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Abstract—Existing capacity constrained cellular networks that
operate in fixed spectrum bands can be enhanced with capacity-
on-demand services using the Coordinated Dynamic Spectrum
Access (CDSA) model. In this model, a centralized spectrum
broker coordinates access to spectrum in a given region and
assigns short term spectrum leases to competing wireless service
providers and/or end users. In contrast to existing multi-year
cellular spectrum licenses that span large regions, a spectrum
broker can grant spectrum leases that are for small regions (e.g.:
per base station) and valid for short durations (e.g.: tens of
minutes). Fast spectrum allocation algorithms are crucial to the
design of scalable spectrum brokers that can provide such real-
time spectrum access.

In this paper, we address this challenge. Specifically, we
formulate the spectrum allocation problem as two optimization
problems: first with the objective of maximizing the overall
demand (Max-Demand) satisfied among the various base stations
and the second with the objective of minimizing the overall inter-
ference in the network (Min-Interference) when all the demands
of the base stations are satisfied. We show that the optimization
problems are NP-hard and design efficient algorithms to solve
them. Our simulation results on sample network topologies show
that our algorithms scale very well for large network sizes.

I. Introduction

The existing command-and-control spectrum management
that relies on static allocation of spectrum and rigid specifica-
tion of spectrum usage parameters (such as technology, power,
geographical scope etc.) has rendered spectrum access limited
rather than throughput limited [1]. Recent trends in radio
front end, antenna and signal processing technologies show
feasibility of replacing this antiquated spectrum management
with a more dynamic one wherein networks and end user
devices can access varying amounts of spectrum on a spatio-
temporal scale.

The most sophisticated form of dynamic spectrum access
(DSA), such as the one explored in the DARPA XG program
[2], envisions individual (network or end user) nodes operating
over very wide radio bands (e.g.: usable 0-3 GHz). Here, each
node performs rapid spectrum sensing to detect spectrum holes
and distributed coordination to opportunistically use them.
Even though such operation may yield the best spectrum
access and utilization, the complexity of sensing and coor-
dination may be prohibitively large. The efforts to understand
and address this complexity, often captured by an increasingly
popular term of “cognitive radio”, have spawned extensive new
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research. However, this most general form of DSA may be
suitable for ad hoc on-demand networks but is unsuitable for
infrastructure based networks, most prominent of which are the
commercial cellular networks used by millions of end users
worldwide.

Measurement studies have shown that the cellular spectrum
(e.g.: In U.S.A., 824-849 MHz, 869-894 MHz, 1.850-1.910
GHz, 1.930-1.990 GHz) is highly utilized but the spectrum
utilization varies dramatically over space and time [3–5].
For example, metro areas with dense populations experience
significant utilization in peak periods but the utilization during
off-peak periods and in sparse areas is often low. As the
high bandwidth wireless data applications are widely adopted,
cellular networks will continue to evolve to higher access
speeds and therefore, will require larger amount of spectrum.
However, releasing more spectrum using current long-term
command-and-control model of spectrum licensing is a flawed
approach (Section IV.A, IV.B and IV.C in FCC Spectrum
Policy Task Force Report [1]). First, existing licenses cover
large spatial region and provide exclusive multi-year rights of
usage to a single service provider. This often leads to a capital
intensive process – a “big player syndrome” where only large
providers can license spectrum as evidenced in multi-billion
dollar auctions worldwide for 3G spectrum. Also, it precludes
fine grained secondary usage of spectrum [1], often results
in underutilization of spectrum for protracted periods of time
in areas of low demand [4, 5] and leads to slow network and
service deployments [6].
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Fig. 1. Coordinated DSA model.

Buddhikot et al. proposed a concept of Coordinated Dy-



namic Spectrum Access (CDSA) for cellular networks to
alleviate these limitations and enable capacity-on-demand ser-
vices [5, 7, 8]. In their CDSA model (Figure 1), a centralized
spectrum broker coordinates access to spectrum in a given
region and assigns short term spectrum leases to competing
radio infrastructure providers. In contrast to existing cellular
spectrum licenses, the spectrum broker can grant spectrum
leases that are for small geographical regions (e.g.: per base
station) and valid for short durations (e.g.: tens of minutes)
[8]. Such a spectrum lease gives the lessee exclusive rights to
use the spectrum in the designated region for the duration of
the lease without exceeding the maximum power limit. The
technology and purpose for which the spectrum is used is not
specified as part of the lease and the lease (token) holder can
choose the technology and service that it deems fit for its use.
However, the broker may require that the spectrum demand
request specify the technology that may be used if the request
is granted to ensure feasibility of spectrum allocation.

Variants of the CDSA model have been explored in projects
such as E2R project [9] and OverDrive Project [10, 11]. Cen-
tralized coordination, aggregation of spectrum demands and
restricting only network nodes (instead of end-user devices)
to participate in spectrum access, make the CDSA model
practically realizable. However, the design of scalable, large
spectrum brokers is necessary for successful realization of this
model. One of the main challenges in building such brokers
is the design of fast spectrum allocation algorithms. In this
paper, we address this challenge.

A. Research Contributions

In this work, we formulate the spectrum allocation problem
as two optimization problems: first with the objective of max-
imizing the overall spectrum demands (Max-Demand DSA)
satisfied among various base stations such that no two inter-
fering base stations that belong to different radio infrastructure
providers are assigned the same channels and the second with
the objective of minimizing the overall interference (Min-
Interference DSA) in the network when all the demands of the
base stations are satisfied. We show that both the optimization
problems are NP-Hard1 and design efficient algorithms to
solve them.

