
1

Join of Multiple Data Streams in Sensor Networks
Xianjin Zhu Himanshu Gupta Bin Tang

Department of Computer Science, Stony Brook University. {xjzhu, hgupta, bintang}@cs.sunysb.edu

Abstract— Sensor networks are multi-hop wireless networks
of resource-constrained sensor nodes used to realize high-level
collaborative sensing tasks. To query or access data generated
by the sensor nodes, the sensor network can be viewed as a
distributed database. In this article, we develop algorithms for
communication-efficient implementation of join of multiple (two
or more) data streams in a sensor network. The distributed imple-
mentation of join in sensor networks is particularly challenging
due to unique characteristics of the sensor networks such as
limited memory and battery energy on individual nodes, arbi-
trary and dynamic network topology, multihop communication,
and unreliable infrastructure. One of our proposed approaches,
viz., the Perpendicular Approach (PA), is load-balanced, and
in fact, incurs near-optimal communication cost for the special
case of binary joins in grid networks under the assumption of
uniform generation of tuples across the network. We compare
the performance of our designed approaches through extensive
simulations on the ns2 simulator, and show that PA results in
substantially prolonging the network lifetime compared to other
approaches, especially for joins involving spatial constraints.

I. Introduction

Sensor networks are multihop wireless networks formed by
a large number of resource-constrained sensor nodes. Each sen-
sor node typically generates a stream of data items that are
readings obtained from the sensing devices on the node. This
motivates modeling the data in a sensor network as relational data
streams, and visualizing sensor networks as distributed databases
systems [5, 18]. More recently, recursive deductive approach
has been suggested as a framework for programming sensor
networks [9]. Like a database, the sensor network can be queried,
and efficient in-network (distributed) implementation of database
queries is of great importance. Join is an important database
operator, and as shown in our concurrent work [16], can form
a basis of a deductive query engine for sensor networks. In
particular, join operator can be used to represent complex events
in sensor networks [1, 29]. Thus, efficient implementation of join
in sensor networks is of great significance; the challenge comes
from limited network resources.

Motivated by the above, we develop efficient distributed imple-
mentations for join of multiple data streams in sensor networks.
Since each sensor node has limited battery energy and message
communication is the main consumer of energy, distributed im-
plementation of join must minimize the communication cost.
In particular, we are interested in in-network implementation
strategies since routing all sensor data to a central server would
incur prohibitive communication costs. In addition, load-balanced
implementation strategies are highly desirable, because unbal-
anced strategies are likely to result in a much shorter network
lifetime. Design of communication-efficient and load-balanced in-
network implementations of join in sensor networks is particularly
challenging due to limited memory available at each node and
arbitrary network topologies.

The main contribution of our work is the design of various
distributed implementations for join in sensor networks. In par-
ticular, we propose the Perpendicular Approach (PA) which is
communication-efficient and load-balanced, and in fact, incurs
near-optimal (within a constant factor) communication cost for
binary joins in grid networks under the assumption of uniform
generation of tuples across the network. PA works by using
appropriately defined horizontal and vertical paths for tuple
storage and join-computation respectively. The approach is able
to efficiently incorporate joins with spatial constraints, and can
be generalized to sensor networks without location information.
To the best of our knowledge, our is the first work to address
distributed implementation of multi-table join in sensor networks
with memory constraints. We analyze the communication cost of
our approaches, and compare their performance through extensive
simulations on ns2 simulator. We observe that use of PA results
in a substantially prolonged network lifetime compared to other
approaches. The performance gap is much larger for the more
realistic scenario of joins involving spatial constraints.

Our proposed approach for in-network implementation of join
generalizes to evaluation of recursive deductive rules. In addition,
our approach can form a basis for in-network evaluation of
general deductive programs [16]. Facilitating development of a
full-fledged deductive query engine for sensor networks is a
significant aspect of our work.

Paper Organization. We start with describing and motivating
the addressed problem in Section II, and discuss related work. In
the following sections, we present our proposed approaches. We
analyze the communication cost of our approaches and address
the join ordering problem in Section V, and present simulation
results in Section VI.

II. Problem Description, Motivation, and Related Work

We start with presenting an overview of sensor network
databases.

Sensor Network Databases. A sensor network consists of a large
number of sensor nodes distributed (typically, randomly) in a
geographical region. Each sensor node is equipped with sensing
devices, a short-range radio, and a limited battery. Two sensor
nodes can either communicate with each other directly (if within
each other’s transmission radius) or indirectly using intermediate
nodes. The data generated in a sensor network is simply the
readings of the sensing devices on the nodes, and can be mod-
eled as relational data streams [3, 33]. Thus, researchers have
proposed visualizing sensor network as a distributed database
system [5, 18, 21] of data streams. As mentioned before, the
sensor network data corresponding to readings of sensing devices
can be modeled as relational data streams. In addition, there may
be other data streams in the network corresponding to derived
views (such as detected events). Each of the data streams may

2

be generated by an arbitrary set of nodes (perhaps, the entire
network), and a node may generate tuples for multiple streams.
The node that generates a particular tuple is referred as its source
node. Due to limited memory resources, we store only a finite set
of tuples (typically, most recent) called the sliding window [2, 13]
for each data stream, and constrain the join operation to the join
of sliding windows of operand streams.
Problem Description. Given data streams R1, R2, . . . , Rn (not
necessarily distinct) in a sensor network, we wish to compute
R1 on R2 on . . . Rn in a communication-efficient and load-
balanced manner. We do not make any assumptions about the
join conditions. However, the above join operation is taken over
the sliding windows of the data streams; i.e., we implicitly assume
that two tuples match only if they were generated within a
certain interval (size of the time-based sliding windows [2]).
Moreover, since the sensor data is highly correlated in the spatial
domain [12, 23], we give special consideration to spatial joins
(formally defined below) and modify our techniques to efficiently
implement them. The join-query result is output as a data stream
across the network, and can then be hashed across the network
to facilitate evaluation of higher-level queries.

Definition 1: (Spatial Join) A join between two data streams
Ri and Rj is said to be a spatial join of range s if the join condi-
tion is a conjunction of (|Ri.nodeLocation−Rj.nodeLocation| ≤

s) and other arbitrary predicates. Here, nodeLocation is the
attribute for the location of the tuple’s source node, and |x − y|

is the distance between x and y. �

Performance Criteria. Our main performance criteria of a join
implementation is the resulting network lifetime. In general,
network lifetime is defined as the time after which the network
is rendered “useless” (ineffective or inoperable) or disconnected,
due to failure of enough nodes. However, the precise definition
of the network lifetime depends on the specific objective of an
application. In either case, the network lifetime is prolonged
by conserving overall battery energy and uniform depletion of
battery resources across the network. The former is achieved by
minimizing communication cost and the latter by a load-balanced
implementation. Thus, we focus on design of communication-
efficient and load-balanced implementations. In our simulations,
we define network lifetime in terms of the approximation ratio of
the obtained join result (see Section VI).
Motivation. One of the strong motivations for distributed imple-
mentation of join in sensor networks is that the join operation can
form a basis of a distributed database query engine for sensor
networks. Recently, deductive approach has been suggested [9]
as a vehicle for programming sensor networks; e.g., [9, 16] show
that typical sensor network applications such as shortest path tree,
vehicle trajectories, localization, etc. can be expressed as simple
deductive programs. In our concurrent work [16], we show how
our techniques developed here can form a basis for distributed
evaluation of deductive rules.

Another specific motivation for join implementation is event
detection, one of the most prominent applications of sensor
networks. An event indicates a point in time of interest based on
certain conditions over the sensor data. In certain cases, events
may simply depend on the local value of a sensor reading.
Higher-level events or complex events may be specified using
composition operators over the primitive events. In particular, the
complex events may be represented as a join, involving spatial
and temporal constraints, as illustrated below.

Motivating Example 1. Consider a sensor network deployed in
an underground mine to detect explosions. Let us assume that the
event of an explosion is characterized by interaction between three
phenomena/events viz., sound, light, and temperature, and each
phenomenon is detected by respective sensors. A temperature
event is said to occur when the temperature sensed at any
sensor node reaches (or increases by) a certain threshold. Light
and sound events are similarly defined. Each of these events is
detected locally, and stored in the respective tables along with the
locally computed duration of the event.

