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Abstract— In this paper, we develop two new MAC
protocols for multichannel operation in wireless ad hoc
and mesh networks. The first protocol, Extended Receiver
Directed Transmission protocol (xRDT) is based on a
previously known multichannel solution called Receiver
Directed Transmission (RDT) that uses a notion of qui-
escent channel. xRDT solves the problems faced by RDT,
such as multichannel hidden terminal and deafness, by
using an additional busy tone interface and few ad-
ditional protocol operations. We also develop a novel
single interface solution, called Local Coordination-based
Multichannel MAC (LCM MAC). LCM MAC performs
coordinated channel negotiations and channel switching
to provide multichannel support. We demonstrate the
effectiveness of these two protocols over two other well-
known multichannel protocols – MMAC and DCA – via
extensive ns2 simulations.

I. INTRODUCTION

Use of multiple frequency channels offers tremendous
potential to improve the capacity of a wireless network.
This potential has been recognized in existing standards,
such as the IEEE 802.11 [8], that can operate on multiple
orthogonal channels. Using multiple frequency channels
enables conflict-free transmissions in a physical neigh-
borhood so long as pairs of transmitters and receivers
can tune to different non-conflicting channels.

The research community has been addressing the mul-
tichannel question using two very different approaches.
The first is a static approach based on topology control.
Here, multiple radio interfaces are used on a node and
the emphasis is on assigning frequency channels to these
radio interfaces such that two nodes that communicate
directly in the resulting topology have at least one chan-
nel in common. As this approach is necessarily static, the
approach is often graph-theoretic and is based on models
of interference or protocol behavior, and assumptions
on average traffic. The papers in literature using this
approach pose the problem as essentially an optimization
problem [18], [19], [3], [12], [4], [11].

The other approach is more dynamic. It relies on the
capability of the radio interface to switch channels on
the fly with negligible delay. Here, multiple channels can
be utilized even with a single radio interface. Generally

speaking, this approach can provide a significant perfor-
mance benefit over a purely static approach (on a per-
interface basis) as it can potentially utilize instantaneous
traffic or interference information.

Our goal in this paper is to develop new MAC
protocols for ad hoc networks that use such dynamic
approaches. We develop two new MAC protocols. The
first protocol, called extended receiver directed transmis-
sion (xRDT), uses one packet interface and one busy
tone interface. Note that we differentiate between a
packet interface and a tone interface to contrast our
approach with similar approaches that use a separate
control channel and thus two packet interfaces (see,
for example, the DCA protocol [20]). Tone interfaces
are much simpler to implement than packet interfaces.
The second protocol, called local coordination-based
multichannel (LCM) MAC, uses a single packet interface
only. We show, via extensive ns-2 simulations, that these
two protocols significantly outperform similar protocols
that appeared in literature recently, such as DCA [20]
and MMAC [22].

The rest of the paper is organized as follows. In
the following section similar multichannel approaches
in literature are reviewed to provide a context for our
work. In Section III the simple receiver directed scheme
is described and its problems analyzed. In Section IV,
protocol operations are developed to address these prob-
lems. This constitutes the xRDT protocol. In Section V,
the LCM MAC protocol is developed. In Section VI,
ns2 simulation results are presented with realistic traffic
scenarios and network models. We finally conclude the
paper and outline our future work in Section VII.

II. BACKGROUND AND RELATED WORKS

There have been several works on developing new
MAC protocols that use multiple channels, and on de-
veloping techniques to use the legacy 802.11 MAC with
multiple channels efficiently. We review them in this
section to provide a context for our work.

A. Dynamic Approaches

In [5] the authors proposed Slotted Seeded Channel
Hopping (SSCH), a link-layer protocol that uses unmod-
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ified 802.11 MAC layer. Each node in SSCH switches
channels at slot-boundaries in a pseudo-random sequence
such that channels for neighboring nodes overlap in
time periodically. SSCH, requires time synchronization
to implement slotting. Also, to be effective, SSCH must
adapt its schedule continuously so that frequently com-
municating nodes overlap in channels frequently.