We propose a graph construct called interference graph that
captures conflict relationships between transmitters (base sta-
tions) of various radio infrastructure providers that co-exist in a
region. We develop a constant factor approximation algorithm
for the Max-Demand DSA problem, when the interference
graph of the network is modeled as a δ-degree bounded graph
and the minimum demand of each node is 0. We also design an
algorithm with a constant factor approximation that depends
on the number of channels available for the Min-Interference
DSA problem. We report simulation results on sample network

1In simple terms, no algorithm exists for NP-hard problems that can find
an optimal solution with a running time as a polynomial function of the input
size n. As such, running time of any algorithm to find an optimal solution
for NP-Hard problems increases exponentially with the problem size.

topologies to show that our algorithms scale very well for large
network sizes.

B. Outline

The rest of the paper is organized as follows: Section II
describes the reference system architecture for which the
problem of spectrum allocation needs to be solved. In Sec-
tion III, we present our network model and formulate our
spectrum allocation problem as two optimization problems.
In Section IV, we design efficient algorithms for the spectrum
allocation problem. In Section V, we provide detailed perfor-
mance evaluation of our algorithms. We discuss related work
in Section VI. Section VII concludes the paper and outlines
our future work.

II. Reference Architecture for the Spectrum Allocation
Problem
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Fig. 2. System Architecture: A representative example of a region controlled
by the spectrum broker along with the coordinated access band managed.

In this section, we describe the reference system architecture
for our spectrum allocation problem and discuss the constraints
that need to be satisfied by the spectrum allocation algorithms.
The discussion here closely follows the model outlined in
[8]. In this model, a part of the spectrum, designated as the
Coordinated Access Band (CAB), is meant to be dynamically
shared under the control of a spectrum broker. Regulatory
authorities such as FCC can conduct a one-time auction to
license CAB and the winner of such an auction then owns
and operates a spectrum broker [7].

Each region R, which is under the control of a spectrum
broker can have a number of base stations owned by several
Radio Infrastructure Providers (RIPs). The Wireless Service
Providers (WSPs) who offer wireless services such as voice,
data etc. to the end users are customers of these RIPs and may
use different RIPs in different regions and at different times.
The network elements such as the Radio Network Controllers
(RNCs) that control the base stations aggregate the end user
demands and generate a spectrum demand request to the
spectrum broker. The aggregation of end user demands can



be done either by predicting the expected end user traffic or
the end users themselves signal their bandwidth requirement to
their respective base stations using a two way control channel.

This model differs from existing vertical integration model
for cellular networks where each service provider licenses and
owns spectrum in a region, operates a radio infrastructure
and also, offers services to end-users. Our model represents
a horizontal model where at the top-level, spectrum access is
managed by spectrum provider (the spectrum broker owner),
spectrum is used by another level of providers – the RIPs and
the end-user services are offered by customer facing WSPs.

The portions of the spectrum that are highly underutilized
or unused in spatial or temporal dimension qualify as prime
candidates to be used as CAB. Examples of such spectrum
bands are Specialized Mobile Radio (SMR) (851-854/806-
809 MHz, 861-866/816-821 MHz), public safety bands (764-
776, 794-806 MHz), and unused broadcast UHF TV channels
(450-470 MHz, 470-512 MHz (channels 14-20), 512-698 MHz
(channels 21-51), 698-806 MHz (channels 52-69)).

One can conceivably designate existing cellular bands in
450 MHz, 800 MHz, and 1.9 GHz range also as CAB
bands. However, we believe that this move, though technically
feasible, may not serve the short-term interest of the incumbent
wireless service providers who have spent billions of dollars
licensing and deploying their networks and services As such
we advocate a hybrid model, wherein the existing cellular
bands serve as guaranteed capacity or baseline allocation
for the incumbent cellular providers and no new providers
can avail this spectrum as guaranteed today by the license
regime. The CAB band spectrum, however, is guaranteed time
bound dynamic access shared among competing providers.
This enables existing providers to use CAB spectrum to add
capacity to their networks for alleviating traffic hot spots.
On the other hand, it also enables new, potentially regional
metro scale radio infrastructure providers to compete without
requiring large investment in long term licenses of today.

This model satisfies several goals advocated by FCC Spec-
trum Policy Task Force Report [1]. It improves spectrum ac-
cess in spatio-temporal scale by promoting time-bound access.
The spectrum broker can employ market based mechanisms
(e.g: auctions or peak load pricing or hybrids [12]) to price
spectrum access. Also, as the broker is cognizant of spectrum
demands over time and space, it can better optimize allocation
and improve spectrum utilization which is in contrast to
state-of-the-art, where a license holder’s spectrum may be
underutilized in time and space. Our model provides a practical
way to protect incumbents and introduce a graceful DSA
mechanism in cellular networks.

We designate the smallest amount of contiguous spectrum
that can be requested via CDSA as a channel of C units. If the
broker manages a spectrum band of B units, it can dynamically
allocate K = B/C channels.
Demand model: Each spectrum demand request for a base
station consists of the amount of spectrum required specified
as a range between dmin and dmax channels. This means that
this base station requires at least dmin channels and at most

dmax channels to support its end users. This minimum demand
ensures that each base station gets at least some number of
channels so that they can meet the minimal end user traffic and
serve them continuously. Optionally, each demand request may
also have an associated scope parameter which captures how
many of the neighboring base stations should be preferably
given the same channels as in case of CDMA networks or
strictly different channels as in TDMA networks.