The explosion event may be defined to occur when the fol-
lowing conditions are satisfied [29]. (i) The light, sound, and
temperature events occur within 10 meters of each other, (ii) the
ratio of the durations of sound and light events is at least c (some
constant depending on the speeds of sound and light), and (iii)
the duration of the temperature event is at least 60 seconds. The
query that can be run in the network to detect the above explosion
event is as follows.

SELECT *, event as “EXPLOSION”
FROM Sound, Light, Temperature
WHERE |Sound.location-Light.location| < 10

AND |Light.location-Temperature.location| < 10
AND |Sound.location-Temperature.location| < 10
AND Sound.duration > 60
AND Sound.duration/Light.duration > c
AND Temperature.duration > 60

The above query may result in an Explosion event stream
being generated in the network. Note that above every pair of
streams has a spatial join of range 10, and the temporal correlation
is implicit in the maintenance of sliding windows.

Motivating Example 2. Consider a sensor network deployed for
tracking moving vehicles. Each sensor has some means (possibly,
vibration or magnet sensors) of detecting presence of a vehicle
in the proximity. Consider the event: A vehicle surrounded (from
all four directions) by four other vehicles [22]. If detection of a
vehicle by a node results in generation of a corresponding record
in a global table T , then detection of the above event requires
a 5-way self-join of the table T using an appropriately defined
surrounded predicate over five nodeLocation arguments.

Motivating Example 3. Consider a more complex event defined
over the Explosion event stream of Example 1: A vehicle
surrounded (from all four directions) by four explosion events
within a certain time window. Here, the location of an explosion
event can be defined as the centroid of the sound, temperature,
and light event locations. This example illustrates the use of a
derived view stream in defining a more complex event query.

Related Work. The vision of sensor network as a database
has been proposed by many works [5, 18], and simple query
engines such as TinyDB [35] have been built for sensor networks.
A simple implementation of an SQL query engine for sensor
networks involving shipping all sensor nodes’ data to an external
server is proposed in [33]. However, such an implementation
would incur high communication costs and congestion-related
bottlenecks. Thus, in-network implementation of database queries
is considered fundamental to conserving energy in sensor net-
works [25, 51]. Prior research on in-network implementation of
database queries has mostly addressed only simple cases such
as simple aggregations [34, 52] or selections [35] over single
tables [36], local joins [4, 35, 52], etc. In particular, [4, 35, 52]
assume that join is computed on a single node. Recently, Abadi et
al. [1] consider in-network implementation of join of two tables,

3

wherein one of the tables is static and small enough to reside in
any node’s memory. In their approach, they broadcast the small
table to all network nodes. To the best of our knowledge, the
problem of distributed (non-local) in-network implementation of
join in sensor networks has been addressed only in our prior
work [8, 38]. Both our prior works restricted their focus to in-
network implementation of join ([38] considers range joins) of
two tables with a fixed query source. In this article, we focus on
designing communication-efficient and load-balanced in-network
implementation of join of two or more data streams.

There has also been a lot of recent work done on evaluating
window joins over data streams, in the context of data stream
processing systems [6, 14, 17, 37]. In particular, [13, 27] investi-
gate algorithms for window joins over pairs of data streams, [10,
46] considers the problem of approximating the window joins,
and [20, 24] designs algorithms for joining multiple streams
constrained by sliding windows. Each of the above works assumes
a centralized system. Recents works [45, 48] (which consider
operator placement problem) in the context of distributed stream
processing systems [15] have worked with the assumption that
each operator (including join) is executed locally and fully on a
single node. Moreover, minimizing communication cost has not
been the focus of research in distributed stream systems.

Traditional query processing techniques from distributed
database systems are not directly applicable to sensor networks
due to the unique characteristics (severe resource limitations,
multihop communication cost model, and larger number of nodes)
of sensor networks. Moreover, most of the research done [31, 41,
44, 47] on efficient computation of join in distributed databases
has been restricted to equi-joins, join of two tables, minimizing
computation time, static relational tables, and/or complete or
regular topology.

The idea of using perpendicular sets of nodes (as in the
Perpendicular Approach of our work) has been used previously
in other contexts such as transaction processing [7], information
retrieval in complete networks [49] and uniformly dense net-
works [42]. In a closely resembling recent work, [30] uses a
slightly different concept (of combs and needles) for information
retrieval in random-grid networks. However, none of the above
approaches is easily extendible to our problem of multi-table
joins in arbitrary topology networks with memory constraints.

III. Simple Approaches

In this section, we present a few simple approaches, viz.,
Centralized, Naive Broadcast, and Centroid (CA), for distributed
implementation of R1 on R2 on . . . Rn where each Ri is
a data stream in the network. Another simple approach (called
Local Storage) is described in Section VI. Note that hash-based
approaches [38] are limited to joins with range predicates, and
not easy to extend to multi-table joins.

Centralized Approach. One way to compute a join of data
streams is the centralized approach, wherein each node sends
the generated tuples to a central server (or the query source).
Such a scheme is unable to give special consideration to spatial
joins, and in general, schemes without any in-network processing
may incur prohibitive communication costs [33, 34]. Moreover,
in homogeneous networks, such an approach is viable only in
a “star” network wherein each node is connected directly to
the server. In a non-star network, the set of nodes that are
directly connected to the server will fail sooner than others (since

all tuples in the network will flow through them) – at which
point, the central server would be disconnected from the network.
Finally, the query source needs to have enough query resources
to compute the entire join. The remaining approaches discussed
in our article are in-network implementations. In particular, the
Centroid Approach is essentially an optimized in-network version
of the centralized approach.

Naive Broadcast Approach. The simplest way to implement join
is to broadcast each generated tuple to the entire network, and
store all the sliding windows at each node. Then, the join can be
computed locally at any network node. In case of spatial joins, a
tuple of Ri needs to be broadcast only within a region of radius
maxj sij , where sij is the range of the spatial join between Ri

and Rj . Note that a non-spatial join is a spatial join of infinite
range. The above Naive Broadcast approach is infeasible in most
cases due to severe memory constraints in sensor networks.

Centroid Approach (CA). CA works by first choosing appropri-
ate storage regions C1, C2, . . . , Cn in the network for storing the
sliding windows for the streams R1, R2, . . . , Rn respectively. To
facilitate efficient computation of join, the regions C1, C2, . . . , Cn

(not necessarily different) are all located close to each other. Each
generated tuple t of each stream Ri is first routed from its source
node to its storage region Ci, where it is stored at some node
with available memory (see below for details). Thereafter, the
tuple t and the resulting intermediate tuples are routed through
the regions C1, C2, . . . , Ci−1, Ci+1, . . . , Cn (in some order) to
compute the join result.

Storage Regions, Routing, and Storage. Let ρi be the rate of
generation of tuples of data stream Ri, and let Ri be the set
of nodes (possibly, the entire network) generating the tuples of
Ri. Let us define the centroid C as the location in the network
that minimizes the value

Pn
i=1 ρid̄(Ri, C), where d̄(Ri, C) is the

average number of hops between a node in Ri and C. Now,
it can be shown (we skip the simple proof here) that choosing
the storage regions closely around the centroid C minimizes the
total communication cost (number of hops traversed) of CA for
dense networks. In either case, nodes around the storage region
would see more traffic, and hence, would fail (due to battery
depletion) sooner than other nodes. When sufficient nodes in the
storage region fail, a new storage region is selected and all nodes
informed.

The location of the storage regions can be either broadcast
to the entire network initially or maintained at the node closest
to the network center. The above allows each generated tuple
to be routed to the required storage regions using location-based
routing [28]. In sensor networks without location information, we
need to construct and maintain routing paths from each node to
the storage regions to route tuples to required storage regions.
In either case, when a tuple t of stream Ri reaches the node I

closest to the center of Ci, the node I searches for a close-by
node in Ci with available memory. Such a node can be found
by broadcasting an appropriate request message to nodes in Ci,
gathering responses from nodes that have available memory, and
picking the closest node among them. After storage, the tuple t

(along with other intermediate results) is routed to other storage
regions (in some order) for computation of join.

IV. Perpendicular Approach (PA)

In this section, we describe the Perpendicular Approach (PA),
which is load-balanced and communication-efficient. In partic-

4

ular, it provably incurs near-optimal (within a constant factor)
communication cost for binary joins in grid networks under
uniform-generation assumption. We start by describing PA in grid
networks, and then, generalize it to general topologies.

