 7. (Voronoi Diagram/Cell/Neighbor) Given n nodes in a plane, the
voronoi diagram is defined as the partitioning of the plane into n convex polygons
such that each polygon contains exactly one of the n nodes and every point in a
given polygon is closer to its central node than to any other node [mat ]. The
voronoi cell of a node is the convex polygon in the voronoi diagram that contains
the node. Two nodes whose voronoi cells share a common edge are called voronoi
neighbors.

Definition 8. (Relative Neighbor Graph (RNG)) Given nodes with uniform
transmission radius T in a 2D plane, the relative neighbor graph is the graph where
an edge exists between any two nodes u, v, iff (i) d(u, v) ≤ T , and (ii) there is no
node w such that d(u, w) < d(u, v) and d(v, w) < d(u, v). It is well-known that
the relative neighbor graph is connected if the network’s full-communication graph
(using T as the maximum transmission radius) is also connected [Cartigny et al.
2003].

Definition 9. (l-hop Active Neighborhood) The l-hop active neighborhood of
an active node I, denoted as N (I, l), is defined as the set of active nodes that are
at most at a distance of l hops from I in the unweighted full-communication graph
of the entire sensor network.

In our proposed localized algorithm, each sensor node I builds its voronoi cell
based upon locations of nodes in N (I, l). A low l can result in construction of
inaccurate voronoi cells, since each sensor node has only limited (l-hop) information.
However, a low value of l does not affect the correctness of our proposed algorithm.
The constant l is chosen carefully – larger l results in better performance, but higher
communication cost. For ease of presentation, we will assume that l is a constant
in the rest of the discussion.

Definition 10. (Local Voronoi Cell/Neighbor) A local voronoi cell LV (I) of a
node I is a set of points p such that p is in the given query region and d(p, I) ≤
d(p, J) for all J ∈ N (I, l). Note that local voronoi cells of a set of nodes in a 2D
plane may not be disjoint because l may not be large enough. For a node I, the
size of its local voronoi cell LV (I) is the maximum distance of a point in LV (I)
from I.

A node J is a local voronoi neighbor of I if J is a voronoi neighbor of I in the
voronoi diagram over the set of nodes N (I, l). Note that the local voronoi neighbor
relationship is not symmetric, i.e., I may not be a local voronoi neighbor of J even
if J is a local voronoi neighbor of I. We use LN (I) to denote the set of local voronoi
neighbors of I.
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The following method of assignment of radii to a set of active sensor nodes in a
sensor network forms the core of our Voronoi Based algorithm.

V-R Assignment of Radii. Consider a set of active sensors A in a sensor network.
Let the set of sensor nodes whose maximum sensing region intersects with the given
query region be M . The V-R assignment of sensing and transmission radii is defined
as follows. Each sensor node I in M is assigned a sensing radius equal to the size
of its local voronoi cell or the maximum sensing radius, whichever is smaller. Each
sensor node I in M is assigned a transmission radius equal to the maximum distance
over all its neighboring nodes in the RNG graph of M . All active nodes that are
not in M are assigned zero sensing and transmission radius. The following theorem
shows that the V-R assignment ensures coverage and connectivity of the query
region.

Theorem 1. Given a set of active sensors A and a query region in a sensor
network, such that the query region is covered by the union of the maximum sensing
regions of nodes in A, the V-R assignment of radii ensures coverage of the query
region.

Let the set of active sensor nodes whose maximum sensing region intersects with
the query region be M . If the full-communication graph of M is connected, then
the V-R assignment of transmission radii ensures connectivity of M .

Proof. It is easy to see that (V (I) ∩ RQ) ⊆ LV (I), where V (I) is the voronoi
cell of I and RQ is the query region. Consider a point p in the query region, and
let Ip be the active sensor node that is closest to p. Now, p ∈ V (Ip) and hence,
p ∈ LV (Ip). Since p is covered by the maximum sensing region of at least one
active sensor node, it is covered by the maximum sensing region of Ip, and hence,
the assigned sensing region of Ip covers p.

As RNG is guaranteed to be connected, the V-R assignment ensures connectivity
of M .

Voronoi Based Algorithm Description. The V-R assignment of sensing and
transmission radii is key in the design of our Voronoi Based algorithm. Informally,
the Voronoi Based algorithm works as follows. We start with all sensors in the
network as active nodes, and use the V-R assignment method to assign their sensing
and transmission radius. At each stage, certain sensor nodes become inactive, and
the assignment of sensing and transmission radii is redone for the remaining active
nodes. A sensor node is chosen to become inactive only if the remaining active
sensors are capable of covering the query region and maintain connectivity of their
communication graph. We use an appropriately defined concept of “benefit” to
choose the best sensor nodes to become inactive. The algorithm terminates when
no more sensors can be made inactive. In the end, the set of active sensor nodes
form the desired VRCSC solution. Formally, our proposed Voronoi Based algorithm
consists of the following steps.

(1) Initially, each sensor node in the sensor network is active, and gathers locations
of all the nodes in the l-hop active neighborhood.

(2) Each active sensor node computes its local voronoi cell, and the neighbors in
the RNG over active nodes. It uses the V-R assignment method to assign itself
a sensing and a transmission radius.
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Fig. 1. Proof of Theorem 2

(3) Each node I computes its sleeping benefit (formally defined later), which is the
decrease in the total energy cost of the “local” active sensors if I is inactivated.

(4) A sensor node I is considered removable, if it satisfies the following two condi-
tions.

—For every pair of communication neighbors of I, there exists a communica-
tion path P in the full-communication graph of N (I, l), such that all the
intermediate nodes in P have a higher node-ID than that of I. This condi-
tion ensures connectivity of active nodes, if I is made inactive [Wu and Dai
2003].

—The region (LV (I) ∩ θ(I)) is covered by the union of the maximum sensing
regions of the local voronoi neighbors of I. We show in Theorem 2 that the
above condition ensures coverage of the query region, if I is made inactive.

(5) If I is removable and has the most sleeping benefit among all its local voronoi
neighbors, then I becomes inactive.

(6) Go to Step 2.

The above described algorithm can be easily implemented in a distributed setting,
where the communication model is reliable. To ensure correctness in an unreliable
communication model, we need to add certain tedious steps as discussed later. This
completes the description of the algorithm.

Coverage Guarantee. Now, we show that the above described algorithm main-
tains coverage of the query region, if the query region was initially covered by the
active sensors. We use θ∗(I) to represent the maximum sensing region (correspond-
ing to the maximum sensing radius S∗) of I. Also, recall that LN (I) is the set of
local voronoi neighbors of I. We start with a lemma.

Lemma 1. Let I be an active sensor, and θ(I) be the sensing radius assigned by
the V-R assignment method (step (2) of the Voronoi Based algorithm). If LV (I) ∩
θ(I) ⊆

⋃
j∈LN(I) θ∗(j), then θ∗(I) ⊆

⋃
j∈LN(I) θ∗(j).

Proof. Consider an arbitrary point p in θ∗(I). We show that p ∈
⋃

j∈LN(I) θ∗(j).

Let us consider two cases depending on whether LV (I) contains p.
First, consider the case when p ∈ LV (I). In V-R assignment of radii, either

LV (I) ⊆ θ(I) or θ(I) = θ∗(I). Thus, we have p ∈ θ(I). Hence, p ∈
⋃

j∈LN(I) θ∗(j).
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Now, consider the case when p /∈ LV (I). As shown in Figure 1, there exists a
point t /∈ LV (I) on the line segment pI . Also, there is a sensor J ∈ LN (I), such
that d(J, t) < d(I, t). Now,

d(J, p) < d(t, p) + d(t, J)

< d(t, p) + d(t, I)

= d(p, I)

< S∗

Thus, p ∈ θ∗(J), and p ∈
⋃

j∈LN(I) θ∗(j).