In [22] the authors proposed the Multichannel MAC
(MMAC) protocol which is loosely based on the 802.11
power-saving mechanism [8]. MMAC considers time
slotted into beacon periods of 100ms which are again
sub-divided into ATIM window of 20ms and data win-
dow of 80ms.1 Nodes tune to a default channel during
the ATIM window. A sender picks a receiver to talk to
during this window based on the number of packets for
each receiver in its interface queue. It then negotiates
a channel with the receiver for use during the data
window. As all nodes are present in the default channel
during the ATIM window, they know about possible
future transmissions and the corresponding channels
used. Thus, they can make a more informed decision
for their own channel negotiations. Nodes switch to their
respective selected channels when data window starts. In
some sense, MMAC partitions the network into N set of
nodes during the data phase, where N is the number of
channels. The ATIM window serves as a phase for a
node to make the best possible decision on which set it
should belong to in the data phase.

Both MMAC and SSCH require network-wide time
synchronization to work. They also constraint the nodes
to switch channels only at slot boundaries. Thus, they
both cannot utilize channel diversity to the maximum
extent as they need to stay in a specific channel for
fixed periods of time. Much of it is due to network-wide
selection of fixed parameters such as slot size in SSCH
and beacon periods in MMAC.

One of the earliest works to utilize dynamic chan-
nel switching was the Receiver Directed Transmission
(RDT) protocol [21]. In RDT, each node has a quiescent
channel on which it always listens to when idle. Any
transmitter must switch to the receiver’s quiescent chan-
nel to transmit. We describe RDT in detail in the next
section as one of our approaches (xRDT) is based on the
RDT paradigm.

The Dynamic Channel Assignment (DCA) protocol
[20], unlike the solutions described above, utilizes two
packet interfaces. It employs one of the interfaces as
a control interface, which is always tuned to a control
channel (common to all nodes). This interface allows
senders to do a three-way negotiation with the receivers

1These possibly could be adapted; but no such protocol exists.

to decide on a channel to be used for data transmission.
The selected channel is then used by the other interface
to transmit/receive data packet. As one interface is ded-
icated to the control channel – every node in DCA is
informed of channel usage in its neighborhood and thus
can make better decisions while negotiating.

However, DCA uses an extra resource – the control in-
terface. Additionally, the right bandwidth for the control
channel is traffic dependent. Wide control channel may
result in wastage of precious bandwidth, while narrow
control channel may become a bottleneck, resulting in
wastage of data channel bandwidth.

We also note here that similar protocols were de-
veloped in the past, that splits one single channel into
multiple subchannels and uses only a subchannel for
communication [15]. However, the issue, there, was to
reduce the overhead of contention.

B. Static, Multi-radio Approaches
There has been a body of work recently that look at

the multi-channel protocols from a different angle. Here,
the interest is in using legacy 802.11 protocol with COTS
radios – that cannot perform fast channel switching – in
multichannel environments. The basic idea is to use mul-
tiple radio interfaces assigned (statically, or dynamically
– but at a slow time scale) to different channels on each
node so that many channels can be used concurrently.
However, the channel assignment must be done in a way
that interference is minimized. There are several papers
in literature that take this broad approach ([18], [19],
[3], [12], [4], [11]). While such solutions are amenable
to implementation with legacy hardware, the static nature
of the solutions limit their effectiveness.

C. Other Related Works
Several other works are also worthy of mention here.

The Hop Reservation Multiple Access (HRMA) [23] and
Receiver-initiated Channel-hopping with Dual Polling
[25] have been proposed for use with frequency hopping
spread spectrum (FHSS) wireless cards.

In [17] the authors propose use of multiple radios such
that some of them have static channel assignment and
the rest do dynamic channel switching. They also pro-
pose a new routing strategy based on channel switching
and route diversity cost. In [16], the authors develop
asymptotic capacity models for multichannel networks
with multiple interfaces per node.

III. RECEIVER DIRECTED TRANSMISSION AND

PERFORMANCE ISSUES

In this section, we will develop an understanding of
the issues involved in multichannel operations by revis-
iting the receiver directed transmission (RDT) approach
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[21]. Our first protocol is based on RDT. However, a
straightforward use of RDT with 802.11 MAC results in
certain serious performance issues. Our goal in this sec-
tion is to describe these issues. We start with describing
the RDT approach in detail first.

Any dynamic multichannel protocol must ensure that
the transmitter and receiver are on the same channel
before communicating. To achieve this, it either ensures
that they switch to a pre-determined channel at a pre-
determined time, or it uses a separate control channel and
interface to perform a channel negotiation. This either
requires time synchronization or an additional packet
interface and channel. RDT uses a clever approach that
bypasses both of them.