A. PA in Grid Networks

In this subsection, we first describe the PA for join of two data
streams, and then, generalize it to multiple data streams. We start
with formally defining 2D grid networks.

Definition 2: (2D Grid Network.) A two-dimensional (2D) grid
network of size m × m is formed by placing a node of unit
transmission radius at each location (p, q) (1 ≤ p ≤ m and
1 ≤ q ≤ m) in a 2D coordinate system. �

Join of Two Streams in Grid Networks. In a 2D grid, every
horizontal line (i.e., a line parallel to x-axis) intersects every
vertical line (i.e., a line parallel to y-axis). Thus, if each generated
tuple is stored at all nodes of some horizontal line, then the set
of nodes on any vertical line will collectively contain all sliding
windows. In this article, we arbitrarily choose horizontal lines
for storage and vertical lines for join-computation; however, their
roles can be easily swapped.

Based on the above observation, PA consists of two phases,
viz., storage and join-computation. Consider a grid network with
data streams R1 and R2, and a tuple t (of either data stream)
generated at coordinates (p, q).

• Storage Phase: In the storage phase, the tuple t is stored
(replicated) along the qth horizontal line, i.e., at all nodes
whose y-coordinate is q. This ensures that set of nodes
on each vertical line collectively contain the entire sliding
windows for R1 and R2. See Figure 1.

• Join-computation Phase: In the join-computation phase, we
route t along the pth vertical line to compute the result tuples
due to t (i.e., t on R2 or t on R1 depending of whether t is in
R1 or R2). The result tuples are computed by locally joining
t with matching tuples of R1 or R2 stored at nodes on the
pth vertical line.

To maintain time-based sliding windows [2], each stored tuple
t is kept in the local memory of node I until τw + τs + τj

time after its arrival at I , where τw is the interval of the sliding
window, and τs and τj are the upper bounds on the time to
complete the storage and join-computation phases respectively.
To correctly handle simultaneously generated tuples across the
network, we start the join-computation phase for a tuple only after
the completion of its storage phase. Thus, we introduce a delay
of τs between the start of two phases. The correctness of above
approach follows from the more general claim in Theorem 2.

Spatial Joins. If R1 on R2 is a spatial join of range s, then a tuple
t (of R1 or R2) generated at (p, q) is stored at only those nodes
on the qth horizontal line that are within a range of s from (p, q).
Similarly, in the join-computation phase, the tuple t is routed only
to nodes within a range of s from (p, q) on the pth vertical line.

Near-Optimality of Communication Cost. We now show that PA
incurs near-optimal communication cost (in addition to being
perfectly load-balanced) for uniformly generated data streams in
a grid network.

Theorem 1: Consider an m × n grid network with the data
streams R1 and R2 being similarly and uniformly generated over
the entire network. The total communication cost (total number
of tuple-hops traversed) incurred by PA to compute the join of

t2

t4

t6

t1

t3

t5t5

t4

Stored tuples
on 2nd row and
3rd column.

ti
Generated tuple
(of some stream)
at its source node

t6 t6 t6 t6 t6

t1

t3

t2

ti

Fig. 1. Storage/Replication of PA in 2D Grid Networks.

R1 and R2 is at most eight times the minimum communication
cost needed.
Proof. For simplicity, we assume a general (non-spatial) join;
however, the proof easily generalizes to spatial joins. Now, it is
easy to see that the total communication cost incurred by PA is
at most (m + n) units for each generated tuple.

Note that in an m × n grid network, there are at least mn/2

disjoint pairs (I1, I2) of nodes such that the distance (in hops)
between I1 and I2 is m/2. The above is true since there are at
least m/2 such disjoint pairs of nodes on each vertical line (of
length m), and there are n disjoint vertical lines. Now, consider
a pair of nodes (I1, I2) in the above set of disjoint pairs. Each
tuple t of R1 generated by I1 must join with each tuple t′ of R2

generated by node I2. Since the distance between I1 and I2 is
m/2, the communication cost incurred in joining t and t′ is at
least m/2. Thus, if each network node generates one tuple each
for R1 and R2, then the minimum communication cost incurred
in computing the join of these 2mn generated tuples is at least
(m/2)(m/2)n = nm2/2. If the generation of operand tuples is
uniform, then the minimum communication cost required is m/4

per generated tuple, which is at least one-eighth of that incurred
by PA if we assume m > n (which is without loss of generality).

Multiple Streams in Grid Networks. Consider a grid network
with data streams R1, R2, . . . , Rn. PA can be generalized to
handle more than two data streams as follows. First, the storage
strategy remains the same as before, i.e., each tuple t generated at
(p, q) is still stored along the qth horizontal line. However, in the
join-computation phase, we need to traverse the vertical line in
a more involved manner. Below we describe two schemes, viz.,
one-pass and multiple-pass, for traversing the vertical line in the
join-computation phase. We start with a definition.

Definition 3: (Partial Result.) Let R1, . . . , Rn be given data
streams and let t be a tuple of Rj . A tuple T is called a partial
result for t if T is formed by joining t with less than n− 1 given
data streams (other than Rj). More formally, T is a partial result
for t if T ∈ (t on Ri1 on Ri2 . . . Rik

) where k < n−1 and il 6= j

for any l. The tuple t is also considered a partial result (for the
case k = 0). If k = n − 1, then T is called a complete result. �

One-Pass Join Computation Scheme. Consider a tuple t (of some
data stream) generated at a node (p, q). In the one-pass scheme,
the tuple t is first unicast to one end (i.e., (p, 0)), and then,

5

t21
t22

<t10,t21,t32 >

Complete
Results

<t10>
<t10, t21>
<t10, t32>

<t10>

t31
t32

t23
t24

t33
t34

Partial
Results

Local Tables for
Streams R2 and R3

<t10,t21,t34>
<t10,t23,t32>
<t10,t23,t34>

<t10, t23>
<t10, t34>

Vertical
Line

(p, q’)

(p, q’-1)

<t10>
<t10, t21>
<t10, t32>

Fig. 2. One-Pass Join Computation. Here, ti∗ ∈ Ri, and we
assume the join conditions to be such that t10 matches only with
t21, t23, t32, t34 . Also, there is no join condition between R2 and
R3.

is propagated through all the nodes on the pth vertical line by
routing it to the other end. At each intermediate node (p, q′),
certain partial and complete results (as defined above) are created
by joining the incoming partial results from (p, q′ − 1) with the
operand tuples stored at (p, q′). The computed partial results along
with the incoming partial results are all forwarded to the next node
(p, q′+1). See Figure 2. Certain incoming tuples may join with the
operand tuples stored at (p, q′) to yield complete results, which
are then output and not forwarded. The partial results generated
at the last node (other end) are discarded.

Theorem 2: Given data streams R1, R2, . . . , Rn in a sen-
sor network, the Perpendicular Approach (with one-pass join-
computation scheme) correctly computes R1 on R2 on . . . Rn, in
response to distributed (and possibly, simultaneous) generation of
tuples. We assume bounded τs and τj , the time for completion of
storage and join-computation phases respectively, and no message
losses.
Proof. By description of the scheme and the definition of complete
results, the one-pass scheme outputs only those tuples that belong
to the final join result. To show that every tuple of final join
result is eventually output, consider an arbitrary tuple T in the
final result. Let T be the result of matching of {t1, t2, . . . , tn},
a set of n tuples ti ∈ Ri one from each data stream. Let tl
(for some l ≤ n) be the tuple among ti’s whose storage phase
was completed the last. Now, we claim that the tuple T must
be output during the one-pass join-computation phase of tl . Let
tl be generated at node (p, q). When the join-computation phase
of tl starts, the storage phase of each ti (1 ≤ i ≤ n) has been
completed by definition of l and the fact that the join-computation
phase of tl starts after the completion of its storage phase. Thus,
during the join-computation phase of tl , each of the tuples ti is
available (and not-expired1) at some node on the pth vertical line,
and the tuple tl encounters (in some arbitrary order) each one of

1Non-expiry of ti at a node follows from the fact that ti and tl matched to
form T (and hence, must have been generated within τw time of each other),
and tuple ti expires at node I only after τw + τs + τj time of its arrival at
I . Here, τw is the interval of the time-based sliding window.

these ti tuples. Thus, the tuple T is eventually output.