We assume a batched spectrum request processing model
in which the spectrum demands received in a time window
of τ units are grouped and processed together. The allocated
spectrum is used in subsequent time windows. This is in
contrast to an on-line spectrum request model where spectrum
request come at any time and if allocated, can be used
immediately by the base stations.

Also, note that the problem of spectrum allocation arising
from such a model is different than the spectrum/channel
allocation problem that has been widely researched in existing
cellular networks. There the problem is solved as a one-time
provisioning of a network of a single RIP (and WSP) using a
single technology.

Cellular Infrastructure model: We assume a cellular infras-
tructure model similar to [8] with three possibilities: (1) a
single RIP per region, (2) base stations of different RIPs with
collocated antennas at a common site, (3) non-collocated base
stations of different RIPs with non-collocated antennas. Of
these, the cases 2, 3 are the most interesting and challenging
for the design of spectrum allocation algorithms.

We assume that the spectrum broker knows the terrain
propagation model in the given region, the exact location of
the transmitters (base stations) and their other characteristics
(e.g: frequency range of operations, maximum power level,
number of transmitters, waveforms supported etc.) and can
estimate the interference level between any two base stations
given their location.

Interference Constraints: When the spectrum broker assigns
channels to the base stations of different RIPs, the following
constraints must be satisfied.

1) Collocated cross-provider constraint: Two collocated
base stations belonging to two different RIPs that share
the antenna infrastructure should not be assigned same
channels. Assigning same channels to two collocated
base stations cause a high level of interference (modeled
using the penalty function p defined later) due to their
close proximity.

2) Remote cross-provider constraint: Two remote base sta-
tions belonging to two different RIPs should not be
assigned the same channel if they can interfere with
each other. The level of interference (modeled using the
penalty function p) depends on the location of the base
stations in the region, the terrain-propagation model and
the frequency range under consideration.

3) Soft Handoff Constraint: This constraint applies only
to CDMA networks where neighboring base stations



must use the same CDMA carrier channels allowing
multipath propagation to be constructively exploited to
support soft handoff. The discussion of our algorithms
does not specifically account for the above due to space
constraints; however, they can be easily extended to
account for the same.

III. Problem Formulation

In this section, we first describe the graph construct that
captures our system model and formulate the spectrum allo-
cation problem as two optimization problems.

A. Interference Graph

The networks of various RIPs in the region R controlled by
the spectrum broker are collectively modeled as a weighted
undirected graph called the interference graph G = (V,E)
where each base station in the region is represented by a node
in the graph.

There is an edge (i, j) ∈ E between nodes i and j, if
the base stations represented by them belong to different
RIPs and interfere with each other when they transmit in the
same channel. The edges in the interference graph capture the
constraints defined in Section II that the spectrum allocation
algorithm must satisfy.
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Fig. 3. The region R controlled by the spectrum broker and the corresponding
Interference Graph.

We illustrate the concept of interference graph in Figure 3.
The region R controlled by the spectrum broker containing
the base stations of the various providers is shown in Fig-
ure 3.a and the corresponding interference graph is shown in
Figure 3.b. Note that nodes 1, 4, 8, and 12 belong to the
same RIP and do not have an edge between them. Nodes
1, 2, and 3 which belong to different RIPs interfere with
each other. Nodes 1 and 10 which belong to different RIPs
do not have an edge as they do not interfere according to
the terrain propagation model and the frequency range under
consideration (as predicted by the spectrum broker). Each edge
(i, j) ∈ E has a weight pij associated with it which is the
penalty when nodes i and j are assigned the same channels.
The value of the penalty function depends on the location of
nodes i and j and the terrain propagation model. The penalty
function differentiates between the different kind of constraints

described in the section II. The penalty is very high for the
edges representing the collocated cross provider constraint like
the edge between node 1,3 compared to the edge between node
1,6 which represents a remote cross provider constraint.

We assume that the CAB band managed by the spectrum
broker is divided into K different channels. For clarity of pre-
sentation, we assume that the K channels are non-interfering,
which means any two interfering nodes can transmit in two
different channels simultaneously. However, our techniques are
applicable even when the channels are partially overlapping.

TABLE I
NOTATIONS USED

Notation Explanation
G(V, E) Interference graph of the network
N = |V | Number of nodes in the graph
κ = {1, 2, ..., K} Set of K available channels
dmin(i) Minimum demand of node i ∈ V
dmax(i) Maximum demand of node i ∈ V

F : V → ℘κ

Spectrum allocation function such that
dmin(i) ≤ |F (i)| ≤ dmax(i) for each
node i ∈ V . Here ℘κ is the power set
of κ.

pij
Penalty when nodes i and j ∈ V are
assigned the same channels

Table I summarizes the notations we use. In addition, we
use the variables i,j to represent the nodes in the interference
graph G and k to refer to a channel throughout this paper.
Since assigning channels to the base stations can be thought
of as assigning colors to the vertices in the interference graph,
we use the terms channels and colors interchangeably in the
rest of the paper. We use the terms nodes and base stations
interchangeably.

Given the network of base stations, the demands of each
base station and a fixed number of channels, it is not always
possible to allocate as many channels demanded by each base
station such that no two interfering base stations belonging
to different providers are assigned the same channels. So it
is desirable to formulate the spectrum allocation problem as
an optimization problem to optimize certain objectives over
the set of feasible solutions. In our work, we focus on two
optimization problems, one aimed at maximizing the demands
satisfied and the other aimed at minimizing total interference
in the network. For each problem, we show its relation to
a well known computationally hard (NP-Hard) problem and
argue need for practical approximate solutions.