Theorem 2. Given a set of active sensors A and a query region in a sensor
network, such that the query region is covered by the union of the maximum sensing
regions of nodes in A, the Voronoi Based algorithm ensures coverage of the query
region.

Proof. We know by Theorem 1 that the initial V-R assignment ensures coverage
of the query region. Below, we show that at any stage of the algorithm and for
every point p in the query region, there is an active sensor node H covering p using
its maximum sensing radius that cannot be inactivated.

Let C(p) denote the set of active sensors that can cover a point p using their
maximum sensing regions. Consider a point p in the query region such that C(p) 6=
∅. Let H be the sensor node with minimum sleeping benefit in C(p). We show
that the sensor node H will not be inactivated by the Voronoi Based algorithm.
Let us assume the contrary that the sensor node H is inactivated, which means
that (LV (H) ∩ θ(H)) ⊆

⋃
j∈LN(H) θ∗(j) and H’s sleeping benefit is more than

that of any sensor in LN (H). From Lemma 1, we know that there exists a sensor
J ∈ LN (H) such that p ∈ θ∗(J). Thus, J ∈ C(p) and J ’s sleeping benefit is less
than that of H, which yields a contradiction.

Calculating Sleeping Benefit. The sleeping benefit B(I) of an active node I
is defined as the decrease in total energy cost of the set of active sensors in the
networks due to inactivation of the node I. Note that when a node I is inactivated,
only the nodes J that consider I as a local voronoi neighbor need to increase their
assigned sensing radius. Moreover, only the nodes H that are in the 1-hop commu-
nication neighborhood of I need to possibly increase their transmission radius due
to inactivation of I. Thus, the sleeping benefit B(I) of a node I can be computed
as follows.

B(I) = E(I)−
∑

J :I∈LN(J)

(f(Snew(J))−f(S(J)))−
∑

H∈N (I,1)

(g(Tnew(H))−g(T (H))),

where S(X) and T (X) are the current sensing/transmission radii of a node X,
and Snew(X) and Tnew(X) are the new sensing/transmission radii of a node X
after inactivation of node I. A node I can compute the second term of the above
expression using either the 2l-hop neighborhood information or the set of local
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voronoi diagrams of all nodes J that considers I as its local voronoi neighbor.3

Similarly, the third term in the above expression can be computed using the 2-hop
neighborhood information of I.

Node Failures. Lastly, we need to consider the situation when a sensor dies due to
complete depletion of battery power. To guarantee the connectivity and coverage,
a dying sensor, I, broadcasts a wake-up message to arouse all the nodes in its l-hop
neighborhood, which in turn run the Voronoi Based algorithm to assign themselves
transmission and sensing radii appropriately (or to remain in inactive mode). When
the network is dense, and l-hop neighborhood is relatively large, we propose to use
the distributed priority algorithm of [Zhou et al. 2004] to accelerate the speed of
the local recovery. In particular, the nodes receiving the wake-up message run the
distributed priority algorithm prior to the Voronoi Based algorithm to speed up the
recovery and save reconstruction cost. If any aroused node finds its local voronoi
cell can not be covered, it in turn sends a wake-up message to its l-hop neighbors,
till the query region is covered.

5. VORONOI BASED ALGORITHM FOR K1-CONNECTIVITY K2-
COVERAGE

In this section, we extend the Voronoi Based Algorithm to solve the minimum
energy-cost k1-connected k2-cover problem. We start with describing localized k-
connectivity preserving topology control schemes which are used to extend the
Voronoi Based algorithm for variable radii k1-connected k2-cover problem. In Sec-
tion 5.2, we present the generalized Voronoi Based algorithm.

5.1 k-Connectivity Preserving Topology Control

One of the major components of the generalized Voronoi Based algorithm is to
preserve k-connectivity. In this section, we present topology control strategies to
delete nodes and edges in the network, while preserving k-connectivity of the re-
maining network. We would use the results presented in this section to design the
generalized version of Voronoi Based algorithm in Section 5.2.

Topology Control by Deletion of Edges. In this section, we generalize the
RNG structure to the k-RNG structure [Jaromczyk and Toussaint 1992], which
allows us to delete longer edges in the graph in a distributed and localized manner
while preserving k-connectivity of the graph. Deletion of longer edges allows us to
reduce the transmission powers of the nodes in the network, and thus, reducing the
total energy requirement of the network while preserving the desired k-connectivity
requirement.

Definition 11. (kth Relative Neighbor Graph (k-RNG)) Given a network of n
nodes with uniform transmission radius T , the kth relative neighbor graph is the
network communication graph where an edge exists between two nodes u and v iff
(i) d(u, v) ≤ T , and (ii) there are at most (k−1) nodes w that satisfy the condition
d(u, w) < d(u, v) and d(v, w) < d(u, v) simultaneously. An example is shown in
figure 2.

3In our simulations, a node I approximates the sleeping benefit B(I) by using only its own local

voronoi diagram.
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u v

Ruv

Fig. 2. k-RNG example. (u, v) is a k-RNG edge only if there exist less than k nodes within the
area Ruv .
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(c) Case 3: There exist at least two
nodes ai and aj on a single path Pm .

Fig. 3. Three cases in the proof of Theorem 3.

Theorem 3. Given a network of nodes with uniform transmission radius T , if
the network’s full-communication graph (using T as the maximum transmission
radius) is k-connected, then the k-RNG is also k-connected.

Proof. Lets consider two nodes x and y such that there are at least k nodes
a1, a2, . . . , ak that satisfies the condition d(x, ai) < d(x, y) and d(y, ai) < d(x, y)
simultaneously. Let the full-communication graph of the network be G, and let G′
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be the graph G without the edge (x, y). Below, we show that G′ is k-connected,
assuming G is k-connected.

Consider an arbitrary pair of nodes s and d in G. Let P1, P2, . . . , Pk be the k
node-disjoint paths between s and d in the graph G. We try to show that there
exist k node-disjoint paths between s and d in G′ also. If (x, y) does not belong
to any Pi (1 ≤ i ≤ k), then s and d trivially have k node-disjoint paths in G′.
Without loss of generality, let us assume that (x, y) belongs to P1. Now, there are
three cases:

—There is a node ai (1 ≤ i ≤ k) that is not contained in any of the other paths
P2, P3, . . . , Pk. See Figure 3 (a). In this case, the edge (x, y) in P1 can be replaced
by (x, ai, y) to yield P

′

1, and the set of k node-disjoint paths in G′ connecting s
and d are P

′

1, P2, P3, . . . , Pk.

—There is a node ai(1 ≤ i ≤ k) that is contained in P1. See Figure 3 (b). In this
case, the path P1 can be changed to yield a shorter path P

′

1 which is node-disjoint
from all other paths P2, P3, . . . , Pk. If P1 is of the form (s, . . . , x, y, . . . , ai, . . . , d),
then (s, . . . , x, ai, . . . , d) can be chosen as P

′

1. Similarly, if P1 is of the form
(s, . . . , ai, . . . , x, y, . . . , d), then (s, . . . , ai, y, . . . , d) can be chosen as P

′

1.

—There are two nodes ai and aj that are contained in the same path Pm (2 ≤ m ≤
k). See Figure 3 (c). In this case, P1 and Pm can be changed to yield two node-
disjoint paths that are also node-disjoint from other paths. In particular, if P1 is

of the form (s, P sx
1 , x, y, P yd

1 , d) and Pm is of the form (s, P sai
m , ai, P

aiaj

m , aj, P
ajd
m , d),

then we can construct two paths P
′

1 = (s, P sx
1 , x, aj, P

ajd
m , d), and P

′

m = (s, P sai
m , ai, y, P yd

1 , d).