Multiple-Pass Scheme. In the multiple-pass scheme, the join-
computation phase takes place in a certain order of data streams.
Each iteration of the multiple-pass scheme is essentially a one-
pass scheme involving join of a data stream with partial results
generated in the previous iteration. More formally, let the pre-
determined join-ordering of data streams be Ri1 , Ri2 , . . . , Rin−1

(not including the stream of the new tuple t). In the first
iteration, the tuple t is propagated through the vertical line (from
one end to another) to join with Ri1 . In general, in the kth

iteration, the partial results obtained from the previous (k − 1)th

iteration are propagated through the vertical line to join with Rik
.

Thus, the partial results generated in the kth iteration constitute
t on Ri1 on . . . Rik

.

B. General Topology Sensor Networks

We now generalize our PA to general network topologies.

Challenges in General Networks. The main challenge in general-
izing PA is to define appropriate notions of horizontal and vertical
paths such that each horizontal path intersects each vertical path.
Due to network topology being dynamic and limited resources
at each node, we do not wish to construct and maintain generic
horizontal and vertical paths for each network node. Ideally, we
would like the horizontal and vertical paths to be the set of nodes
encountered during routing to source-node-specific destinations.
Moreover, we would like the communication and data replication
costs to be near-perfectly balanced across the network. The
presence of topological holes and arbitrary network boundaries
make the above particularly challenging. Keeping the above
challenges in mind, we define the vertical and horizontal paths
as below. First, we start with presenting a brief background on
location-based routing.

GPSR – Location-Based Routing. In sensor networks, nodes
are typically referred to by their geographic locations (instead
of IDs), and each node is aware of its location (using GPS or
localization techniques [43]). Thus, in this section, we consider
sensor networks with location information, and use location-based
routing (described below) for routing between nodes/locations.
We generalize our techniques to networks without location infor-
mation in Section IV-C.

In location-based routing protocols, the destination is specified
by its geographic location. Due to severe memory constraints, the
location-based routing protocols in sensor networks are reactive
(on-demand), and determine the next hop on the fly. One sim-
ple location-based routing protocol is the greedy approach [28]
wherein each node forwards the packet to the neighbor closest
to the destination. However, greedy approach can get stuck at
nodes that have no neighbor closer to the destination than itself.
In contrast, face-routing [28] protocol routes the packet through
a sequence of faces (in a planar subgraph of the network)
that intersect the line segment connecting the source and the
destination. For efficiency, face-routing is combined with the
greedy approach – yielding the well-known GPSR [28] protocol.
We use GPSR as the base routing protocol throughout the article;
however, our techniques generalize to any location-based routing.

Vertical Paths in General Networks. An intuitive way to
define the vertical path for a node at (p, q) could be: set of
nodes traversed when a packet is routed using GPSR from (p, q)

to (p,+∞) and from (p, q) to (p,−∞). However, for such a

6

Fig. 3. Defining vertical paths in an general
networks. (a) The path taken by GPSR for source
node (a′, b′) and destination (a′, Ymax+1). Since
the destination is outside the network field, the
path traverses the entire external boundary. (b)
Vertical paths for nodes (a, b) and (a′, b′). Here,
the markings on the given boundary nodes is as
follows: E1 and E8 are marked Highest, E4

and E5 are marked Lowest, and the rest are
marked Middle. So the vertical path Va′,b′ stops
at nodes E8 and E5. (a)

(a’, + ∞)

(a’,b’)

definition, the boundary nodes (external face) would be part of
every vertical path, and hence, overloaded. See Figure 3(a). The
above problem of overloading of boundary nodes can be alleviated
by modifying the GPSR protocol as follows. When routing a
packet from (p, q) to (p,+∞) (for defining vertical paths), the
packet stops on reaching a boundary node marked Highest. A
boundary node v is marked Highest if there is no other node
higher than v along the same vertical line. On reaching any other
boundary node, the packet is forwarded to a neighboring node
that is closer to some boundary node marked Highest. Routing
of a packet from (p, q) to (p,−∞) can be similarly defined. The
above informal description forms the basis of our definition of
vertical paths in general sensor networks.

Below, we formalize the above notion of vertical paths. First,
we formally define boundary node markings, and then formalize
the above described behavior of GPSR.

Definition 4: (Markings on Boundary Nodes.) A node (p, q)

on the boundary is marked Highest (Lowest) if there is no
node I such that I has an edge intersecting the line x = p and has
a y-coordinate greater (less) than q. Otherwise, the node (p, q) is
marked Middle. See Figure 3(b). �

Modifying GPSR for Vertical Paths. For a packet being routed
upwards (e.g., towards (p,+∞)) the GPSR protocol is modified
as follows. When GPSR reaches a boundary node I: If I is
marked Highest, then GPSR stops and the vertical path is
completed; else GPSR is directed to (i) a non-boundary neighbor
of I with a higher y-coordinate than I , or (ii) (if no such non-
boundary neighbor exists) the left or right boundary neighbor of I

whichever is on the shorter path to some node marked Highest.
For instance, in Figure 3 (b), at E2 GPSR is directed to a non-
boundary neighbor, while at E3 GPSR is directed to the left
boundary neighbor. GPSR is similarly modified for packets being
routed downwards. In both cases, the behavior of GPSR on non-
boundary nodes is not modified (i.e., remains the same as the
original GPSR).

The markings and information (left or right boundary neighbor
for directing GPSR) at boundary nodes can be easily computed by
routing a packet along the boundary. Moreover, as suggested by
Theorem 4, we need to compute these markings and information
only once (for static sensor networks).

Definition 5: (Vertical Path.) Let Ymax and Ymin be the largest
and smallest y-coordinate values in the entire network. Vertical
path Vp,q for a node at a location (p, q) is defined as the
concatenation of the two paths when a packet is routed (i)
upwards from (p, q) to (p, Ymax + 1), and (ii) downwards from

(p, q) to (p, Ymin − 1),2 using the modified GPSR protocol.
Essentially, each vertical path connects some boundary node
marked Highest to some boundary node marked Lowest, if
the network is connected. �

The above definition of vertical paths ensures the following: (i)
If the network is connected, each vertical path Vp,q is a continuous
path connecting some Highest node to some Lowest node
(this ensures intersection with every horizontal path as defined
later); (ii) A vertical path includes a few number of nodes and
is different for different (p, q) (this ensures efficiency and load-
balance); and (iii) A vertical path for a node at location (p, q)

does not deviate much from the line x = p (this is due to routing
towards (p, Ymin − 1) and (p, Ymax + 1) instead of (p,∞) and
(p,−Ymax + 1)); this allows efficient implementation of spatial
joins.

Horizontal Paths in General Networks. Defining horizontal
paths precisely in the same manner as vertical paths will not
ensure intersection of a horizontal path with each vertical path.
For instance, see Hbad and Va,b in Figure 4. Hence, we define
horizontal paths as follows.

Definition 6: (Horizontal Path.) Let Ileft and Iright be the
leftmost (i.e., the node with the smallest x-coordinate) and
rightmost nodes respectively in the entire network. We denote the
horizontal path for a node at location (p, q) as Hp,q and define
it as the concatenation of paths traversed by the GPSR protocol
when a packet is routed from (p, q) to Iright and from (p, q) to
Ileft. If the network is connected, each horizontal path connects
Iright to Ileft . �

The following theorem proves pairwise intersection of such
defined vertical and horizontal paths.

Theorem 3: Consider two arbitrary nodes (p, q) and (r, s) in a
connected sensor network. The paths Vp,q and Hr,s intersect, i.e,
the paths contain a common node or a pair of edges (one from
each path) that cross each other.
Proof. (sketch) By definition, Vp,q is a continuous path connecting
a pair of nodes H = (hx, hy) to L = (lx, ly) such that H is
marked Highest and L is marked Lowest. It can be shown
that H and L lie on different sides of Hr,s(or one of them lies
on Hr,s), since Hr,s is a continuous path from the leftmost node
Ileft to the rightmost node Iright in the network. Thus, Vp,q

intersects Hr,s.

Overall Approach. Using the above notions of horizontal and
vertical paths, overall PA works as follows. Each tuple t (of

2We use Ymax and Ymin instead of +∞ and -∞ to reduce the deviation
of Vp,q from the vertical line x = p, to ensures load-balance and efficient
implementation of spatial joins (as discussed later).