B. Maximum Demands Serviced Dynamic Spectrum Ac-
cess (Max-Demand DSA)

In this version of the spectrum allocation problem, the
objective is to maximize the overall demand serviced among
the different base stations such that no two base stations
belonging to different service providers that interfere with
each other (represented by the collocated and remote cross
provider constraints) are assigned same channels. Informally,
given the network of base stations, the minimum and
maximum demands of each base station and the fixed number



of available channels, we first see if the minimum demand of
each base station can be serviced with the available number
of channels. If we can service the minimum demands, then
we try to maximize the overall number of demands that can
be serviced for all the base stations. Now, we define the
problem formally.

Problem Definition: Given an unweighted (without the
penalties)2 interference graph G = (V,E), the demand
{dmin(i),dmax(i)} for each node i ∈ V and the available
number of channels K,

• Is it possible to find an allocation function F such that
∀i ∈ V, |F (i)| = dmin(i), and ∀(i, j) ∈ E,F (i) ∩ F (j)
is empty ?

• If yes, then find an allocation function F so as to

maximize
∑

i∈V

(|F (i)| − dmin(i))

such that ∀i ∈ V, dmin(i) ≤ |F (i)| ≤ dmax(i), and
∀(i, j) ∈ E,F (i) ∩ F (j) is empty.

Relationship with Maximum K-Colorable Induced Sub-
graph (Max K-CIS) Problem:
We show that there is a close connection between our Max-
Demand DSA problem and the K-colorability problem in
graph theory. We formally define the K-colorability problem,
present some standard results and show how they relate to our
problem. This serves as a motivation for our algorithm design
for the Max-Demand DSA problem.

Definition 1: Given a graph G = (V,E) and an integer
K, the maximum K-colorable induced subgraph (Max K-
CIS) problem is to find a K-colorable subgraph of G with
the maximum number of vertices. A graph is said to be K-
colorable if it is possible to color the nodes using only K
colors in such a way that no two adjacent vertices are colored
with the same color.

Now in our Max-Demand DSA problem, let us assume the
minimum demands of each node is 0. Given the interference
graph G(V,E), we create a new graph Gmax = (Vmax, Emax)
such that for each node i ∈ V , we create dmax(i) copies of it
in Vmax and form a clique among those nodes. For each edge
(i, j) ∈ E, we add to Emax an edge from each copy of node
i to each copy of node j. Thus each edge (i, j) ∈ E translates
to dmax(i)×dmax(j) edges in Emax. It is easy to see that, our
Max-Demand DSA problem is to find a K-colorable induced
subgraph of Gmax with the maximum number of vertices since
coloring a node in Gmax means we are servicing one demand
of a base station.

It is well known that deciding if a graph is K-colorable is
NP-complete [13]. This means that it is unlikely that we can
find an optimal solution to the Max-Demand DSA problem
in polynomial time even when the minimum demand of all

2For this problem, we implicitly assume the penalties to be very high, i.e.,
we enforce the constraint that any two nodes connected by an edge must be
assigned different channels.

the nodes is 0. It is even hard to approximate an optimal
solution for the Max K-CIS problem. This is true as it can
be shown that approximating the Max K-CIS problem is as
hard as approximating the maximum independent set problem
(see below) for any fixed value of K [14].

Definition 2: The maximum independent set problem is to
find a set of vertices of maximum cardinality such that no two
vertices have an edge between them.

It is well known that the problem of approximating the
maximum independent set problem to within a factor bet-
ter than Ω(n1−ε) is NP-complete for general graphs [15].
However the problem becomes easier in the case of unit-
disk graphs.3 Here the maximum independent set problem
can be approximated within a constant factor of 3 [16] and
the Max-K-CIS problem can be approximated within a factor
of 1.582 [17]. Our solution is motivated by this relationship
between Max-Demand DSA and MaX K-CIS problems. In
Section IV-A, we design an efficient algorithm for Max-
Demand DSA based on known techniques to solve the Max
K-CIS problem.

C. Minimum Interference Dynamic Spectrum Access
(Min-Interference DSA)

In this section, we formulate our spectrum allocation prob-
lem with the objective to minimize the overall interference in
the network (incurred when either the collocated or remote
cross provider constraints are violated) when all the demands
(dmax) of the base stations are serviced. Informally, we need
to find an assignment of dmax(i) channels to each node i in the
network, such that the penalty incurred by assigning common
channels to nodes that interfere with each other is minimized.

If F is the spectrum allocation function, such that |F (i)| =
dmax(i),∀i ∈ V , then the interference in the network is
defined as follows:

I(F ) =
∑

(i,j)∈E

pij × |F (i) ∩ F (j)| (1)

Interference in the network is the sum of the penalties of
the edges for each common channel assigned to both of its
endpoints. In the following, I(F ) is also refereed to as the
cost of the spectrum allocation function F . Now we define
the problem formally.

Problem Definition: Given the weighted interference
graph G = (V,E), the demand {dmin(i),dmax(i)} for
each node i ∈ V , and the available number of channels
K, find an spectrum allocation function F such that
|F (i)| = dmax(i),∀i ∈ V , so as to minimize I(F ), i.e.,

minimize
∑

(i,j)∈E

pij × |F (i) ∩ F (j)|,

3A graph is said to be a unit disk graph if and only if its vertices can
be put in one to one correspondence with equisized circles in a plane in
such a way that two vertices are joined by an edge if and only if the
corresponding circles intersect. Unit disk graphs have been used to model
wireless broadcast networks [16] [17] with nodes having equal transmission
range and a communication link exist between two nodes if they are within
the transmission range of each other.



where pij is the weight (penalty due to interference) on the
edge (i, j).