In RDT, every node is assumed to be have a sin-
gle interface. Every node also selects (or is assigned)
a “well-known” quiescent channel for itself. This is
the channel the node always listens to when idle. To
transmit a packet, a transmitter switches its interface
to the quiescent channel of the intended receiver and
then transmits using a regular single channel MAC
protocol such as 802.11 (with RTS/CTS etc). Following a
successful transfer, the sender switches its interface back
to its quiescent channel. The protocol assumes that the
quiescent channel selection and distribution of this infor-
mation to the neighboring nodes are done via a separate
mechanism. This simplifies the approach greatly in the
sense that it is no longer needed that a communicating
pair of nodes negotiate a channel beforehand.

A. Multichannel Hidden Terminal Problem

The above scheme presents a new form of the well-
known hidden terminal problem [24]. Similar problems
were also observed in [22] in a slightly different context.
When a transmitter A, for data transmission, switches its
interface from its quiescent channel p to the receiver
B’s quiescent channel q, it has no prior information
about q’s state (i.e., currently ongoing transmissions).
For example, there could be another node C in the
neighborhood in the same channel q that might be
receiving data from a node D that is hidden from A.
In case A transmits an RTS for B, it will result in a
collision at C.

Note that 802.11 [8] solves the single channel equiv-
alent of this hidden terminal problem by using a vir-
tual carrier sensing mechanism. This uses RTS/CTS
exchange and the concept of NAV (network allocation
vector). We assume that the reader is familiar with the
operation of 802.11, and for brevity we do not elaborate
on this.

The virtual carrier sensing mechanism, however, is
not sufficient to prevent collisions in multichannel en-

vironment where only a single interface is used. This is
because the control packets such as RTS/CTS could now
be sent in different channels and one interface can only
work on one channel at a time. Thus, the channel state
information in the form of NAV cannot be created. Note
that a simple solution to this problem would be for A
to wait for the longest packet transmission time before
attempting transmission after switching channel. But this
is clearly inefficient.

B. Deafness Problem

A second problem, called deafness, arises because an
intended receiver may currently be in transmit mode,
transmitting in the quiescent channel of a third node.
This will cause the transmission attempt to fail. In
802.11, this means that the transmission will be retried
– after a backoff, that increases exponentially after mul-
tiple such failures, suspecting congestion. This wastes
network resources and causes unfairness. Also, it is
indeed possible that the receiver comes back to its
quiescent channel when its current packet transmission
is over; however, the transmitter remains in the backoff
unaware of this event, waiting for the backoff timer to
expire. By the time the latter indeed attempts the next
retry, the receiver could have switched to another channel
for transmission.

Similar deafness problems have been noted before in
the context of directional antennas [6]. Similar situation
happens in the basic 802.11 protocol as well, but one
additional hop away. This situation has been referred to
as information asymmetry in literature [26] and is one
cause of fairness problems in 802.11.

Our simulations (not described here due to lack of
space) indicate that both these problems occur frequently
enough at a high load causing throughput to decrease.
The decrease is often large enough that RDT with multi-
ple channels perform poorer than single channel 802.11!
The observations in this section motivated us to work on
two different approaches to solve the problems associ-
ated with multichannel environment. The first protocol,
xRDT, tries to solve the problems using extra resources
but using the same framework as the RDT approach.
The second protocol, LCM-MAC, instead prevents the
above mentioned problems from occurring, by using a
novel technique of channel negotiation based on local
coordinations. We describe these approaches and their
relative merits in the following sections.

IV. XRDT: EXTENDED RECEIVER DIRECTED

TRANSMISSION SCHEME

xRDT adds two mechanisms to RDT to address the
multichannel hidden terminal and deafness problems
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that we describe in this section. For the purpose of
understanding the protocol assume that the quiescent
channel advertisement is done by a separate mechanism.
This mechanism is explained separately.

A. Addressing Multichannel Hidden Terminal

One solution of the hidden terminal problem is to
implement a “channel memory” that helps propagate
the channel state to a potential transmitter at all times.
An easy and well-known way to implement “channel
memory” is by using busy tones [24] [7] [27]. Busy
tones are single frequency tones used for signaling.
The advantage of using busy tones relative to using a
separate control channel (as in DCA [20]) is that the
issue of determining the right bandwidth to allocate for
the control channel does not arise. Also, the channel gain
for both the data channel and the busy tone channel (or,
the control channel for that matter) must be the same
for the techniques to operate correctly. This is relatively
easier to achieve for a single frequency tone. In addition,
hardware requirement is simpler as only an additional
tone interface is needed instead of an additional packet
interface.