7

Ileft

Iright

(c,d)

(a,b)

Hc,d

Va,b

Hbad -- Bad Horizontal Path

Fig. 4. Horizontal path for node (c, d). Here, Ileft and Iright are the
leftmost and rightmost nodes in the network. The path Hbad shows
that defining horizontal paths in a similar way as vertical paths does
not ensure intersection of vertical and horizontal paths.

any data stream) generated at a node (p, q) is first stored on
every node of Hp,q . In the join-computation phase, the tuple t

is routed through and broadcast by all the nodes on Vp,q . Due
to the wireless multicast advantage, the tuple t is automatically
received by at least one node of each edge that crosses Vp,q .3

Thus, by Theorem 3, the tuple t is received by at least one node
of each horizontal path. As in grid networks, we introduce an
appropriate delay between the storage and join-computation phase
to handle simultaneous generation of tuples across the network.
We can use either one-pass or multiple-pass scheme for the
join-computation phase. The correctness of the overall approach
follows by Theorem 2. Finally, we note that PA requires minimal
memory resources beyond the storage of data stream tuples, and
has minimal processing needs beyond local computation of join
conditions.

Correctness in Dynamic Topologies. We now discuss immunity
of PA to changes in network topology due to node additions and
deletions. First, the below theorem shows that node deletions
(due to node failures, battery depletion, etc.) do not affect the
correctness of PA.

Theorem 4: Consider a connected sensor network with mark-
ings on the boundary nodes (as in Definition 4). Let Iright and
Ileft be the rightmost and leftmost nodes in the network. If some
nodes fail/die without disconnecting the network, then intersection
is still guaranteed for each pair of vertical and horizontal path
(based on old boundary nodes, markings, and Iright and Ileft

values).
Proof. (sketch) The proof is based on the following facts. (i)
Boundary nodes with Highest (or Lowest) marking still
remain “highest” (or “lowest”) even when some nodes fail; (ii)
PA resorts to original (unmodified) GPSR at new or unmarked
boundary nodes; (iii) Thus, each vertical path still connects
some Highest node to some Lowest node (assuming network
remains connected) or contains the entire external boundary; (iv)
Each horizontal path still connects Iright to Ileft node (if they
haven’t failed), or contain the entire (current) external boundary.

In a sensor network, some nodes will deplete battery energy
earlier than others. Thus, the above result is quite important. In
particular, the above result says that, to ensure correctness, we do

3This is because in a unit-disk graph if two edges cross, then at least one
of the four nodes is connected to both nodes of the other edge.

not need to recompute boundary nodes, their markings, or Iright

or Ileft values, as some nodes fail (due to battery depletion or
otherwise). However, in general, node additions (due to mobility
of nodes or otherwise) may require recomputation of boundary
nodes, boundary markings, Iright and Ileft nodes, to ensure
overall correctness.

Fault Tolerance; Storage vs. Communication Cost Tradeoff.
PA is inherently fault-tolerant to node/link failures, since in an
irregular topology a vertical path Vp,q is likely to intersect a
horizontal path Hr,s at multiple nodes/edges. Thus, the join result
is likely to contain duplicate tuples – making the approach fault-
tolerant.

To reduce data replication (at the expense of more commu-
nication cost), we could store a tuple on every kth node on the
horizontal path for an appropriately chosen parameter k. However,
to ensure correctness, we need to broadcast the tuple t to the
(bk/2c+1)-hop neighborhood of every node on the vertical path
during the join-computation phase. See Figure 5. The above
strategy gives us a way to trade replication cost for additional
communication cost.

Traffic Congestion. The horizontal paths may result in traffic
congestion in the region around the Ileft and Iright nodes.4 We
can solve the above congestion problem by excluding the “ears”
(elongated left and/or right sides) of the network. In particular,
we periodically determine two values Xleft and Xright such
that (i) the number of nodes between Xright and Xleft is large,
(ii) the number of nodes having an incident edge that intersects
with the line x = Xright is large, and (iii) the number of nodes
having an incident edge that intersects with the line x = Xleft is
large. Now, we define the paths for a node (p, q) as follows. Lets
assume that (p, q) is not in the ear; for a node in the discarded
ear, we use an arbitrary node not in the ear for definition of
paths. The horizontal path Hp,q is defined as the concatenation
of the following paths: (i) Path traversed when routing from
(p, q) to (Xleft, q) until x = Xleft is reached, and (ii) Path
traversed when routing from (p, q) to (Xright, q) until x = Xright

is reached. Vertical path Vp,q is defined as in Definition 5,
except that now the lines x = Xleft and x = Xright must be
treated as part of the network boundary. However, intersection
of paths (Theorem 3) cannot be guaranteed for the above notion
of horizontal/vertical paths, especially for sparse networks with
internal holes. Nevertheless, in our simulations over random dense
networks, we observed that as per the above definitions, each
horizontal path still intersected each vertical path.

Incorporating Spatial Joins. For spatial joins, we need to store
and propagate each tuple along only parts of the paths. For a data
stream Ri, let si = maxj sij where sij is the range of the spatial
join between Ri and Rj . Note that a non-spatial join is a spatial
join of infinite range. Now, let dx be such that the x-coordinate
of any node on any vertical path Vp,q is most (p+dx) and at least
(p − dx). In other words, dx is the maximum deviation of any
vertical path from its vertical. Similarly, let dy be the maximum
deviation of any horizontal path from its horizontal line. Then,
for spatial joins, the vertical path Vp,q used for a tuple of Ri at
(p, q) is the concatenation of paths traversed when routing from
(p, q) to (p, q + si + dy) and from (p, q) to (p, q − si − dy).

4It is for this reason that we defined vertical paths differently than horizontal
paths. Otherwise, defining vertical paths in a manner similar to horizontal
paths does ensure correctness (intersection).

8

Fig. 5. Reducing replication by storing each tuple on every kth node
of the horizontal path. Above, tuples are stored only at the solid nodes
(and not at the hollow nodes). Here, either x or y must be at most
bk/2c, and either e or f must be connected to b or c.

Similarly, the horizontal path Hp,q used is the concatenation of
paths traversed when routing from (p, q) to (p + si + dx, q) and
(p, q) to (p − si − dx, q).

Note that the value dx (dy) used for Hp,q (Vp,q) above should
only be such that the deviation of a vertical (horizontal) path of
any node within a range of si from (p, q) is at most dx (dy). Thus,
for Hp,q or Vp,q , we need to care about path-deviations of only
those nodes that are within a range of si from (p, q). Thus, the
values dx and dy depend only on the local network density, and
hence, can be gathered periodically from nodes within a range of
si. Such gathering of deviations can be achieved by each node
broadcasting its path-deviations to nodes within a range of si.

Incorporating Range Joins. A join between two data streams
Ri and Rj is said to be a range join of range s if the join
condition is a conjunction of (|Ri.A − Rj .A| ≤ s) and other
arbitrary predicates, for some attribute A. A range join can be
“converted” into a spatial join by mapping the range-attribute
value to a geographical location using a locality-sensitive [11]
hash function. Let a geographic hash function h : A → R× R

be called c-sensitive if Euclidean distance between locations h(a1)

and h(a2) is at most c|a1 − a2| for some constant c. Then,
we can convert a range join of range s to a spatial join of
range cs by mapping tuples to geographic locations based on
a c-sensitive geographic hash function. Space-filling curves [39]
can be used as c-sensitive geographic hash functions; however,
efficient distributed implementation of such hash functions is a
challenge and part of our future work.

Consumption of Output Tuples. In our proposed schemes, the
output tuples are generated across the network in some arbitrary
manner. If the join query was issued by a specific network node
(query source), then the result tuples are routed to the query
source. In our model, the query source is not required to be
fixed or predetermined. If the join query was issued as part of
an overall query processing scheme, then the result tuples can be
hashed and stored across the network [40], to facilitate evaluation
of higher-level queries. The above hashing/storage scheme is
actually imperative for efficient elimination of duplicate result
tuples or efficient execution of selection queries later.

C. Networks Without Location Information

Our PA is built on top of location-based routing, and hence,
assumes that each node is aware of its location. However, in
certain applications, location information is either not accurate
enough or not even available. For such networks, we define
perpendicular regions, viz., connected k-dominating set (defined
below) and k-hop neighborhood for some carefully chosen k, for
each node, and use them for storage and join-computation. Since

we need to traverse the k-dominating set, we use connected k-
dominating sets instead.