It is easy to see that the set of k paths P
′

1, P2, . . . , P
′

l , . . . , Pk exist in G′ and are
node-disjoint.

Note that the above three cases cover all possibilities. Thus, the above analysis
shows that G′ is k-connected.

Note that in the above analysis, the new edges introduced in the paths connecting
s and d are strictly shorter than (x, y). Thus, to show that the k-RNG graph is
k-connected, we can apply the above analysis for one edge removed from G at a
time, in the descending order of the edge lengths.

One of the other distributed and localized schemes proposed in the literature for
transmission power control while preserving k-connectivity is the CBTC [Bahram-
giri et al. 2002] (cone based topology control) approach. In CBTC approach, each
node u picks the minimum transmission radius tu such that there is a node w with
d(u, w) < tu in every cone of angle 2π/3k around u. If no such radius tu exists for
a node u, then u picks the maximum transmission radius. It is shown in [Bahram-
giri et al. 2002] that the resulting graph considering only the undirected edges is
k-connected. Below, we show that the k-RNG structure is actually a subgraph of
the graph generated by CBTC approach in unit-disk graphs. Thus, k-RNG is more
energy efficient than CBTC.

Theorem 4. Consider a network of nodes with uniform transmission power T .
The k-RNG is a subgraph of the graph resulting from CBTC approach.

Proof. We prove the theorem by showing that if an edge (u, v) does not exist
in CBTC graph, then (u, v) is not in k-RNG. If d(u, v) > T , then the claim is
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Fig. 4. Proof of Theorem 4. If (u, v) is not a CBTC edge, then there are at least k nodes in the
region Ruv.

trivially true. Thus, d(u, v) ≤ T , and the edge (u, v) does not exist in CTBC
graph due to reduction in the transmission radius of u and/or v. Let tu and tv
be the transmission randii of u and v respectively resulting from CBTC approach.
Since (u, v) is not an edge in CBTC graph, we know that either tu < d(u, v) or
tv < d(u, v). Without loss of generality, let us assume that tu < d(u, v).

Now, consider the circles Cu and Cv with centers u and v respectively and radii
d(u, v), and the intersection region Ruv of the circles Cu and Cv as shown in Fig-
ure 4. Let p1 and p2 be the points of intersection of the two circles. Note that
6 p1up2 = 2π/3 and d(u, p1) > tu. By definition of CBTC, since there is a node w
in every cone of angle 2π/3k around u such that d(u, w) < tu, there are at least
k nodes w1, w2, . . . , wk in the cone confined by segments ¯up1 and ¯up2 such that
d(u, wi) < tu for each wi. The above implies that there are k nodes in the region
Ruv, and hence, (u, v) is not an edge in k-RNG.

Topology Control by Deletion of Nodes. In [Wu and Dai 2003], Wu and Dai
propose several schemes for distributed computation of connected dominating sets.
The general strategy of their schemes was to delete nodes I that satisy the condition
that for every pair of neighbors u and v there is a path (called a replacement path)
containing nodes with priority (which could be the unique node ID) higher than
that of I. The above condition can be tested in a distributed and localized manner
by requiring the replacements paths to exist in the d-hop neighborhood of each node
I. They show that after deletion, the remaining nodes form a connected dominating
set. Below, we generalize their approach to construct a k-connected dominating set
in a distributed manner. In particular, we propose inactivation of a nodes I that
satisfy the below defined k-delNode condition, and show that the set of remaining
active nodes form a k-connected dominating set.4

Definition 12. (k-delNode condition:) A node I is said to satisfy the k-delNode
condition if for every pair of active neighbors u and v of I, there exists k node-
disjoint paths P1, P2, . . . , Pk containing only higher-priority (relative to I’s priority)

4For application of the k-delNode condition to the problem addressed in this article, we do not

need the dominating property of the non-deleted nodes.
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active intermediate nodes.

Theorem 5. Given that the full-communication graph of a given set of active
sensors is k-connected. After iterative inactivation of nodes that satisfy the k-
delNode condition in the full-communication graph, the full-communication graph
of the remaining active nodes is still k-connected.

In work done concurrently with ours, Wu and Dai [Dai and Wu 2005] have shown
an even stronger result that the remaining active nodes that do not satisfy the k-
delNode5 form a k-connected k-dominating set. We refer the reader to [Dai and
Wu 2005] for a proof of the above theorem.

5.2 Generalized Voronoi Based Algorithm

In this subsection, we extend the Voronoi Based algorithm to variable radii k1-
connected k2-cover problem. Basically, we use the concept of k-RNG and the con-
dition of k-delNode described in Section 5.1 to address the connectivity issue; and
the concept of kth-order voronoi diagram described below to address the coverage
issue. First, we review some definitions related to kth-order voronoi diagrams.

Definition 13. (kth-order Voronoi Diagram/Cell/Neighbor) Given n nodes in
a plane, the kth-order voronoi diagram is defined as the partitioning of the plane
into regions that have the same set of k nearest nodes [O’Rourke 1998]. The kth-
order voronoi cell of a node I is defined as the union of the regions that have I as
one of their k nearest nodes. In other words, for any point p inside the kth-order
voronoi cell of I, there are less than k other nodes that are closer to p than I. Two
nodes are called kth-order voronoi neighbors if their kth-order voronoi cells intersect
or share common edge.

Definition 14. (kth-order Local Voronoi Cell/Neighbor) The kth order local
voronoi cell LV (I) of a node I is the kth-order voronoi cell of I in the kth-order
voronoi diagram over the set of nodes N (I, l). That is, for any point p ∈ LV (I),
there exist at most k − 1 nodes J in N (I, l) such that d(p, J) < d(p, I).

A node J is a kth-order local voronoi neighbor of I if J is a kth-order voronoi
neighbor of I in the voronoi diagram over the set of nodes N (I, l). Note that the
kth-order local voronoi neighbor relationship is not symmetric. We use LN (I) to
denote the set of kth-order local voronoi neighbors of I.

For any k, the kth-order voronoi diagram over N (I, l) can be calculated using
the arrangement of planes tangent to the paraboloid above the nodes of N (I, l) in
time O(|N (I, l)|3) [O’Rourke 1998]. In our simulations, we use the polygon clipping
method [Foley et al. 1990] to calculate the kth-order local voronoi cell of I.

Generalized Algorithm. Using the above defined concepts relating to kth-order
voronoi diagrams, and the k-connectivity preserving scheme, the Voronoi Based
algorithm generalizes to the k1-connected k2-cover problem naturally. In particular,
we modify the V-R assignment by requiring each sensor node to cover its kth

2 -order
local voronoi cell, and support all its edges in the k1-RNG graph. That is, each
sensor I is assigned a sensing radius equal to the smaller one of the size of its

5They refer to the k-delNode condition as the k-coverage condition
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Fig. 5. Proof of Lemma 3

kth
2 -order local voronoi cell and the maximum sensing radius, a transmission radius

equal to its longest adjacent edge in the k1-RNG graph.
Moroever, a sensor I is considered removable only if the following two conditions

are satisfied:

—Its kth
2 -order local voronoi cell can be k2-covered by the union of the maximum

sensing regions of the kth
2 -order local voronoi neighbors of I.

—I satisfies the k1-delNode condition as described in Section 5.1.

A sensor inactivates itself when its sleeping benefit is the maximum among all its
kth
2 -order local voronoi neighbors.

k2-Coverage Guarantee. We show that the above generalization of the Voronoi
Based algorithm ensures k2-coverage of the given query region.