We assume that there is a different tone channel bc for
each data channel c. However, one single tone interface
is sufficient. A receiver, when receiving a data packet on
channel c turns on the tone in corresponding busy tone
channel bc. This enables a potential transmitter that has
just come to channel c to learn about any receiver in
the neighborhood by sensing on the busy tone channel
bc. If the busy tone channel is indeed found busy, a
transmitter would defer its transmission on the data
channel. This deferment is designed exactly similar to
the collision avoidance mechanism in 802.11 [8] that
uses a variation of the p-persistent protocol [10]. For
brevity, this mechanism is not discussed here.

Note that use of the busy tone prevents any collision
of data packets.

B. Addressing Deafness

There are simple solutions to deafness; but they all
require additional resources. For example, note that
deafness arises because a radio interface is half-duplex.
So, in transmit mode it is deaf to any reception. So, if
two interfaces are used, one for transmission and the
other for reception [17], the problem is solved trivially.
In this work, we take an approach that simply softens the
impact of deafness instead of completely eliminating it.

Recall from Section III that a receiver might return
back to its quiescent channel while the transmitter is
still in backoff. A notification that a potential receiver

is available to receive data can preempt this backoff and
ready the transmitter to transmit immediately following.
One way to achieve this would be for the “deaf” nodes
to broadcast a Data Transmission Complete or DTC
notification message in its own quiescent channel. This
will ensure that all potential transmitters (who may be
in backoff) come to know of the receiver’s availability.
They now can break out from backoff and start the trans-
mission process. A contention resolution is necessary
to resolve between multiple such transmitters. This can
be done simply by following the contention resolution
scheme in 802.11 [8].

Notice that DTC does not prevent deafness from
occurring – transmitters will still send RTS to deaf
receivers – but it will alleviate it by capitalizing on the
fact that the deaf node will return to its quiescent channel
before switching to another channel for transmission.
This small window of opportunity is utilized by making
the deaf receiver send the DTC to “wake up” the backed
off transmitters.

C. Complete Protocol Description

Briefly, the Extended RDT (xRDT) protocol is the
same as RDT, except that now (i) there is a receiver
busy tone on the appropriate busy tone channel, and
(ii) a DTC message after the data transfer is over in the
quiescent channel. The details follow.

1) Start of Transfer: In xRDT, every node listens
to its quiescent channel when idle. A transmitter A
switches channel to the receiver B’s quiescent channel
q. Then it senses carrier on both q and the busy tone
channel bq using the two interfaces. If any channel is
found busy, it uses a contention mechanism similar to
802.11, which we do not describe for brevity. When the
channels are found idle (after the appropriate contention
resolution, if any), A sends RTS to B on channel q.
B after receiving RTS turns on busy tone for bq. The
busy tone works as an implicit acknowledgment for
the RTS. On hearing the busy tone, A transmits DATA
to B. When DATA transmission is complete, B turns
off the busy tone. Then again, after an appropriate
interframe spacing, busy tone is turned on briefly as
an acknowledgment. This stays for a normal ACK
packet duration. The setting of the interframe spacing
guarantees that no other transmission in the vicinity
can start in the interim. Absence of this busy tone-
based acknowledgment signals the transmitter that
retransmission is necessary. The retransmission is tried
after a backoff. This backoff again is similar to 802.11.
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2) End of Transfer: After the transfer is complete,
A switches back to its own quiescent channel (say, p).
After proper interframe spacing, it broadcasts a DTC
message in this channel if the channel is idle (both
p and bp). Channel sensing eliminates the possibility
of DTC collision. If the channel is sensed busy, DTC
transmission is deferred till the channel becomes idle.
If DTC is indeed sent, any other node C waiting for A
in channel p cancels its current backoff timer, erases all
backoff and contention window related states, and acts
as if it is attempting to transmit a fresh packet.

3) Next Transfer: If A also has another packet to
transmit, it prepares to transmit that packet right after
transmitting the DTC for the previous transmission. This
means again – as in 802.11 – setting the contention win-
dow to the minimum value and picking a random backoff
time. A transmits – after switching to the receiver’s
quiescent channel – if its backoff expires earlier than
C’s. Else, C transmits to receiver A. If this is the case,
when C to A transfer is complete, A again attempts to
transmit its packet after completing its remaining backoff
time.