Definition 7: (k-Dominating Set; Clusterheads; Connected k-
Dominating Set.) Given a graph G, a subset of vertices S is
called a k-dominating set (k-DS) if every vertex in G is within
k hops of some node in S. We refer to each node in the set S

as a clusterhead. A subset of vertices C is called a connected k-
dominating set (k-CDS) if C is a k-DS and the subgraph induced
by C in G is connected. A k-CDS C can be thought of as
composed of a k-DS S of clusterheads and a set C−S of gateways
used to connect S. �

Constructing Connected k-Dominating Sets (k-CDS). As men-
tioned above, we use k-CDS and k-hop neighborhoods as the
perpendicular regions for sensor networks without location infor-
mation. For construction of k-CDS, we use the distributed algo-
rithm of [50] augmented with reliable messaging (using messages
acknowledgments and retransmissions). To achieve load-balance,
we construct multiple such k-CDS so that different nodes can
use different k-CDS; we construct such multiple k-CDS using
different random IDs for each node. To use the above, each node
I , we associate an arbitrary (preferably, the closest) k-CDS, and
maintain a path connecting I to the associated k-CDS.

Tuple Storage and Join-Computation Phases. Note that each k-
DS intersects (i.e., has a common node) with the k-hop neighbor-
hood of any node. Thus, the k-DS and k-hop neighborhoods can
be looked upon as “perpendicular” to each other. We connected
the k-DS to allow easy propagation of tuples (for storage or
join computation) over the clusterheads. We arbitrarily use either
the k-DS or k-hop neighborhood in the storage phase, and the
other in the join-computation phase. In particular, each new tuple
generated at I is routed over the k-CDS associated with I and
stored at the clusterheads. For join-computation, the tuple is
joined (using a multiple pass scheme) with the tuples stored in the
k-hop neighborhood Nk(I) of I . Note that Nk(I) is guaranteed
to contain complete sliding windows of each data stream, since
it intersects with every k-DS.

Choice of Parameters. The parameter k needs to be carefully
chosen to optimize performance. In particular, if we use the k-DS
for storage, then larger k entails lesser degree of replication and
larger communication cost and delay. Opposite is the case when k-
hop neighborhoods are used for storage. Also, k should be chosen
such that a k-hop neighborhood is large enough to store all the
sliding windows. After having chosen k, we construct multiple
number of such k-CDS to ensure that each node is a clusterhead
in at least one of the k-CDS.

Dynamic Topology. The constructed k-CDS are preprocessed
data structures, and hence, need to be maintained in response
of changes in topologies (node failures or additions).

In our discussion, we assume that a failing node informs
its neighbors about its impending failure. Such an assumption
is reasonable for failures due to battery depletion. The above
assumption can be easily relaxed by requiring each node to
send periodic beacons. Since, each k-CDS can be maintained
independently, we consider maintenance of a single k-CDS C .

Node Additions. When a new node I joins the network, it gathers
(k+1)-hop neighborhood information. If there is no clusterhead in
the k-hop neighborhood, then I selects itself as a new clusterhead.
In either case, I connects itself to C (using new gateway nodes)
using the gathered (k + 1)-hop information. Here, we have

9

assumed that the node I is connected to at least one network
node.

Gateway Node Failures. Before a gateway node Ig dies, it gathers
l-hop neighborhood information (for some l) and constructs a
Steiner tree (in a centralized manner) connecting the neighbors
of Ig that are in C . The nodes in the constructed Steiner tree
are added to the set C , and notified of their membership in the
k-CDS C .

Clusterhead Failure. The situation is more complicated when a
clusterhead Ih fails. Here, we select some of the neighbors of Ih

as new clusterheads, connect the selected new clusterheads with
new gateways (if needed), and add all of these new nodes to C .
Let B be the set of neighbors of Ih that are in the k-CDS C , and
B be the set of neighbors of Ih that are not in C . We start off by
selecting each element of B as a clusterhead, and designate each
element of B as a temporary clusterhead. Next, we determine
which nodes in B should be selected as clusterheads. First, all
neighbors of Ih (i.e., B ∪ B) broadcast a probe message in
their k-hop neighborhoods. Consider a node I that had only Ih

as its clusterhead. If I does not receives a probe message from
any node in B, then it sends a make-permanent message to
the lowest-ID temporary clusterhead that I received a probe
message from. A temporary clusterhead selects itself as a cluster-
head (i.e., adds itself to C) on receiving a make-permanent
message from any node. Finally, we add additional gateway nodes
to connect the newly added clusterheads, by computing a Steiner
tree (in a centralized manner) connecting them. Such a Steiner tree
can be constructed by the failing clusterhead Ih (before failure)
by gathering certain neighborhood information.

V. Communication Cost Analysis and Efficient Join
Ordering

In this section, we analyze the communication cost incurred
by various approaches discussed in the previous sections. The
purpose of the below analysis is to derive formulae for communi-
cation cost incurred by one-pass and multiple-pass PA schemes.
These derived formulae can be used to determine a good join-
ordering within the multiple-pass scheme and to choose between
one-pass and multiple-pass scheme, for given parameters. Here,
we define the communication cost incurred as the sum of the total
number of hops traversed by each operand tuple.

Definition 8: (Selectivity Factor.) The selectivity factor σP of
a join condition P between two data streams Ri and Rj is
defined as the fraction of tuple pairs (one each from Ri and
Rj) that satisfy the join condition P . More formally, σP =

|Ri onP Rj |/(|Ri||Rj|). �

Communication Cost in One-pass PA. In PA, the total com-
munication cost is due to storage and join-computation. For a
newly generated tuple, the communication cost incurred in PA (in
either one-pass or multiple pass) for storage is just the hop-length
of the horizontal path. The communication cost incurred during
the join-computation phase of the one-pass PA can be computed
as follows. Consider a vertical path of L nodes. Let us assume
that the tuples of each sliding window are uniformly distributed
along the vertical path. Consider a newly generated tuple t1 of
data stream R1 (we choose R1 for simplicity of presentation).
In the one-pass scheme, t1 traverses along the vertical path from
one end (first node) to another end (Lth node). Consider the lth

node, i.e., the node that is l hops away from the first node on

the vertical path. Below, we derive an expression for N2
l (n̄), the

number of new partial results generated at the lth node due to t1,
t2 (some tuple of R2; we choose R2 for simplicity), and a set of
n̄ − 2 data streams other than R1 and R2. Here, n̄ < n since we
are counting only partial results. Let R′

i denote the part of the
sliding window for Ri stored between the first and the lth nodes.
Since we assume uniform distribution, |R′

i| = |Ri|l/L. Now, the
expression for N2

l (n̄) can be written as:

N2
l (n̄) =

X

S ⊂n̄−2{3,...,n}

|t1 on t2 on R′
i1 on R′

i2 . . . R′
in̄−2

|,

where the summation is taken over all subsets of size n̄− 2 from
{3, . . . , n} and S = {i1, i2, . . . , in̄−2} is an instance of such
a subset. Now, let σuv denote the selectivity factor of the join
condition between Ru and Rv . Then, we get

N2
l (n̄) =

X

S ⊂n̄−2{3,...,n}

(
Y

u,v∈(S∪{1,2})

σuv)
Y

u∈S

(|Ru|l/L).

Now, the total number of partial results generated at lth node is
Pn−1

n̄=2

Pn
i=2 N i

l (n̄)|Ri|/l. Recall that each of the partial results
of size n̄ traverses the remaining part of the vertical line, and
hence, incurs a communication cost of n̄(L− l). If Lh is the hop-
length of the horizontal path (and hence, the communication cost
incurred for storage), the total communication cost (OP PA Cost)
incurred by PA one-pass scheme due to a tuple t1 of R1 can be
given by:

OP PA Cost = Lh +

L
X

l=1

n−1
X

n̄=2

n
X

i=2

n̄(L − l)N i
l (n̄)|Ri|/l. (1)

The above equation also applies to sensor networks without
location information with Lh being the size of the region (k-
CDS or k-hop neighborhood) used for storage and L being the
size of the other region used for join-computation.