Theorem 6. Given a set of active sensors A and a query region in a sensor
network, such that the query region is k-covered by the union of the maximum
sensing regions of nodes in A, the V-R assignment of radii ensures k-coverage of
the query region.

Proof. It is easy to see that (V (I)∩RQ) ⊆ LV (I), where V (I) is the kth-order
voronoi cell of I, RQ is the query region, and LV (I) is the kth order local voronoi
cell of I. Consider a point p in the query region, and let Ip be the k nearest active
sensor nodes to p. Now, for any I ∈ Ip, p ∈ V (I) and hence, p ∈ LV (I). Since
p is covered by the maximum sensing region of at least k active sensor nodes, it is
covered by the maximum sensing region of each node in Ip, and hence, it is covered
by the assigned sensing region of each node I in Ip.

Lemma 2. Consider the kth-order local voronoi cell LV (I) of a sensor node I.
For any point p ∈ LV (I), the line segment pI lies completely within LV (I).

Proof. Let us assume that there exists a point q ∈ pI, such that q /∈ LV (I).
Then there must exist a node J , such that d(p, J) > d(p, I) and d(q, J) < d(q, I).
Now, according to triangular inequality d(p, J) < d(p, q) + d(q, J), which gives
d(p, J) < d(p, q) + d(q, I) = d(p, I) — a contradiction.
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Lemma 3. Let I be an active sensor, and θ(I) be the sensing region assigned by
the V-R assignment. If LV (I) ∩ θ(I) is k-covered by

⋃
j∈LN(I) θ∗(j), then θ∗(I) is

also k-covered by
⋃

j∈LN(I) θ∗(j). Here, LV (I) is the kth-order local voronoi cell of
I.

Proof. We show that any arbitrary point p in θ∗(I) is covered by the maximum
sensing region of at least k distinct sensor nodes in LN (I). We consider two cases
depending on whether p is in LV (I).

If p ∈ LV (I), then p ∈ θ(I). Thus, p ∈ (LV (I) ∩ θ(I)) and hence, is k-covered
by

⋃
j∈LN(I) θ∗(j).

Let us now consider the case when p /∈ LV (I). From Lemma 2, we know the
line segment pI intersects the border of LV (I) at only one point s, as illustrated
in Figure 5. Define subcell as the region that has the same k nearest nodes, and we
denote the first subcell that pI traverses inside LV (I) as X; the set of k nearest
nodes relating to X as NX (note that I ∈ NX ). Because s is at the border of
LV (I) and X, there exists a node J /∈ NX such that d(s, J) = d(s, I), and thus
J is in LN (I) according to the definition of LN (I). Hence d(p, J) < d(p, s) +
d(s, J) = d(p, s) + d(s, I) = d(p, I) ≤ S∗. Also, for any node u ∈ NX , we know
d(s, u) ≤ d(s, J). Thus,

d(p, u) < d(s, u) + d(p, s)

≤ d(s, J) + d(p, s)

= d(s, I) + d(p, s)

= d(p, I)

≤ S∗

Thus, p lies in the maximum sensing region of at least k distinct nodes in LN (I),
that is, node J and the nodes in set NX − I.

Theorem 7. Given a set of active sensors A and a query region in a sensor
network, such that the query region is k-covered by the union of the maximum
sensing regions of nodes in A, the kth-order Voronoi Based algorithm ensures k-
coverage of the query region.

Proof. We showed in Theorem 6 that the V-R assignment preserves the k-
coverage of the query region. Below, we show that at any stage of the algorithm,
for every point p in the query region, there are at least k distinct active sensor
nodes covering p using their maximum sensing region that cannot be inactivated.

Let C(p) denote the set of active sensors that can cover a point p using their
maximum sensing regions. Consider a point p in the query region such that |C(p)| ≥
k. Let I be a sensor node in C(p) such that its sleeping benefit is more than the
sleeping benefit of at most k−1 other sensor nodes in C(p). We show that the sensor
node I will not be inactivated by the Voronoi Based algorithm. Let us assume the
contrary that the sensor node I is inactivated, which means that LV (I) ∩ θ(I) is
k-covered by

⋃
j∈LN(I) θ∗(j), and the sleeping benefit of I is maximum among all

nodes in LN (I). From Lemma 3, there is a set of nodes H ⊆ LN (I) such that
|H| = k and each sensor node in H covers p with its maximum sensing region.
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Thus, H ⊆ C(p). Also, since H ⊆ LN (I), I’s sleeping benefit is more than the
sleeping benefit of any node in H. Thus, I’s sleeping benefit is more than at least
k other sensors in C(p), which contradicts our hypothesis.

k1-Connectivity Guarantee. Theorem 5 states that removal of nodes that satisfy
the k1-delNode condition preserves the k1-connectivity of the full-communication
graph of the remaining nodes. Also, from Theorem 3 the V-R assignment of radii
preserves the k1-connectivity, the solution returned by the Voronoi Based algorithm
is k1-connected.

5.3 Relaxation of Assumptions

The Voronoi Based Approach presented in the previous subsection appears to use a
set of idealized assumptions. We argue below how such assumptions can be relaxed
and the techniques can be applied to practical cases. Note that the discussion below
also applies to the basic Voronoi Based Approach.

Circular Sensing Range. Our Voronoi Based approach assumes that each sensor
has the same circular, maximum sensing region. However, in reality, the maximum
sensing regions of different nodes may not be identical. Moreover, each sensing
region may not be even circular. This may be true even when a homogenous
network is used. Difference in ranges can result from noise properties, occlusion
etc. In a general scenario, each sensor node has associated with it h different sensing
regions (not necessarily circular) each with an associated energy cost. Our designed
Voronoi Based algorithm is still applicable in this general scenarion, by choosing
the minimum-energy sensing region that contains the local voronoi cell at any stage.

Circular and Uniform Transmission Ranges. The relative neighborhood graph (RNG)
preserves connectivity only for the case of unit-disk graphs, i.e., when the transmis-
sion range is uniform and circular. However, in general a sensor network may not
exhibit the unit-disk property because of irregularity in radio propagation, imprac-
ticality of a perfectly omnidirectional antenna, etc. Thus, we need to generalize the
RNG definition for general (not unit-disk) network graphs as follows.

Definition 15. (General Relative Neighbor Graph) Given n nodes in a 2D
plane, the Relative Neighbor Graph is the graph where an edge exists between any
two nodes u, v, iff the communication link between u and v exists, and there exist
no other node w that satisfies the following three conditions: (i) d(u, w) < d(u, v),
(ii) d(v, w) < d(u, v), and (iii) edges (u, w) and (v, w) exist.

This above definition of RNG preserves connectivity of the original graph. The
definition of k-RNG can be similarly generalized. Note that Theorem 5 holds even
for non unit-disk graphs. Thus, our process of deletion of nodes can still be applied
for non-unit-disk graphs.

Error Free Transmissions. Below, we discuss the issues that arise in an unreliable
communication model, and propose solutions to handle them.

The first problem in an unreliable communication model occurs if a node I doesn’t
have the updated benefit (which is sent in a message) of J , one of its local voronoi
neighbors. In such a case, the second condition of removability could result in a
cyclic condition in a distributed setting, and two mutually local voronoi neighbors
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I and J may both delete themselves and thus, possibly render the query region
uncovered. To prevent such a scenario from happening we require the following.
A sensor I that wishes to inactivate itself, sends an inquiry to each of its local
voronoi neighbors; the node I enters sleeping mode only after it has received positive
confirmation from all of its local voronoi neighbors. Inquiries are resent on failures,
and a sensor node that sends a positive confirmation assumes the inquirer I is
inactive from then on.