D. Selection of Quiescent Channel

A good quiescent channel selection for all nodes
is required to maximize concurrency in the network.
When the relative traffic on each link of the network
is known a priori, optimized assignment of quiescent
channels is akin to the problem of coloring vertices
of a graph with available channels. More specifically,
when k channels are available, the problem of assigning
quiescent channels for maximum concurrency in the
network can be shown to be equivalent to the problem of
finding a maximum weighted k-cut [1] in the G2 graph,
where G is the original communication graph and G2

has edges between node pairs (i, j) such that distance
between i and j in G is at most 2. We can use the
existing approximation algorithm [9] for the Max k-cut
problem to do channel assignment in this case.

In the more realistic case where traffic is varies
dynamically, we propose a periodic quiescent channel
selection mechanism using channel load as a criterion.
Each node measures the load on all channels by snooping
during its idle time. Traffic directed towards itself is
discounted when calculating load on its current quiescent
channel, q. If load on the least loaded channel, l, is lower
than the load on q, l is chosen as the new quiescent
channel. To avoid oscillations, the difference is mandated
to be above a threshold for any change to take place. This
approach has been used in our evaluations.

V. LOCAL COORDINATION-BASED MULTICHANNEL

(LCM) MAC

The receiver directed approach described before re-
quires an additional busy tone interface. In this section,
we develop an alternative approach called LCM MAC
where busy tones are not used and each node has only
one interface. In LCM MAC, the neighboring nodes
go through local coordinations to generate transmission
schedules. A transmission schedule consists of a period
when only control packets are transmitted (also called
control window) followed by a period when only data
packets are transmitted (a data window). Two basic rules
are followed:
• All control packets are transmitted in the same

channel during the control window. All nodes in
a neighborhood are tuned to this same channel at
this time.

• All data packets are transmitted concurrently in
different channels during the data window.

The first rule helps ensure that nodes become aware
of transmissions in the neighborhood (this avoids the
Multichannel Hidden Terminal problem as well as the
Deafness problem). Data packets are transmitted con-
currently at different channels to exploit parallelism.

The common channel used in the control window is
called the default channel. Unlike the quiescent channel
in xRDT, the default channel in this case is common
to all nodes. The default channel is used as a control
channel during the control window and as a data channel
during the data window.

The key idea in LCM protocol is to setup transmission
schedules without the use of any time synchronization.
Senders use a contention resolution mechanism similar
to 802.11 to gain access to the default channel during the
control window. A sender then negotiates a channel to be
used during the data window with the intended receiver.
Once the negotiation is over, it releases the channel to
let other senders contend for its access.

When control window gets over, the communicating
nodes switch to their respective selected channels and
exchange DATA and ACK. This constitutes the data
window. After data window is complete, all these nodes
switch back to the default channel for another round of
negotiations. The time line showed in Figure 1 illustrates
a simple working scenario of LCM MAC.

The protocol is similar in some details to the MACA-P
[2] protocol and the POWMAC [14] protocol for transmit
power control. LCM also has some similarities with the
MMAC [22] protocol in channel negotiations. However,
MMAC follows a rigid schedule and the negotiations
are for long term. Thus, its benefit is limited by traffic
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Fig. 1. A example time line showing the working of LCM MAC in
a simple three hop network with 2 channels. The subscript for each
packet indicates the channel in which the packet is sent.

conditions. MMAC also requires tight time synchroniza-
tion for the protocol to work whereas LCM has no such
requirements.

A. Detailed Protocol Operation

In this section, we describe the methodology used for
setting up a schedule without global synchronization.
We also talk about how negotiations are performed
during the control window and how channels are
selected to avoid conflicts during the data window.
Later, we talk about the limitations of the protocol and
how to overcome them.

1) Control Window Operation: Any node unaware of
a control/data window schedule can propose a schedule.
Otherwise, it follows a schedule it already knows. When
a node has a packet to send and is unaware of any
schedule, it transmits an RTS (as in 802.11) in the default
channel with a proposed schedule. This node is called
a master node. The schedule can be defined by two
additional fields in the RTS packet: (i) time left for data
window to start (control window duration) and (ii) the
data window duration. A RTS packet also contains a list
of free channels at the sender for transmission during the
data window. We use a concept of Multichannel NAV for
this purpose. This is the same as NAV used in 802.11,
except that now NAV is a vector with one element for
each channel. If the NAV for a particular channel is set,
then that channel is deemed busy otherwise, it is free.