Relationship with Max-K-Cut Problem:
We show that there is a close connection between our Min-

Interference DSA problem and the Max-K-Cut problem [18] in
graph theory and derive insights from the techniques to solve
the Max-K-Cut problem to design our algorithm.

Definition 3: Given a graph G = (V,E), the Max-K-Cut
problem [18] is to find a K-partitioning of the vertex set V ,
such that the number of edges that have their endpoints in
different partitions (which form part of the cut) is maximized.
The weighted Max-K-Cut problem is to partition the vertex set
such that the sum of the weights of the edges whose endpoints
are in different partitions is maximized.

In our Min-Interference DSA problem, if we assume the
maximum demand of each node to be 1, then our problem
boils down to assigning one of the K colors to each node
in the graph such that the sum of the weights (pij’s) of the
monochromatic edges (i.e., with endpoints assigned the same
color) is minimized. The above is tantamount to maximizing
the sum of the weights of the non-monochromatic edges
(which is the objective of the Max-K-Cut problem). In essence,
we can use the Max-K-Cut solution to derive a solution for our
Min-Interference DSA problem, and vice-versa. Since Max-
K-Cut is NP-hard [18, 19], the above shows that our Min-
Interference DSA is also NP-hard even when the maximum
demand at each node is 1.

When the demand dmax(i) of each node i ∈ V is more
than 1, we can create a new graph Gmax = (Vmax, Emax)
with dmax(i) copies of each node i ∈ V and form a clique
between them. For any edge (i, j) ∈ E in the original graph,
we add an edge to Emax between each copy of node i to
each copy of node j similar to the way we did for the Max
Demand DSA problem. However, a Max-K-Cut on this new
graph Gmax may not give a solution for our Min-Interference
DSA problem, since it is possible that, for some node i in the
original graph G, more than one copy of i has been assigned to
the same partition. This will gives rise to an infeasible solution
for our problem since |F (i)| will then be less than dmax(i).

In order to overcome this, we define a new problem known
as the Multi-color Max-K-Cut problem in which, we assign
each node to multiple different partitions (equal to the node’s
demand) such that the sum of the weights of edges crossing
the partitions is maximized. We develop simple and efficient
heuristics to solve the Multi-color Max-K-Cut problem in turn
solving our Min-Interference DSA problem in Section IV-B.

IV. New Algorithms

In this section, we develop efficient algorithms for the
spectrum allocation problems formulated in Section III.

A. Maximum Demands Serviced DSA (Max-Demand DSA)

As discussed in section III, the Max-K-CIS problem is hard
to approximate in general graphs. So it is unlikely that we
can get a good solution for our Max-Demand DSA problem

when the interference graph G is modeled as a general graph.
If we consider a unit-disk graph model for the interference
graph, the Max-K-CIS problem can be approximated within
a constant factor from the optimal [17]. But in a unit-disk
graph model, each node should have the same transmission
range, which is not well suited to capture the characteristics
of a realistic cellular network as each base station belonging
to different providers can use different transmit powers.

In this section, we use a δ-degree bounded graph to model
the interference graph representing the networks of base sta-
tions of different RIPs in a region.

Definition 4: A graph G = (V,E) is said to be δ-degree
bounded, if the maximum node degree of any node in G is
less than or equal to δ.

This model does not require the base stations to have the
same transmission range. It also captures the locality of inter-
ference in the cellular network. Any base station can interfere
only with base stations within its interference range which
depends upon its transmit power and the terrain propagation
model. Considering the sparse nature of deployment of base
stations in macro or micro-cellular networks in a region, a δ-
degree bounded graph capture the characteristics of a realistic
cellular network quite well.

Next, we describe an algorithm to find the maximum inde-
pendent sets (Max-IS) in a δ-degree bounded graph and use it
as a building block for our Max-Demand DSA algorithm. The
pseudo-code to find the maximum independent set is shown
in Algorithm 1. Step 1 of the algorithm 1 can be done quickly
as δ is very small compared to |V |. Also step 1 and 2 have to
be repeated at most |V | times.

Theorem 1: Given the δ-degree bounded graph G =
(V,E), let IS and OPT denote the independent set produced
by the Max-IS algorithm and an optimal algorithm, then
|IS| ≥ |OPT |

δ
Proof: It is easy to see that for every vertex i added to

IS by the Algorithm 1, the maximum number of vertices that
can be added to the optimal solution is at most δ as the size
of the maximum independent set in the induced subgraph in
the neighborhood of node i can be at most δ. So, it follows
that |IS| ≥ |OPT |

δ .
A solution to the Max-K-CIS problem can be obtained by

repeating the Max-IS algorithm K times, removing the nodes
in independent set formed from the graph in every iteration.

Algorithm Max-Demand DSA: Now we describe the algo-
rithm for our Max-Demand DSA problem. Our algorithm runs
in two phases. In phase I, we check if the minimum demands
of all nodes in the network can be serviced by using the K
available channels. If we can service the minimum demands,
then in Phase II we try to maximize the number of demands
that can be serviced beyond the minimum demands of each
node.

Phase I: Given the interference graph G = (V,E), we create
a new graph Gmin = (Vmin, Emin) such that for each node
i ∈ V , we create dmin(i) copies of it in Vmin and form a
clique among those nodes. For each edge (i, j) ∈ E, we add an



Algorithm 1. Algorithm to find maximum independent set in a δ-degree bounded graph (Max-IS).

Input : The δ-degree bounded graph G(V,E).
Output: The maximum independent set IS

1) Pick a node i ∈ V such that the maximum independent set in the induced subgraph in the neighborhood of i is
minimum among all nodes.