The second problem arises because a sensor node I may not be able to accurately
compute its N (I, l), the active l-hop neighborhood, because of message losses. In
particular, a node may not know which neighboring nodes are active or inactive. We
solve this problem by requiring each active sensor to send a periodic hello message
to its l-hop neighbors. By default, a node I assumes that each node J in the l-hop
neighborhood is inactive, unless it receives a hello message from J . This results
in an underestimation of N (I, l) due to possible message losses. Underestimation
of N (I, l) only results in overestimation of LV (I), and hence, overestimation of
the assigned sensing radii. Therefore, the claims of Theorem 1 and Theorem 2,
i.e., the coverage guarantee claims are not affected. The inaccuracy of neighbor-
hood information doesn’t cause any problems in maintenance of connectivity of the
active nodes, as long as each node initially start with accurate information of one-
hop communication neighbors and the active neighborhood nodes are eventually
discovered.

6. GREEDY ALGORITHM

In this section, we present a greedy algorithm for the variable radii connected
sensor cover problem. We present a centralized as well a distributed version of the
algorithm. In contrast with the Voronoi Based algorithm, the centralized version
of the greedy algorithm provably delivers a VRCSC whose total energy cost is at
most O(r log n) times the optimal energy cost. Here, r is the link radius of the
sensor network (defined later) and n is the total number of sensors in the entire
network. The distributed version of the greedy algorithm empirically performs
close to the centralized version, but incurs higher construction cost compared to
the Voronoi Based algorithm due to the size of the messages. Moreover, for the
greedy algorithm, we need to make an assumption that each sensor has only a finite
number of choices for the sensing radii. In particular, we assume that each sensor I
chooses from h sensing radii S1, S2, . . . , Sh = S∗. The greedy algorithm presented
here is a generalization of the greedy approximation algorithm presented in [Gupta
et al. 2003] for the fixed radii version of the problem. We start with describing the
centralized version of the greedy algorithm.

Basic Idea. Informally, the proposed greedy algorithm works as follows. The algo-
rithm maintains a set of selected sensors M along with their assigned transmission
and sensing radii, and increases the covered region while keeping connectivity of
M . At each stage, we either add to M a “path” of sensors or increase the sensing
radius of a sensor in M , whichever gives the maximum “benefit.” The algorithm
terminates when the given query region is completely covered by the assigned sens-
ing regions of the sensors in M . A more formal and complete description of the
algorithm is given below. We first start with a few more definitions.
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Definition 16. (Candidate Sensor; Candidate Path) Let M be the set of sen-
sors already selected by the algorithm. A sensor c is called a candidate sensor if
c /∈ M and there is a sensor m in M such that d(c, m) < S∗ + S(m). In other
words, a sensor c is a candidate sensor if c /∈ M and its maximum sensing region
(corresponding to the sensing radius S∗) intersects with the assigned sensing region
(θ(m)) of some sensor m in M .

A candidate path is a sequence/path of sensors <p0, p1, . . . , pl> such that p0 is a
candidate sensor, pl ∈ M , pi /∈ M for i < l, and the sequence of sensors forms a
communication path in the full-communication graph of the entire sensor network.
Also, to ensure that the sequence of sensors P forms a communication path with
minimum transmission energy cost, we make the following assignment of radii.

T (p0) = d(p0, p1)

T (pi) = Max(d(pi, pi−1), d(pi, pi+1) ∀ 0 < i < l

T (pl) = Max(d(pl, pl−1), T (pl))

S(pi) = 0 for 0 < i < l

In addition, the sensing radius of the candidate sensor p0 is chosen to maximize the
benefit of the candidate path (defined later). The sensing radius of pl, which is in
M , is kept unchanged.

Definition 17. (Subelement; Valid Subelement) Recall that each sensor has a
choice of h possible sensing regions (corresponding to the h different sensing radii).
A subelement is a set of points. Two points belong to same subelement if and only
if they are covered by the same set of possible sensing regions. If a subelement
intersects with the given query region, then it is called a valid subelement.

Definition 18. (Benefit of a Candidate Path) Benefit of a candidate path P
with respect to M , an already selected set of sensors, is defined as the number of
valid subelements newly (not covered by M ) covered by P divided by the increase
in energy cost of M due to addition of P . More formally, the benefit of a candidate
path P with respect to a set of selected sensors M is:

V (M ∪ P ) − V (M )

E(M ∪ P ) − E(M )
,

where V (I) is the number of valid subelements covered by a set of sensors I, and
E(I) is the total energy cost of I.

Definition 19. (Optimal Incremental Benefit) Let M be the set of sensors al-
ready selected by the greedy algorithm, and m be a sensor node in M with an
assigned sensing radius of S(m). The incremental benefit of increasing m’s sensing
radius from S(m) to S′(m) is defined as the number of valid subelements newly
(not covered by M ) covered by the increased sensing region θ′(m) divided by the
increase in energy cost of m. The sensing radius S′(m) of m that results in the max-
imum incremental benefit is called the optimal incremental radius of m with respect
to M , and the corresponding incremental benefit is called the optimal incremental
benefit of m.
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Centralized Greedy Algorithm. We now give a formal and complete description
of the Centralized Greedy Algorithm. Initially, M consists of an arbitrary sensor
I whose minimum sensing region (S1) intersects with the given query region. The
sensor I’s sensing radius is set to the minimum and its transmission radius is set
to zero. At each subsequent stage, the algorithm finds the candidate path P̂ (after
finding all the candidate sensors) that has the maximum benefit with respect to
M . Also, for each sensor m in M , the algorithm computes its optimal incremental
benefit (as defined above), and picks the sensor m̂ that has the highest optimal
incremental benefit. If the optimal incremental benefit of m̂ is higher than the
benefit of selected P̂ , then m̂’s sensing radius is increased to its optimal incremental
radius, otherwise the candidate path P̂ is added to M . That completes one stage
of the algorithm. The above process is repeated until the given query region is
completely covered by M .

Algorithm 1. Centralized Greedy Algorithm
Input: A sensor network and a query region RQ.
Output: A set of connected sensor cover M . Each with

assigned sensing and transmission radius.

BEGIN
Let M denote the set of sensors selected.
Let I be a node whose minimum sensing region

intersects RQ.
S(I) = Minimum sensing radius S1;
T (I) = 0;
M := I;
while (RQ is not covered by M )

Let SP be the set of candidate paths, and P̂ ∈ SP
be the candidate path with maximum benefit;

Let m̂ ∈ M be the sensor node with most optimal
incremental benefit;

BP = Benefit of P̂ ;
Bm = Optimal incremental benefit of m̂;
if ( BP > Bm )

M = M ∪ P̂
else

Set S(m̂) to m̂’s optimum incremental radius.
end if;

end while;
RETURN M ;

END �

The above described Algorithm 1 can be implemented in O(n3) time, where n
is the size of the network. The following theorem proves the near-optimality of the
solution delivered by the algorithm. We omit the proof, as a formal proof will be
presented later when we generalize this algorithm to the variable radii connected
k-cover problem.
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Definition 20. (Link Radius) The link radius is defined as the maximum com-
munication distance between any two sensors whose maximum sensing regions in-
tersect.

Theorem 8. Algorithm 1 returns a connected sensor cover whose energy cost is
at most O(r(1 + log d))|OPT |, where r is the link radius of the sensor network, d
is the maximum number of subelements in any sensing region, and |OPT | is the
energy cost of an optimum solution. Since, d = O((nh)2) ([Gupta et al. 2003]),
the solution delivered by Algorithm 1 is within O(r log(nh)) factor of the optimal
solution. Recall that h is the total number of sensing radius choices available to a
sensor node.