If n is the number of channels, then only n nego-
tiations are possible in a neighborhood in the control
window - as it will exhaust the list of channels for data
communication. Thus, if Tneg is the time needed for
a successful negotiation (explained next), then control

window duration is set to n times Tneg. But, in case the
master node has heard only k (< n) negotiations in the
last control window, it sets the control window size to
(k+1) times Tneg. The data window size is set to the
time needed for DATA-ACK exchange with the proper
interframe spacings.

On receiving RTS, the receiver can accept the schedule
by replying with a CTS. The CTS also contains a channel
id selected from the channel list in RTS. This selected
channel is one of the free channels at both sender and
receiver’s positions. The CTS also contains the schedule
information.

When sender receives a CTS, it transmits another
packet called RES (for reserve) containing the schedule
and the selected channel id. RES is needed to allow all
neighbors of the transmitter to be aware of the channel
to be used for communication. Any node hearing a
CTS or RES packet will set its Multichannel NAV for
the channel whose id is included in the packet for an
appropriate duration of time (end of data window). All
such nodes also note the schedule mentioned in the
packet and follow that schedule unless they have already
been following another schedule. Thus the schedule is
propagated to all the nodes in the one-hop neighborhood
of the sender and the receiver.

In case, the receiver cannot find a common free
channel from the channel list in the RTS, it replies
with a channel id value of -1 in the CTS to signal the
sender to retry in the next schedule. The sender does
not respond with RES to such a CTS message. Any
neighboring node hearing such a CTS ignores it.

2) Data Window Operation: After a successful RTS
and CTS exchange, the transmitter-receiver pair has now
agreed on the channel to be used and all potential
interferers have set their NAVs for this channel to
allow this transmission to proceed without conflict. Other
nodes who overheard the CTS/RES packets are now
free to start their own negotiations (using RTS/CTS/RES
exchange) as long as they can finish the negotiation
within the control window and their data transmission
takes time less than or equal to the data window length
mentioned in the schedule. At the end of control window
the transmitter-receiver pairs switch to their selected
channels. This starts the data window. DATA and ACK
are transmitted in the selected channel. At the end of the
data window, the transmitter-receiver pairs return to the
default channel implicitly signaling the start of another
control window.

The nodes who heard a schedule in the control
window but are not participating in data transmissions,
remain in the default channel during the data window.
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Fig. 2. Example demonstrating how schedules can be adapted in
the LCM MAC protocol with the use of inflexible bit.

They are not allowed to communicate during this time.

3) Similarities With 802.11: The other details of
the protocol are similar to 802.11. For example, it
follows the identical interframe spacings and collision
avoidance strategies by using physical carrier sense and
backoff before transmitting an RTS. If there is no CTS
in response to an RTS, RTS is retransmitted with an
increased backoff exactly similar to 802.11. This covers
for the case where there is an RTS collision because of
a significant load. If the backoff gets over in the same
control window, the RTS is retransmitted; but if it gets
over during the data window, the node waits for control
window to start again.

4) Adapting Schedules: Consider the scenario in Fig-
ure 2, node D sends RTS to node C setting up a schedule
which node C accepts by sending a CTS. This CTS
is heard by node B and it also starts following that
schedule. Now, if node A, hidden from C and D, sends
an RTS to B, it may propose a different schedule. The
protocol dictates that B has to follow C’s schedule.
Thus, it cannot reply to A. However, in some cases, with
some additional protocol operations the schedule can be
adapted.

To explain this we come back to the notion of master
node. A master node is one that proposes a new schedule
in its RTS. Thus, in Figure 2, D could be the master
node, or it could have itself heard a schedule from some
other node in its neighborhood and might be following
that schedule. We can say the same for node A. If node
A is not a master node, then it is impossible for the
A−B communication to go on at this time as they both
are following different schedules and they cannot violate
them. But, in case A is a master node, B can actually

reply proposing a change in A’s schedule to match its
own. Because A is a master node, it can very well
accommodate its schedule to facilitate its data transfer
to B.

To achieve this, we introduce an inflexible bit field
in RTS. The inflexible bit is set to zero if the sender
of RTS can change its schedule if needed (i.e., it is a
master node). On receiving the RTS with inflexible bit
set to zero, B can send a CTS with a changed schedule to
match its own. On receiving it, A would send a RES with
the changed schedule. Note that because neighboring
nodes are not meant to follow schedules proposed in
RTS, but only in CTS and RES, changing schedules in
this manner does not affect any neighborhood node.