Communication Cost in Multiple-Pass PA. Communication cost
for multiple-pass PA depends on the join ordering. For simplicity,
let us assume that the order of the join is R2, R3, . . . , Rn.
Consider a newly generated tuple t1 of R1. In the ith iteration
of the multiple-pass scheme, the partial results corresponding to
the tuples in t1 on R2 on R3 . . . Ri traverse the entire vertical
path to find matches from Ri+1, the next data stream in the join
order. Before that, each of these generated partial results also
traverses L/2 hops to get to the first node (to get ready for the next
iteration). Since the first iteration incurs a communication cost of
L (hop-length of the vertical path), the total communication cost
(MP PA Cost) incurred by PA multiple-pass scheme for the join
ordering R2, R3, . . . , Rn in response to a generated tuple t1 of
R1 is:

MP PA Cost = 1.5L(

n−1
X

i=2

i(|R2||R3| . . . |Ri|)
Y

1≤i1,i2≤i

σi1i2)

+Lh + L. (2)

Recall that Lh (length of the horizontal path) is the cost of
the storage phase. As before, the above equation also applies to
networks without location information.

Communication Cost in Centroid Approach (CA). The above
analysis for multiple-pass scheme can also be used to compute
the communication cost incurred by CA. If r is the memory
available at each node, then |Ri|/r is the number of nodes in

10

the storage region Ci storing the sliding window for Ri. Let Di

is the average distance (in hops) between a network node and
the storage region Ci, and d be the average distance (in hops)
between two storage regions. Then, the total communication cost
(CA Cost) incurred by CA in the join-computation phase for the
join-ordering R2, R3, . . . , Rn in response to a generated tuple t1
of R1 is:

CA Cost = (
n−1
X

i=2

(d + |Ri+1|/r)(i)(|R2| . . . |Ri|)
Y

1≤i1,i2≤i

σi1i2)

+D1 + 2|R1|/r + (d + |R2|/r). (3)

Above, 2|R1|/r is the communication cost incurred in searching
for a node with available memory in C1, and (d + |R2|/r) is the
cost of routing and broadcasting t1 in C2.

Join Ordering Problem. The join-ordering problem of finding
an ordering of data streams that minimizes the communication
cost (Equation 2 for multiple-pass PA or Equation 3 for CA)
can be shown to be NP-hard using a reduction from maximum
clique [26]. Note that the above join-ordering problem is equiv-
alent to finding the optimal left-deep tree for evaluation of the
given join query, and that the communication cost incurred in
the multiple-pass PA and CA is proportional to the sum of
the sizes of the intermediate results. Thus, we could directly
use the techniques developed in [26] to determine an efficient
join-ordering of data streams. In particular, we use the greedy
heuristic of [26] which works by first selecting the data stream that
minimizes the communication cost incurred in the last iteration
of the join-computation phase, as the last stream in the ordering.
After picking the last data stream, the best choice for last-but-
one data stream in the ordering is selected, and so on. The
above greedy heuristic essentially works on the premise that the
communication cost incurred in the last iteration dominates the
overall cost. As typical sensor network queries are long running,
we assume that all the catalogue information needed (estimated
sizes, locations of the operand relations and selectivity factors)
can be gathered by initial sampling of the operand tables.

Summary: One-Pass Versus Multi-Pass Scheme. In the one-
pass scheme, all possible partial results are computed and prop-
agated. In contrast, in the multi-pass scheme, only “ordered”
(determined by the join-order) partial results are computed. Thus,
the multi-pass scheme in conjunction with an efficient join-
ordering is generally expected to outperform one-pass scheme.
However, for joins with high selectivity factors, the one-pass
scheme may be more efficient than the multi-pass scheme, since
in the one-pass scheme the partial result traverse through less
number of nodes.

VI. Performance Evaluation

In this section, we present our simulation results that compare
the performance of various approaches. We simulate our algo-
rithms on ns2 [19], a general purpose network simulator capable
of simulating wireless ad hoc networking protocols. Since our
techniques are targeted for large sensor networks (hundreds of
nodes), it was infeasible to simulate our techniques on real sensor
networks or real sensor data (since the largest available data we
could find online is for 30-40 nodes).

Parameter Values and Settings. We generated random sensor
networks by randomly placing 1000 nodes in an area of 3000 ×

3000 meters. We fix the transmission radius of each node to be

250 meters to ensure a connected network graph, and consider
the case of join of 4 data streams. Each stream is generated
uniformly across the network at the rate of 150 tuples per unit
time. We compute the join based on a sliding window of size 150
tuples (or one unit time) for each data stream. The default memory
capacity at each node is 30 tuples, but we vary it in one set of
experiments. Note that the absolute value of the sliding window
size or memory capacity per node is immaterial for purposes of
performance comparison; thus, we only vary the ratio of sliding
window size to the memory capacity by varying the latter. We set
the battery energy, transmission power, receiving power of each
node to 120J, 0.28W, and 0.14W respectively [32]. By default,
we store a tuple on every other node (of the horizontal path) in
the storage phase, and do a one-hop broadcast from each node
on the vertical path; we consider different replication factors in
one set of experiments. We use a uniform selectivity factor (1/2
for spatial joins and 1/10 for non-spatial join) for all pairs of
streams. For the given selectivity factors and sizes of sliding
windows, the communication-cost Equations 1 and 2 suggest
that the multiple-pass will be more efficient than the one-pass
scheme. Thus, we use multiple-pass scheme for PA. Note that
beyond the choice of one-pass vs. multiple-pass, the absolute
value of selectivity factors does not have any effect on the relative
performance of the approaches. In one set of experiments, we use
non-uniform selectivity factors, and compare the performance of
one-pass versus multiple-pass with different join-orderings.

Performance Metrics. We use the following performance metrics
(over time) to measure the performance of our approaches: total
battery energy dissipated (i.e., total communication cost), number
of battery-depleted nodes, and “approximation ratio” of the output
results. The approximation ratio of an approach at a given time
is defined as the ratio of (i) the number of result tuples output by
the approach, to (ii) the total number of tuples in the actual join
result (computed independently in a centralized way), due to the
input tuples generated in the last T units of time. In our graph
plots, we choose T to be 10 units. The approximation ratio metric
signifies the current state of the network (based on last 10 units
of time) and incorporates almost all aspects of the performance
of an approach. Thus, we use approximation ratio as our main
performance criterion. Network lifetime can be defined as the
amount of time for which the approximation ratio remains above
a certain threshold; we consider 80% threshold in our discussions.
Low approximation ratio could be due to node failures, message
collisions, non-availability of sliding window tuples due to limited
memory and/or network partitioning. We expect load-balanced
and efficient PA to have a much higher network lifetime than
CA.

Approaches. For the given parameter values, the Naive Broadcast
approach is infeasible; e.g., for default values each node can
only store 57.3% (= (30 ∗ 30002/(600 ∗ π(500)2)) of the entire
sliding windows and thus, the approximation ratio can be at most
57.3%. Thus, we implement the Local Storage (LS) approach,
which stores each tuple only locally (at its source node) and
uses multiple passes (as in the multiple-pass PA scheme) for join
computation. In each pass, each partial result is broadcast upto
the range of the spatial join or to the entire network for the case
of non-spatial join. The LS approach is actually a special case
(for very large k) of the extended PA (Section IV-C) without
location information. LS approach is load-balanced, but incurs
more communication cost than PA. Below, we compare CA,

11

10 20 30 40 50
0

2

4

6

8

10

12
x 10

4

Time

E
ne

rg
y

di
ss

ip
at

io
n

(J
)

PA
CA
LS

10 20 30 40 50
0

100

200

300

400

500

600

Time

N
um

be
r

of
 d

ea
d

no
de

s PA
CA
LS

10 20 30 40 50
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA

CA

LS

Fig. 6. Performance of various approaches for a spatial join of range 500 meters with memory capacity of 30 tuples/node. (a) Total energy
dissipated, (b) Number of node failures, and (c) Approximation ratio.

PA, and LS approach for various parameter values and settings.
For the PA scheme, we include all the overhead cost, except for
the minimal (two messages per boundary node) one-time cost of
computing the boundary nodes and markings. Also, duplicates are
an inherent fault-tolerant feature of PA, and are not eliminated.
Finally, as discussed in Section IV, the result tuples are output
across the network. Collecting results at a central node will have
similar problems as in the Centralized Approach discussed in
Section III; hashing of result tuples or shipping them to a central
server connected to all nodes will have similar cost for all schemes
and is thus ignored.

0
20
40
60
80

100
120

E
ne

rg
y

di
ss

ip
at

io
n

(J
)

0
20
40
60
80

100
120

E
ne

rg
y

di
ss

ip
at

io
n

(J
)

(a) Energy dissipation in PA. (b) Energy dissipation in CA.