Distributed Greedy Algorithm (DGA). We now briefly describe the dis-
tributed version of the Algorithm 1 proposed in the previous section. The dis-
tributed algorithm presented here is similar to the distributed approximation al-
gorithm proposed in [Gupta et al. 2003] for constructing a connected sensor cover.
The Distributed Greedy Algorithm (DGA) works in stages, and at each stage, a
candidate path is added to the already selected sensor set M , or the sensing range of
a sensor in M is increased, until the whole query region is covered by M . Through-
out the algorithm, the following variables are maintained:

—M , the set of sensors that have already been selected.

—SP , the set of candidate paths.

—P̂ , the most recently added candidate path.

—Ĉ, the candidate sensor associated with P̂ .

Each stage of the the distributed algorithm consists of four phases as described
below.

—Candidate Path Search (CPS). In this phase, the most recently added candidate

sensor Ĉ broadcasts a CPS message within a range of 2r communication dis-
tance. In this broadcast phase, each sensor broadcast the CPS message with the
maximum transmission range.

—Candidate Path Response(CPR). Any sensor that receives the CPS message checks
whether it is a new candidate sensor (by checking whether its maximum sensing

region intersects with any sensor in P̂ ). If so, it sends a CPR message (along
with the associated candidate path formed by the routing path took by the CPS
message) to Ĉ, the originator of the CPS message.

—Selection of Best Candidate Path/Sensor. After gathering all CPR message, the

sensor Ĉ calculates the benefit of each of the candidate paths and picks the
candidate path P̂new (and the corresponding candidate sensor Ĉnew) that has
the highest benefit. Moreover, it computes the optimal incremental benefit of
each sensor in M , and picks the sensor m̂ ∈ M that has the maximum optimal
incremental benefit. If the benefit of P̂ new is greater than the optimal incremental
benefit of m̂, then the sensor Ĉ unicasts all the required parameters to Ĉnew after
adding P̂new to M , and the P̂new and Ĉnew now become the new (and current)

P̂ and Ĉ respectively. If the optimal incremental benefit of m̂ is greater than
the benefit of P̂ new, then the sensor Ĉ unicasts all the required parameters to
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m̂, which becomes the new (and current) P̂ and Ĉ. Also, m̂’s sensing radius is
increased to attain the optimal incremental benefit.

—Repeat. The new Ĉ broadcasts the CPS messages again and initiates a new

stage. This continues, until a leading sensor Ĉ decides that the sensing region
RM successfully covers the whole query region RQ.

We make similar optimization as in [Gupta et al. 2003] to reduce the commu-
nication cost incurred by the distributed algorithm. In Section 7, we show that
the solution returned by the above described Distributed Greedy Algorithm is very
close to that returned by the Centralized Greedy Algorithm (Algorithm 1).

Greedy Algorithm for Connected Sensor k-Cover. We now extend the Cen-
tralized and Distributed Greedy Algorithms to the variable radii connected sensor
k-cover problem. For generalization to k-coverage, we need to define a more general
notion of benefit, namely k-benefit.

Definition 21. (k-Value of a Sensor Set) Given a sensor network and a query
region, the k-value of a set of sensors M (with assigned radii) is denoted as V (M, k)
and is defined as the sum of the total number of times (bounded by k) each valid
subelement is covered by the sensors in M . More formally, the k-value of a set M
of sensors, V (M, k), is computed as:

V (M, k) =
∑

t∈T

min(k,
∑

s∈M

δ(t, s)),

where T is the set of valid subelements, and δ(t, s) is 1 if the subelement t is covered
by the sensor s, and else 0.

Definition 22. (k-Benefit of Candidate Path) Consider a candidate path P and
set of already selected sensors M . The k-Benefit of P with respect to M is defined
as (V (M ∪ P, k)− V (M, k))/(E(M ∪ P ) − E(M )), where E(I) is the total energy
cost of a set of sensors I.

Definition 23. (Optimal Incremental k-Benefit) Let M be the set of sensors
already selected by the greedy algorithm, and m be a sensor node in M with
an assigned sensing radius of S(m). The incremental k-Benefit of increasing m’s
sensing radius from S(m) to S′(m) is defined as the increase in k-value of the set
M divided by the increase in energy cost of m. The sensing radius S′(m) of m that
results in the maximum incremental k-benefit is defined as the optimal incremental
radius of m with respect to M , and the corresponding incremental benefit is called
the optimal incremental k-benefit of m.

Now, the Centralized Greedy Algorithm can be generalized for variable radii
connected sensor k-cover as follows. At each stage of the algorithm, we either add
a candidate path with maximum k-benefit, or increase the sensing radius of a sensor
m ∈ M that has the highest optimal incremental k-benefit. The Distributed Greedy
Algorithm is similarly generalized. Below, we show that the generalized Centralized
Greedy Algorithm still delivers a connected sensor k-cover that is within O(r loghn)
factor of the optimal energy cost, where h is the total number of sensing radius
choices available to a sensor node.
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Theorem 9. The generalized Centralized Greedy Algorithm returns a connected
sensor k-cover whose energy cost is at most O(r(1 + log d))E(OPT ), where r is
the link radius of the sensor network, d is the maximum number of subelements in
any sensing region, and E(OPT ) is the energy cost of an optimum solution OPT .
Since, d = O((nh)2) ([Gupta et al. 2003]), the solution delivered by the greedy
algorithm is within O(r log(hn)) factor of the optimal solution.

Proof. We call a valid subelement as active, and say that it contains t active
copies at a given stage of the greedy algorithm, if it is covered by k − t (t > 0)
distinct sensors in the greedy solution at that stage.

Let us consider a sensor I in the optimal solution OPT . Let θ(I) be the assigned
sensing region of I and F(I) be the sensing energy cost of I in the optimal solution
OPT . Let AIj denote the number of active copies of subelements within θ(I) after
the jth round of the greedy algorithm. Let Mj be the set of sensors selected by the
greedy algorithm after the jth round, and l be the total number of iterations of the
greedy algorithm. Then, E(Mj)−E(Mj−1) is the energy cost added to the greedy
solution during the jth round. We uniformly distribute this added energy cost as a
charge over all the active copies of subelements in the optimal solution. Thus, the
charge accumulated on a sensor I ∈ OPT with θ(I) 6= φ (i.e., AI0 > 0) is:

C(I) =

l∑

j=1

(AI(j−1) − AIj)Ej/Vj ,

where Ej = E(Mj) − E(Mj−1) and Vj(= V (Mj , k) − V (Mj−1, k)) is the total
number of new active valid subelements copies covered by the greedy algorithm in
the jth round. Now, we know that Vj/Ej ≥ AI(j−1)/k(r + F(I)) for j ≥ 2, and
V1/E1 ≥ (AI0 − AI1)/k(r + F(I)). This is because after some valid subelements
inside θ(I) have been covered, sensor I with sensing region θ(I) becomes a candidate
sensor, and a candidate path of energy cost at most r +F(I) and covering at least
AI(j−1)/k active valid subelements is available for selection by the greedy algorithm.
Thus, the total charge accumulated on a sensor I ∈ OPT over the entire course of
the greedy algorithm is at most:

C(I) ≤ k(r + F(I))(1 +

l∑

j=2

(AI(j−1) − AIj)/AI(j−1))

Using some algebra, the above gives CI ≤ k(r+F(I))(1+log AI0). Note the fact
that by adding the charges accumulated by all such sensors in OPT , we actually
charge each energy cost at least k times. Thus what we obtain is at least k times
the energy cost of the solution returned by the greedy algorithm. Thus,

k ∗ E(Ml) ≤ k ∗ ((r ∗ |OPTS| +
∑

I∈OPT

F(I)(1 + log d))

and

E(Ml) ≤ (r ∗ |OPTS| +
∑

I∈OPT

F(I)(1 + logd)

where |OPTS| is the number of sensors in OPT with θ(I) > 0. Note that AI0 ≤ kd,
where d is the maximum number of valid subelements in the maximum sensing
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region of any sensor node. Moreover, the total energy cost E(OPT ) of the optimal
solution satisfies:

E(OPT ) ≥ Gmin ∗ |OPT |+
∑

I∈OPT

F(I)

where Gmin is the minimum transmission energy cost of a sensor, and |OPT | is the
number of sensors in the optimal solution OPT . Thus,

E(Ml)/E(OPT ) ≤ (r/Gmin) ∗ (1 + log d).