B. Improving Efficiency

The constraint in LCM MAC that all nodes in a
neighborhood tune to the default channel during control
window ensures that all neighbors are aware of what
channels are being used in the neighborhood. But, this
also leads to an inefficiency – all the non-default chan-
nels remain idle during the control window, resulting in
a considerable loss of bandwidth.

We counter this inefficiency by letting senders transmit
a maximum of m (>1) DATA packets to the receivers
per negotiation; or in effect, increasing the data window
duration by a factor of m. This amortizes the loss of
bandwidth during the control window over a number of
data transmissions. But the value of m should be chosen
carefully. For example, if the size of data window is too
large, many senders might run out of packets to send to
the respective receivers – resulting in more wastage of
bandwidth. If the data window duration is too short, the
protocol may still remain inefficient.

We propose a way to adapt the data window duration.
For every node, if d is the intended receiver for the next
packet in the outgoing interface queue, then the node
counts the number of packets in the queue that have
d as the next hop. This information is included by all
nodes in their CTS and RES packets for the neighbors to
learn about their future transmission requirements. Thus,
at the start of the next control window, all nodes have
information about the requirements of other neighboring
nodes. A master node can use a statistic of these values
(e.g., average) to decide on a suitable value m to be
used in current schedule. To eliminate outliers, we also
constraint m to be no more than the number of channels.

When data window starts, a sender, after sending the
current DATA packet can proceed to transmit the next
one only if: a) it receives an ACK for the current DATA
packet and b) the time left for data window to end is
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greater than the time required for another DATA/ACK
exchange.

C. Question of Starvation

It is possible that some nodes suffer from periods of
starvation. To see this, consider Figure 2 again. It is
possible that A is inflexible, and thus A to B transfer
cannot proceed with the current control and data window
for B. In that case, A simply has to continue trying
in its next control window. It is possible that B again
follows a schedule set by another node hidden from
A. In such cases B can starve – as it is not able to
receive packets intended for it. As the average route
length increases in the network, the probability of more
than one schedule operating in the network increases.
This, as a result, could cause more starvation. However,
because each transmission starts with a contention period
that uses randomization, it is unlikely that a single node
will suffer for a long time.

For our implementation, we used an ad hoc approach
to alleviate the problem. Whenever a node suffers from
long periods of starvation, it disrupts a negotiation which
is imposing a second schedule on it by causing a control
packet collision. For example, after hearing a CTS from
C (intended for D), B can cause a collision at C when
C was supposed to receive the RES from D. In case, A
attempts to send a RTS to B again, it can safely reply
with a CTS now.

VI. SIMULATION-BASED PERFORMANCE

EVALUATION

We evaluate xRDT and LCM MAC and compare them
against two known multichannel protocols, DCA and
MMAC, using the ns2 simulator with CMU wireless
extensions [13]. The simulations were performed for two
scenarios with different density of nodes. The following
common parameters were used in each experiment, all
the radio parameters being ns2 defaults. The radio power
and threshold levels are such that transmission range of
each node is 250m, the carrier sense range is 500m and
the nominal bit rate of each channel is 1 Mbps. The
two-ray ground reflection model is used to model radio
propagation. The number of nodes in each scenario is
100 and positioned at random locations. There are 50
CBR flows with randomly selected source-destination
pairs. Statically chosen shortest path routing is used.
The data packet sizes are 1000 bytes. The data packet
generation rate for each flow is varied to vary the load
in the network and simulations are done for different
number of channels. Each simulation is performed long
enough for the output statistics to stabilize. Each data
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Fig. 3. Throughput vs. load in ns2 simulations with 1Mbps channels,
100 nodes in a 500m × 500m area.

point in the plots is an average of five runs where each
run used a different randomly generated topology.

We have simulated four protocols xRDT, LCM MAC,
DCA and MMAC. For DCA, if there are k channels
available, then 1 channel is designated as the control
channel and the rest k−1 are used as data channels. For
MMAC, the specified values in [22] of 80ms for data
window and 20ms for the ATIM window are used. Two
100 node network scenarios – with different density –
are simulated. The first (second) scenario is created by
randomly placing 100 nodes in a 500m × 500m (1000m
× 1000m) area. 6 and 13 channel results are presented
in Figures 3 and 4 for each of the two scenarios.