2) Add i to the solution IS and remove i and all its neighbors from V
3) Repeat step 1 and 2 until all vertices in V are removed from the graph.

edge from each copy of node i to each copy of node j to Emin.
Thus each edge (i, j) ∈ E translates to dmin(i) × dmin(j)
edges in Emin. Now we try to color the nodes of graph Gmin

using K colors by solving the Max-K-CIS problem in graph
Gmin. As mentioned before, the Max-K-CIS problem can be
solved by repeating Algorithm 1 K times. If all the nodes
in Gmin can be colored using the K colors (using the above
method), then the minimum demands of all the nodes can be
serviced such that no two interfering nodes are assigned the
same channels.

Phase II: Now we add extra copies (dmax(i) − dmin(i)) of
each node i ∈ V to the already colored graph Gmin to form
the new graph Gmax. We then again solve the Max-K-CIS
problem in Gmax to color as many extra vertices as possible
using the K colors. Note that the Phase II of our algorithm is
same as finding K disjoint independent sets (or a K-colorable
induced subgraph) with maximum number of nodes among the
nodes that are newly added to form Gmax. Below, we show
that repeated application of Algorithm 1 delivers a solution
(K disjoint independent sets) of total size at least a constant
fraction of the optimal solution. The below theorem is similar
to the result of Max-K-CIS in unit-disk graphs [17]; we present
the proof below, as [17] does not give one.

Theorem 2: Phase II of the Max-Demand DSA achieves a
(1 − 1

e1/δ ) approximation ratio.
Proof: Let us assume that OPT is the total size of the

optimal K disjoint independent sets, and let N1, N2, . . . , NK

be the sizes of the K independent sets obtained by iterative
application of our Max-IS algorithm. We can show that at
the ith iteration (when N1, N2, . . . , Ni−1 independent sets
have already been selected), there exists an independent set

of size
OPT−∑ i−1

j=1 Nj

δK in the remaining graph (i.e., original
graph minus the N1, N2, . . . , Ni−1 independent sets). Since
Algorithm 1 guarantees an approximation ratio of 1/δ, we
have

Ni ≥
OPT − ∑i−1

j=1 Nj

δK
, for all 1 ≤ i ≤ K

Manipulation of the above equation gives

OPT −
i∑

j=1

Nj ≤ (1 − 1
Kδ

)(OPT −
i−1∑

j=1

Nj)

OPT −
K∑

j=1

Nj ≤ (OPT )(1 − 1
Kδ

)K

Since (1 − 1/k)k ≤ 1/e for all k, where e = 2.718, we get:
∑K

j=1 Nj

OPT
≥ 1 − (1 − 1

Kδ
)K ≥ (1 − 1

e1/δ
).

B. Minimum Interference DSA (Min-Interference DSA)

In this section, first we present a simple random heuristic
to solve the Multi-Color Max-K-Cut problem and prove its
performance ratio. Next, we start with the solution from the
random heuristic and find a better solution using a Tabu
search [20] based heuristic for the Min-Interference DSA
problem.

Multi-Color Max-K-Cut Problem, and Rk Algorithm:
Given the weighted interference graph G = (V,E) with
demands dmax(i) for each node i ∈ V and the total number
of colors K, the Multi-Color Max-K-Cut problem is to assign
dmax(i) different colors to each node i such that the sum of
the weights of the non-monochromatic edges is maximized,
i.e.,

∑

(i,j)∈E

pij(dmax(i)dmax(j) − |F (i) ∩ F (j)|)

is maximized, where F (i) is the set of colors assigned to i
and F (j) is the set of colors assigned to j.

The Rk (random) algorithm is as follows. For each node i,
we randomly pick dmax(i) different colors from the available
K colors and assign them to node i. Below, we show that Rk

algorithm is expected to give a good solution.
Theorem 3: Algorithm Rk achieves a

(
1 − 1

K

)
approxima-

tion ratio.
Proof: We can see that Rk gives a feasible solution as

each node i ∈ V in the graph gets dmax(i) different colors
assigned.

Let us now consider an edge (i, j) ∈ E. Since we choose
F (i) (the set of colors assigned to i) to be a random set of
size dmax(i) from the set of available K colors, each color
is expected to be in F (i) with a probability of dmax(i)/K.
Similarly, for F (j). Since, F (i) and F (j) are chosen indepen-
dently, the probability of any particular color being in F (i)
as well as F (j) is dmax(i)dmax(j)/K2. Thus, the expected
value of |F (i) ∩ F (j)|) is dmax(i)dmax(j)/K, and hence,
the expected value of the Rk solution is:

∑

(i,j)∈E

pijdmax(i)dmax(j)(1 − 1/K),



which is (1−1/K) of the maximum possible (optimal) value.

Tabu Search Algorithm for Min-Interference DSA:
The random heuristic Rk gives a solution to the Multi-Color
Max-K-Cut problem with a good approximation guarantee. In
this section, we present a Tabu search [20] based heuristic
that starts with the random solution obtained by algorithm
Rk and improves the solution to get a better solution for
the Min-Interference DSA problem. Tabu search is a popular
local search algorithm used for graph coloring that searches
through the solution space guided by the value of the objective
function. The pseudo code of our tabu search algorithm is
presented in Algorithm 2.