Here, Gmin is a constant for a particular type of sensor. As stated in [Gupta et al.
2003], d is within O(n2h2), recall h is the number of sensing radius choices in a
sensor. Thus, the total energy cost E(Ml) of the solution returned by the greedy
algorithm is within O(r loghn) factor of the optimal energy cost.

7. PERFORMANCE EVALUATION

We built a specific simulator for the distributed algorithms, and carried out ex-
tensive experiments to evaluate the performance of the proposed algorithms. The
simulator randomly places sensors within a given region. The simulator does not
model any link layer protocol or wireless channel characteristics. Thus, all messages
in the simulator are transmitted in an error-free manner. While such a simulator
models an idealized communication subsystem, it is sufficient for our purpose of
comparing the performance of our proposed algorithms.

Energy Cost Model. The sensing energy cost function depends on the specific
sensor type and environment, but is usually of the form S(I)x , where S(I) is the
assigned sensing radius and x is a constant [Pattem et al. 2003]. Similarly, the
transmission energy cost function is of the form T (I)y , where T (I) is the assigned
transmission radius and y is a constant between 2 to 4 [Wan et al. 2001]. For our
experiments, we chose x = y = 4. The energy consumption of idling radio and
processor for each sensor is usually constant. Assuming each active sensor sends
same amount of data during each time slot, the total energy cost incurred in keeping
a sensor node active for a slot time is:

E(I) = αS(I)4 + (1 − α)T (I)4 + C, (1)

where α is a parameter that signifies relative weight of sensing and transmission
energies. In our experiments, we use three different values of α viz. 0.1, 0.5,
and 0.9 to simulate different sensor types. Essentially, when α is 0.1, the energy
consumption due to sensing is relatively much less than the energy consumption
due to transmission. We measure the performance of our algorithms for all these
three energy cost models.

Network and Battery Parameter Values. We run our experiments with the
following choice of parameter values. The maximum sensing radius S∗ as well as
the maximum transmission radius T ∗ for each sensor node is chosen to be 10. Each
sensor can choose from 5 different sensing and transmission radius: 2, 4, 6, 8, or
10. We randomly distribute a certain number of sensor nodes in a query region of
size 50× 50. The total size n of sensor network is between 100 to 600, representing
scarce to significantly dense sensor network density. In our experiments, we set
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each sensor node’s battery power as 12,000,000 units, and the constant C in the
energy cost function is set at 2,000 units. If the sensing and transmission radii of a
sensor node are set to the maximum (10), the total energy cost incurred in keeping
the node active for a unit time is 12,000 units. In a naive approach wherein all
sensor nodes are kept active with maximum sensing and transmission radii, the
sensor network will last for 1,000 time units, for any value of α.

Algorithms. We compare the performance of the following algorithms in our
experiments for the variable radii 1-connected k-cover problem.

—Voronoi Based Algorithm – The localized distributed algorithm described in Sec-
tion 5.2.

—Centralized Greedy Algorithm (CGA) – the greedy approximation algorithm de-
scribed in Algorithm 1.

—Distributed Greedy Algorithm (DGA) – the distributed version of Algorithm 1
described in Section 6.

—Centralized Greedy Algorithm for Fixed Radii (CGA FIXED) – the centralized
greedy algorithm proposed in [Gupta et al. 2003] for the fixed radius connected
sensor cover. Here, we try all 25 combinations of sensing and transmission
radii (from 2, 4, 6, 8, and 10 units), and pick the best solution among them.
The distributed version of the algorithm is denoted as DGA FIXED. Note that
DGA FIXED can be extended to 1-connected k-cover problem in the way as
described in [Zhou et al. 2004].

For the Voronoi Based algorithm, we use polygon clipping [Foley et al. 1990] to
construct the voronoi diagrams. In addition, to save communication costs, we
estimate sleeping benefit B(I) of a node I using only the local voronoi diagram of
I (i.e., we assume that I has the same local voronoi diagrams as its local voronoi
neighbors).

Since none of the above algorithms except the Voronoi Based algorithm ap-
plies to the general k1-connected k2-cover problem, we compare the performance of
Voronoi Based algorithm for the general k1-connected k2-cover problem with the
three heuristics listed below in this case.

(1) COMPLETE KCONE – This is a straightforward method. All sensors keep
active. V-R assignment in Section 4 is used to assign sensing radii; Cone based
topology control [Bahramgiri et al. 2002] is used to assign transmission radii.

(2) COMPLETE KRNG – All sensors keep active. V-R assignment in Section 4 is
used to assign sensing radii; k-RNG is used to assign transmission radii.

(3) SLEEPING FIXED – In this method, the sleeping benefits are calculated and
nodes are turned inactive exactly same as in the Voronoi Based algorithm. The
only difference is that the radii are fixed. Here, we try all 25 combinations of
various sensing and transmission radii (from 2, 4, 6, 8, and 10 units), and pick
the best solution among them.

Note that the DGA FIXED and SLEEPING FIXED algorithms are only for com-
parison purposes – it is infeasible for the network nodes to collaboratively decide on
the best combination of fixed radii.
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Cost Model for Message Transmissions. During the construction phase (execution
of an algorithm to construct a VRCSC), the energy cost incurred in transmitting a
message is proportional to the size of the message. Specifically, we assume the en-
ergy cost incurred in transmitting a message of size ` bytes during the construction
phase is

(1 − α)T ∗`/100,

wherein T ∗ is the maximum transmission range. Thus, during the construction
process, we use the maximum transmission range. Note that T ∗ is 10 for all algo-
rithms except for the DGA FIXED and SLEEPING FIXED algorithm, wherein T ∗

is the fixed transmission range being used for that combination. The above equation
indicates that even for the same construction process, more energy is consumed on
sensor networks with smaller value of α.

Experiments. We have conducted six sets of experiments. The first set of experi-
ments is to compare the performance of the various algorithms in terms of the total
energy cost of the connected sensor cover delivered by the algorithm. Second and
third sets extend the comparison to variable radii 1-connected k-cover problem. In
particular, the second set shows the total energy cost of the connected 3-cover for
varying network size n, and the third set presents the results for varying coverage
degree k. In the fourth set of experiments, we compare the performance of the
various distributed algorithms (DGA, DGA FIXED, Voronoi) for variable radii 1-
connected k-cover problem in terms of their effectiveness in prolonging the sensor
network lifetime. We define the network lifetime as the number of data gatherings
that can be achieved using a sequence of connected sensor covers. Each data gath-
ering results in consumption of one battery unit from each sensor in the connected
sensor cover used for the data gathering. The fifth set of experiments compares
appropriate algorithms in terms of the total energy cost of the 3-connected 2-cover
set delivered by them. Finally, in the last set of experiments, we compare appro-
priate algorithms in terms of their effectiveness in prolonging lifetime of the sensor
network through a 3-connected 2-cover. Each data point in each of the graph plots
shown is an average over five experiments.

Energy Cost of Connected Sensor Covers. As shown in Figure 6, we can
see that for the 1-connected 1-cover problem, the Centralized Greedy Algorithm
(CGA) delivers the solution with least total energy cost among all algorithms, and
DGA performs very close to CGA. In general, the Voronoi Based algorithm also
performs quite close to the CGA and DGA algorithm, except for the case when
α = 0.1 (i.e., when transmission energy cost has a higher weightage) – implying
that the RNG approach of assigning transmission radii can potentially be improved
further.