As expected, the two-interface protocols (xRDT and
DCA) usually perform better than the single-interface
protocols (LCM and MMAC). xRDT provides much su-
perior performance among all protocols. DCA is a close
second, except at high loads. Also, DCA’s performance
suffers for the 13 channel experiments, likely because
of the control channel becoming a bottleneck resulting
in wastage of data channel bandwidth. Note that both
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Fig. 4. Throughput vs. load in ns2 simulations with 1Mbps channels,
100 nodes in a 1000m × 1000m area.

xRDT and DCA use two interfaces, although the second
interface in xRDT is a much simpler busy tone interface.
So, it is fair to compare them together.

Similarly, it is fair to compare LCM MAC and MMAC
together as they both use one interface. LCM MAC
performs better than (or similar to) MMAC at all times,
although LCM is much better in the 500×500 scenario.
The degradation in 1000×1000 scenario is probably
due to starvation problem as mentioned in section V-
C. Also note that, inspite of using time synchronization,
MMAC’s performance in some scenarios is not good at
low loads. This is due to the large data window size.
At low loads senders run out of packets to send to the
receivers present in their current channel. As they cannot
change channel until the end of data window, this results
in wastage of bandwidth. LCM MAC also does not give
proportional improvement with the increase in channels.
We will discuss this aspect momentarily.

One goal of our work is also to showcase the per-
formance benefit of using multiple channels in wireless
networks. To demonstrate this aspect, we plotted the
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Fig. 5. A chart comparing saturation throughput of xRDT and LCM
MAC with varying number of channels in a 500m × 500m area. The
chart also includes single channel 802.11 for baseline comparison.

average saturation throughput of xRDT and LCM MAC
in Figure 5 with varying number of channels (m) and
compared them against single channel 802.11. Single
channel 802.11 is only used for baseline comparison. The
earlier mentioned scenario with 100 nodes in 500×500
area is used for this plot.

In Figure 5 note that xRDT’s performance increases
almost linearly with increase in number of channels. This
demonstrates the efficiency of the xRDT scheme. It does
not face control channel bottleneck issues as in DCA, nor
does it face any control period inefficiencies as in LCM
MAC or MMAC. Also, note that xRDT, in fact, provides
more than k times throughput relative to 802.11 while
using k channels. This is due to lesser control packet
overheads in xRDT.

LCM MAC also provides substantial improvement
over 802.11, slightly less than k times for the 3 and
6 channel experiments. But, the saturation throughput
does not increase proportionately for 13 channels. This
is due to the earlier mentioned problem about loss of
bandwidth during the control window (Section V-B),
where only one channel (the default) is used. In fact, the
loss of bandwidth is O(k2) as it is proportional to the
product of number of non-default channels (k − 1) and
control window size, and control window size is itself
proportional to k. Thus, we advocate the use of LCM
MAC for small number of channels and dense networks
only.

VII. CONCLUSIONS AND FUTURE WORK

We have developed two multichannel MAC protocols
– xRDT with a packet and a busy tone interface, and
LCM MAC, with just one interface. Both protocols
show superior performance relative to similar protocols
proposed in literature that use similar resources in terms
of interfaces. In particular, xRDT provides a far superior
performance relative to control channel based protocol
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(DCA), but only using busy tones instead of control
channels. LCM MAC also provides superior or at par
performance relative to a similar protocol (MMAC), but
uses an entirely asynchronous operation.

Some of the issues not discussed in this paper are
the effects of mobility, non-negligible channel switching
delay and different data packet sizes as well as mecha-
nisms for broadcasts in our protocols. We intend to study
them in our future work. Effects of mobility is expected
to be minimal on xRDT as it uses busy tones to avoid
collisions, while it may affect LCM MAC somewhat
because of its large data window size. There should
be no effect of varying data packet sizes on both the
protocols. The channel switching delay is expected to
affect only xRDT to any significant extent as it follows
a per-packet channel switching approach. For LCM the
delay is amortized over multiple packets. Also, in LCM,
broadcast packets can be sent during the control window.
But no intelligent mechanism exists for xRDT, currently
the broadcast must be done individually in each channel.

Our future work will also involve implementing and
testing the studied protocols in real wireless testbeds
using different software-based MAC platforms. Also,
several intelligent approaches are possible to solve the
starvation problem in LCM MAC that is worth investi-
gating. Our ad hoc solution only serves as a first step.
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