We start with a random initial solution F0 wherein each
node i ∈ V is assigned to dmax(i) different random colors
in κ. Starting from such a random solution F0, we create a
sequence of solutions F0, F1, F2, . . . , Fl, . . . , in an attempt to
reach a solution with minimum network interference. In the
lth iteration (l ≥ 0), we create the next solution Fl+1 in the
sequence (from Fl) as follows.
The lth Iteration. First, we generate a certain number (say, r)
of random neighboring solutions of Fl. A random neighboring
solution of Fl is generated by picking a random vertex i ∈ V
and a color in Fl(i) and changing it to a random color in
(K−{Fl(i)}). Thus, a neighboring solution of Fl differs from
Fl in the color assignment of only one vertex by a single
color. Among the set of such randomly generated neighboring
solutions of Fl, we pick the neighboring solution with the
lowest network interference as the next solution Fl+1. Note
that we do not require I(Fl+1) to be less than I(Fl), so as to
allow escaping from local minima.
Tabu List: To achieve fast convergence, we avoid reassigning
the same color to a vertex more than once by maintaining a
tabu list τ of limited size. In particular, if Fl+1 was created
from Fl by changing a color c ∈ Fl(i) of a vertex i to
a new color k, then we add (i, c) to the tabu list τ . Now,
when generating random neighboring solutions, we ignore
neighboring solutions that assign the color c to i if (i, c) is in
τ .
Termination. We keep track of the best (i.e., with lowest
interference) solution Fbest seen so far by the algorithm. We
terminate the algorithm when the maximum number (say,
countmax) of allowed iterations have passed without any
improvement in I(Fbest).

Note that the number of neighbor solutions and the value of
countmax affects the running time of the algorithm. Higher
those values, we search more in the solution space and get
better solutions if any, but at the cost of increased running
time of the algorithm. There is a trade off between running
time and solution quality. Based on our simulation experience,
we set countmax to the number of nodes in the network and
generated 100 neighboring solutions in each iteration.

V. Performance Evaluation

In this section, we present a detailed performance evaluation
of our algorithms using graph based simulations. We generate

different interference graphs by randomly placing nodes in a
fixed region of space and assign them randomly to different
service providers. We add an edge between two nodes, if
they belong to different service providers and are within the
interference range.

Graph Parameters: In all our experiments, we used 1000
nodes in the network randomly assigned to 10 service
providers. Each node has a transmission range of 150m. Two
nodes have an edge between them, if they belong to different
service providers and are within 300m from each other. We
generated graphs of different densities by randomly placing
the 1000 nodes in a fixed area of size as shown in following
table.

Area (m2) Max node degree Avg. node degree
3000x3000 40 25
3600x3600 30 20
5400x5400 20 10
7200x7200 10 5

In the USA, there are 5 VHF-LO (Channel 2-6, 55.25-
83.25 MHz), 7 VHF-HI (Channel 7-13, 175.25-211.25 MHz),
and 56 UHF (Channel 14-69, 472.25-801.25 MHz) on-the-air
broadcast TV channels. Of these total 68 channels, channels
7,4, 21, 37, 47, 52, 63, 66-69 are unavailable or already
allocated, leaving approximately 58 channels [21]. Since,
each channel is 6 MHz wide (to accommodate NTSC analog
signal), a total of 348 MHz of prime spectrum is potential
candidate for DSA. The current CDMA systems use ≈ 1.25
MHz of spectrum per carrier (channel). Therefore, we can
accommodate ≈ 278 CDMA channels in this spectrum. In
our simulations, we varied the number of channels from 40 to
240 in steps of 40. We assume that the channels are orthogonal
and each edge in the graph has equal weight.

In the following, first we show the performance of our Max-
Demand DSA algorithm for various network settings and then
show the performance of our Min-Interference DSA algorithm.

Max-Demand DSA: We evaluate the performance of our
Max-Demand DSA algorithm using the metric ”percentage of
demands serviced beyond the minimum demand”. Given the
minimum and maximum demands of each node in the graph,
we first see if the minimum demands can be serviced for
each node using the available number of channels and then
maximize the demands for each node as much as possible.
In our simulations, we used four sets of demands. In the first
set, the minimum demand of each node was randomly picked
from 1 to 10 and the maximum demand for each node was
randomly picked from 10 to 20. Similarly we used the values
(20,40),(30,60) and (40,80) for the other three sets of demands.
We show the performance of our Max-Demand DSA algorithm
in Figure 4 and 5. Each value in the plots is an average of 50
different runs.

Figure 4 shows the percentage of demands serviced beyond
the minimum demand using different number of channels for a
network with maximum node degree 10. The four bars for each
value of the channels show the percentage of demands serviced



Algorithm 2. Tabu-search Algorithm for the Min-Interference DSA problem.

Input : Interference Graph G(V,E)
Set of channels κ
The demands dmax(i) for each node i ∈ V .

Output: Spectrum Allocation Function Fbest : V → ℘κ

// The main idea is to start with a random coloring and iteratively improve it.
Start with a random assignment function F0 obtained using Rk;
Ibest = I(F0); Fbest = F = F0;
τ = null; count = 0;
while I(F ) > 0 and count ≤ countmax do

Generate a certain number of neighbors of F ;
Each neighbor is generated by randomly picking a node i ∈ Vc and a color c ∈ F (i) and
changing it to a random k ∈ (K − {F (i)}) such that ((i, k) /∈ τ ).

Let F
′

be the neighbor with lowest cost.
Add (i, c) to τ , where c ∈ F (i) − F

′
(i).