For the 1-connected k-cover problem (see Figure 7 and 8), we see that the al-
gorithms proposed for the variable radii consistently deliver better results than
CGA FIXED and DGA FIXED, with the performance difference increasing with
the increase in α or the coverage degree k. More importantly, the Voronoi Based
algorithm continues to perform close to CGA and DGA algorithms in most cases,
except for low α and k.

Network Lifetime using Connected Sensor Covers. Figure 9 and 10 show
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Fig. 6. Total energy cost of the connected sensor cover delivered by various al-
gorithms. Here, as defined in Equation 1, α is a parameter that signifies relative
weight of sensing and transmission energies.

that our approaches also prolongs the lifetime of the sensor network. Due to the
small size of messages in the Voronoi Based algorithm compared to DGA, the
Voronoi Based algorithm has a much lower transmission energy overhead during
the construction phase. This is particularly true when α is small and hence, the
message transmission cost is relatively expensive. Hence, the Voronoi Based al-
gorithm performs much better than the other distributed algorithms (DGA and
DGA FIXED) in terms of prolonging the network lifetime when α is 0.1 or 0.5. In
the case when α = 0.9, the performance of the algorithms is primarily dominated
by the sizes of the solution returned. Thus, for α = 0.9, the Voronoi Based algo-
rithm and DGA perform close to each other, while outperforming the DGA FIXED
approach. For dense networks and low α, DGA performs worse than DGA FIXED
due to much higher construction cost. This is because at the end of each stage of
DGA and DGA FIXED, a fairly large message containing the entire state informa-
tion (proportional to the size of the network) is transmitted, and the transmission
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Fig. 7. Total energy cost of 1-connected 3-cover delivered by various algorithms.

range used in DGA FIXED for message transmissions may be less that that used
by DGA. The above performance gap between DGA and DGA FIXED is less pro-
nounced in Figure 10, since DGA FIXED is forced to use a high radii combination
to construct a connected 3-cover. As mentioned before, it is impractical to imple-
ment DGA FIXED and is shown only for comparison purposes.

Energy Cost of the 3-Connected 2-Cover. In Figure 11, we present the en-
ergy cost of the 3-connected 2-cover returned by the algorithms for varying net-
work density. As the COMPLETE KCONE and COMPLETE KRNG heuristics
keep all sensors active, their solutions incur more energy cost than Voronoi Based
algorithm. This is particularly true, when the network density is high. Between
these two non-sleeping schemes, COMPLETE KRNG is consistently more energy
efficient than COMPLETE KCONE. Because they both keep all the sensors active
while employing the same scheme in assigning sensing radii, this saving in energy
cost for COMPLETE KRNG over COMPLETE KCONE is purely from transmis-
sion power control, resulting from Theorem 4. We can see that as the relative
weight of transmission cost increases (α decreases), the difference between COM-
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Fig. 8. Total energy cost of 1-connected k-cover delivered for varying k. Here, the
network size (n) is 300.

PLETE KRNG and COMPLETE KCONE grows rapidly.

The SLEEPING FIXED heuristic performs better than COMPLETE KRNG
when the network density is relatively high, in which case, a significant part of
sensors can be put to sleeping and thus energy cost can be saved. While this saving
is less obvious when the network density is low. When the network density is low,
a much less percentage of sensors can satisfy the sleeping condition. As a result,
both COMPLETE KRNG and SLEEPING FIXED have similar number of active
sensors. In this situation, COMPLETE KRNG shows superior performance over
SLEEPING FIXED because of the elaborate power control scheme it employed.
This explains the crossover of the performance trends of the two schemes in the
figures.

Note that the results shown here for SLEEPING FIXED are the best one picked
from all combinations of available transmission and sensing radii levels. Still, our
Voronoi Based algorithm still consistently beats these best fixed radii results. This
demonstrates the need for adaptive ability to control transmission and sensing
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Fig. 9. Sensor network lifetime using a connected sensor cover delivered by various
distributed algorithms.

ranges for energy conservation.

Network Lifetime using 3-Connected 2-Cover. We run these algorithms to
generate a 3-connected 2-cover, which remain active until some sensor dies. Then
in COMPLETE KCONE and COMPLETE KRNG, the neighboring nodes reas-
sign their sensing and transmission ranges to compensate for this; while in Voronoi
Based algorithm and SLEEPING FIXED, the dying sensor awakens its neighboring
sleeping sensors to sustain the 3-connected 2-cover. The awakening of the sleep-
ing sensors can be done in a local manner, which is as described in section 4. As
mentioned before, when employing the naive method, the network can last 1000
units of time under the settings. In Figure 12, we see that the energy efficiency
exhibited in the connected sensor cover set really leads to a prolonged network
lifetime. Again, Voronoi Based algorithm prolongs the network lifetime more effec-
tively than all the others. COMPLETE KCONE exhibits worst network lifetime
than the others, which can be explained by the fact that its generated sensor cover
incurs significantly more energy cost than the others. Again, COMPLETE KRNG
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Fig. 10. Sensor network lifetime using a connected 3-cover delivered by various
distributed algorithms.

and SLEEPING FIXED show a similar trend as in the previous set of experiments
on energy cost. When the network is sparse, COMPLETE KRNG is better; while
when the network is dense, SLEEPING FIXED shows better performance. Also,
we can see Voronoi Based algorithm performs well in exploiting the network redun-
dancy. It greatly improves the network lifetime as the network size (redundancy)
grows.

Summary of Simulation Results. The following observations summarize the
results of our simulations comparing the performance of various algorithms.

—In general, the variable radii algorithms perform much better than the best possi-
ble fixed radii algorithms, and Voronoi based algorithm significantly outperforms
other distributed algorithms in terms of network lifetime.

—For the 1-connected k-cover problem, we make the following important observa-
tions. (a) CGA returns the lowest energy-cost solution, with the Voronoi Based
algorithm performing close to CGA for most parameter values, (b) The variable
radii algorithms (CGA and DGA) return lower energy-cost solutions than their
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Fig. 11. Total energy cost of a 3-connected 2-cover for varying network size.

fixed radii counterparts (CGA FIXED and DGA FIXED), and (c) Voronoi Based
algorithm outperforms both DGA and DGA FIXED in terms of network lifetime.

—For the k1-connected k2-cover problem, CGA is inapplicable. Thus, we compare
our Voronoi Based algorithm with three simple heuristics viz., COMPLETE KCONE,
COMPLETE RNG, and SLEEPING FIXED. We observe that the Voronoi Based
Algorithm significantly outperforms all the other heuristics in terms of energy cost
of the delivered solution as well as the network lifetime.

8. CONCLUSIONS

Given that sensor networks are typically redundant, we have presented an ap-
proach to conserve energy by exploiting redundancy in the network. In particular,
we addressed the problem of constructing a connected sensor cover in a sensor net-
work model wherein each sensor can control/adjust its sensing and transmission
power/range. For the above problem we proposed various centralized approxima-
tion and communication-efficient distributed algorithms. We extended these algo-
rithms to a more general connected sensor k-cover problem. Moreover, the Voronoi
Based algorithm was extended to the most general k1-connected k2-coverage prob-
lem. Through extensive experiments, we demonstrated the usefulness of our ap-
proaches in prolonging the network lifetime. In particular, our proposed localized
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Fig. 12. Sensor network lifetime using a 3-connected 2-cover delivered by various
distributed algorithms.

Voronoi Based algorithm is shown to perform very well in comparison with other
approaches.
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