If τ is full, delete its oldest entry;
if (I(F

′
) < Ibest) then

Ibest = I(F
′
); Fbest = F

′
; count = 0;

else count = count + 1;
endif;
F = F

′
;

end while
RETURN Fbest;
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Fig. 4. Percentage of demands serviced beyond the minimum demand using
different number of channels for networks with maximum node degree 10.

beyond the minimum demand for the four different demand
sets. Using 40 channels, we are able to service the minimum
demand of all the nodes only when they are 10 or less. In other
cases, 40 channels are not sufficient to serve the minimum
demands using the Max-Demand DSA algorithm. We can see
that it is not always possible to serve the minimum demands
of all the nodes when the number of channels available is
less. We also see an increasing trend in the performance as
the number of channels increase.

In Figure 5, we show the percentage of the demands for
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Fig. 5. Percentage of demands serviced beyond the minimum demand in
networks of different densities with 240 channels.

different network densities when the number of channels is
set to 240. Note that as the density of the network increase,
the percentage of demands served using the same number of
channels decreases. The percentage of demands served is also
decreasing for the same network density and same number of
channels when the demands increase.

Min-Interference DSA: We evaluate the performance of our
Min-Interference DSA algorithm using the metric “percentage
of interference remaining” in the network after the spectrum
allocation. We show the performance of the random and tabu-



search algorithm as discussed in Section IV-B. We used four
sets of demands for this set of experiments also. In the first
set of demands, each node picks a value randomly from 1 to
10 for dmax. Similarly we used the values 20,30,40 for the
other three sets of demands. The performance of our random
and tabu-search heuristics are shown in Figure 6 and 7. Each
value in the plots is an average of 50 different runs. The y-axis
is in log scale for clarity of presentation in both the plots.
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Fig. 6. Percentage of interference remaining in the network after spectrum
allocation using different number of channels for networks with maximum
node degree 10.

Figure 6 shows the percentage of interference remaining in
the network after allocating as many channels as demanded
for each node using the random and tabu-search heuristics
in a network with maximum node degree 10 while varying
the number of channels from 40 to 240. For each channel,
the first two bars correspond to the percentage of interference
remaining in the network after spectrum allocation using the
random and tabu-search heuristic when the node demands are
between 1 and 10 (first set of demands). Similarly the next
three sets of bars correspond to performance for the next three
sets of demands.

Note that the random algorithm, has the same performance
irrespective of the number of demands as discussed in sec-
tion IV-B. It depends only on the value of k as we can see for
k=40, the percentage of interference remaining in the network
is around 2.5%. The performance of the tabu-search algorithm
is extremely good compared to the random algorithm and is
always better than the random algorithm. In most cases the
percentage of interference remaining in the network using the
tabu-search algorithm is less than 0.1%.

In Figure 7, we show the percentage of interference re-
maining in the network for networks of different densities
using 240 channels. Note here the performance of the random
algorithm is around 0.417% irrespective of the network density
and number of demands. Our tabu-search algorithm starts
using this solution and performs extremely well achieving 0
interference in most case. This shows that, we can achieve
extremely good assignments with the available number of
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Fig. 7. Percentage of interference remaining in the network after spectrum
allocation in networks of different densities with 240 channels.

channels reducing the interference to less than 1
k of the initial

interference using our tabu-search heuristic.
Our simulation results show that our algorithms for both

the Max-demand DSA and Min-Interference DSA problems
scale very well for large network sizes and provide very good
spectrum allocation solutions.

VI. Related Work

Frequency assignment in cellular networks is a well studied
problem. Several papers have come up with different kinds of
formulations for the frequency assignment problem. [22] and
[23] give a comprehensive survey on frequency assignment
problems in cellular networks.

Many heuristic algorithms have been proposed to solve
various flavors of frequency assignment problem in cellular
networks using simulated annealing [24], tabu search [25],
evolutionary algorithms [26], neural networks [27] and graph
coloring algorithms [22]. [28] provides a good survey of mod-
els and algorithms for frequency assignment in homogeneous
single provider TDMA cellular networks. Also, [29] provides
a good overview of application of graph coloring to frequency
assignment problems in such cellular networks. The authors
in [30] find lower bound for the fixed spectrum frequency
assignment problem using linear programming techniques
which is related to our Min Interference DSA problem. All
these proposal differ in the nature of algorithms and vary
in the formulation of the objective function. Our problem
formulations presented in this paper differ from the other
proposed schemes mainly due of the presence of the minimum
and maximum demands for each node and a fixed number of
channels to serve these demands.

In the world of wireless networks, graph coloring algorithms
have been used to develop efficient channel assignment proto-
cols in wireless LANs [17] [31] and multihop wireless mesh
networks [32] [33].



VII. Conclusions and Future Work

The concept of Coordinated Dynamic Spectrum Access
(CDSA), where a centralized spectrum broker controls spatio-
temporal dynamic access to a reserved spectrum, is one of
the most promising approaches in the context of infrastructure
networks such as cellular networks. However, the success of
this approach depends on design of a scalable spectrum broker
which in turn requires the design of fast spectrum allocation
algorithms. In this paper, we addressed this challenge.

Specifically, we reported two formulations of the spectrum
allocation problem as two optimization problems: first with
the objective of maximizing the overall number of demands
(Max-Demand) satisfied among the various base stations and
the second with the objective of minimizing the overall
interference in the network (Min-Interference) when all the
demands of the base stations are satisfied. We showed that
the optimization problems are NP-hard and designed efficient
algorithms to solve them. We also presented simulation results
on sample network topologies showing that our algorithms
scale very well for large network sizes.

In our future work, we plan to obtain realistic network
topologies of existing service providers and generate super-
imposed network infrastructure maps which will be used to
generate interference graphs. We also plan to build an exper-
imental spectrum broker simulator that accounts for notions
for demand stickiness[8], demand scope, advance reservations,
and fairness across providers [8].
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