Fig. 7. Energy dissipation in CA an PA, for a spatial join of range
500 meters.

Spatial Join of Range 500 Meters. We start with considering
performance of various approaches for the case of a spatial join
of range 500 meters. As mentioned before, we use an additional
(beyond the selectivity due to the spatial constraint) selectivity
factor of 1/2 for all pairs of streams. We plot our simulation results
in Figure 6. We see that the rate of energy dissipation in PA is
less than in CA or LS. The rate of energy dissipation tapers off
in each approach after some time, due to decrease in the number
of active nodes. We notice that in PA the nodes start failing much
later than in CA or LS, due to the communication-efficient and
load-balanced operation of PA. Finally, we can see in Figure 6(c),
that the approximation ratio of PA stays close to 100% for a long
time. Essentially, when all nodes are alive, the fault-tolerance of
the approach makes up for the few lost messages. The message
collisions were observed to be rare due to “non-convergent”
communication pattern and low rate of tuple generation. If we
use the approximation ratio threshold (for network lifetime) of
80%, then the network lifetime of PA is about 3 times longer
than that of LS and about 12 to 15 times longer than that of CA.
In Figure 7, we show the distribution of energy dissipation at

some snapshot of time for PA and CA. The distribution for LS
is similar to that for PA, except that the peaks are much higher
(by a factor of about 3).

Varying Memory Capacities. In Figure 8, we compare perfor-
mance of various approaches for different values of memory
capacities (10, 60, and 90 tuples per node). We observe that PA
continues to outperform both CA and LS by a large factor (3
to 10) in terms of the network lifetime. Note that LS approach
doesn’t change with change in memory capacity. We observe
that the performance of PA is same for memory capacities of
30 or more, and the performance of CA improves with increase
in memory capacity.

Different Spatial-Join Ranges. In Figure 9(a)-(b), we consider
other ranges of spatial join, viz., 750 and 1000 meters. Since the
transmission radius is 250 meters, considering lower range value
is too perfect for PA, and a value of 1500 or higher will almost
cover the entire network (and hence, equivalent to a non-spatial
join). Here, we plot only the approximation ratio over time, since
it incorporates all the performance metrics. For the range of 750
meters, the network lifetime of PA is about 3 times longer than
LS and about 20 times longer than CA. For the range of 1000
meters, both CA and LS have an effective network lifetime of
zero, while that of PA is about 10. The low approximation ratios
of CA or LS (even in the initial phases) is due to a large number of
message collisions in the join computation phase, which requires
repeated broadcast (within the storage region for CA or entire
network for LS) for each computed partial result. Note that even
though CA does not incorporate spatial joins, performance of CA
worsens with increase in spatial-join range due to the increase in
the overall selectivity factor.

Non-Spatial Join. As mentioned before, for non-spatial join, we
use a selectivity-factor of 1/10 for each pair of streams. Since the
overall selectivity-factor for the non-spatial join is perhaps (they
aren’t easily comparable) less than the spatial join of range 1000,
we see that CA and PA perform better for the latter. See Figure 9
(c). Moreover, we see that LS performs very poorly; it has an
approximation ratio of at most 50%.

Varying Replication Factor (k) and Memory Capacity. In this set
of experiments, we vary the replication factor k, which signifies
how often we store each tuple on a horizontal path. As mentioned
in Section IV, if we store a tuple at every kth node on the
horizontal path, then we need to do a bk/2c + 1-hop broadcast
from each node on the vertical path. However, in most cases,
the last hop broadcast is not required due to the inherent fault-
tolerance of the approach and the random network topology. Thus,
we use 1-hop broadcast for k = 2, and for k = 3 or 4 we

12

10 20 30 40 50
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA
CA
LS

(a) 10 tuples per node.

10 20 30 40 50
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA
CA
LS

(b) 60 tuples per node.

10 20 30 40 50
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA
CA
LS

(c) 90 tuples per node.

Fig. 8. Approximation ratios over time for the spatial join of range 500 meters with different memory capacities.

5 10 15 20 25 30
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA
CA
LS

(a) Spatial-join range of 750 m.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)
PA
CA
LS

(b) Spatial-join range of 1000 m.

5 10 15 20 25 30
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA
CA
LS

(c) Non-spatial join.

Fig. 9. Approximation ratios over time for different spatial-join ranges, and non-spatial join.

do the last-hop broadcast with a 20% probability. Figure 10(a)
plots the approximation ratio of PA for varying memory capacity.
Here, we plot the approximation ratio during one unit of initial
time, when all nodes are alive. As expected, we see that the
approximation ratio decreases with decrease in memory capacity
or replication factor. In Figure 10(b), we plot the communication
cost for varying k and memory capacities per node. Increase in
k should result in more energy dissipation. However, we notice
that k = 1 incurs a much higher communication cost than k = 2

or 3, due to a large number of duplicate partial results generated
when k = 1. From the given plots in Figure 10, we can conclude
that to achieve an approximation ratio of at least 80%, we should
use k = 2 (with one-hop broadcast) for memory capacity of 20
or higher. For lower memory capacities, higher values of k are
needed. Note that k = 1 is never a good choice.

5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Memory per node

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA (k=1)
PA (k=2)
PA (k=3)
PA (k=4)

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
x 10

4

Memory per node

E
ne

rg
y

di
ss

ip
at

io
n

(J
)

PA (k=1)
PA (k=2)
PA (k=3)
PA (k=4)

Fig. 10. Varying replication factor k and memory capacity for non-
spatial join. (a) Approximation ratio and (b) Energy dissipation, in
one (initial) time unit.

Effect of Join Ordering. We now depict the effect of join-ordering
on the performance of PA. In this set of experiments, we choose
non-uniform selectivity factors as shown in Figure 11(a). We
compare the performance of one-pass PA and multiple-pass PA.

5 10 15 20
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

PA without location

LS

Fig. 12. Approximation ratios for PA and LS in a network without
location information for non-spatial join.

For the multiple-pass PA, we use two different join orderings,
viz., greedy (as described in Section V) and sequential (where
each new tuple iteratively picks the next data stream in sequence).
See Figure 11(b). We see in Figure 11 (c)-(d) that the multiple-
pass PA with greedy join ordering performs the best, followed by
the multiple-pass PA with sequential join ordering.

Networks Without Location Information. Figure 12 shows the
performance of extended PA (Section IV-C) in networks without
location information for non-spatial join; we used 2-hop neighbor-
hoods and 2-CDS for join computation and storage respectively,
and incorporated all cost pertaining to the maintenance of the 2-
CDS trees. We observe that PA performs much better than the LS
approach – the only other feasible approach for networks without
location information.

Summary of Simulation Results. In our simulations, we have
compared PA with other approaches for a wide range of network
parameters. In general, we observed that PA resulted in a much
longer network lifetime for computation of join, due to its
communication-efficiency and load-balance. For spatial joins, LS

13

5 10 15 20 25 30
0

20

40

60

80

100

Time

A
pp

ro
xi

m
at

io
n

ra
tio

 (
%

)

One−pass PA
Multi−pass PA (Greedy)
Multi−pass PA (Sequential)

5 10 15 20 25 30
0

2

4

6

8

10

12
x 10

4

Time

E
ne

rg
y

di
ss

ip
at

io
n

(J
)

One−pass PA
Multi−pass PA (Greedy)
Multi−pass PA (Sequential)

Fig. 11. Non-uniform selectivity factors and join ordering for non-spatial join. (a) The join graph depicting various selectivity factors, (b)
Greedy and sequential join orders, (c) Approximation ratio, and (d) Energy dissipation.

outperformed CA, while for non-spatial joins LS performed very
poorly. In general, the performance of CA and PA improve
with increase in memory capacity. Finally, we evaluated the
tradeoff between storage and communication cost (by varying
the replication factor) and observed the efficacy of the greedy
heuristic for join-ordering.

VII. Conclusion and Future Work

Communication-efficient implementation of sensor network
programs remains a challenging research direction. More specifi-
cally, when sensor networks are viewed as distributed databases,
most of the functionality of sensor network applications can be
specified in terms of database queries. Due to the large amount of
data generated in the network, efficient implementation of queries
can have a great impact on prolonging the network lifetime. In this
article, we have addressed communication-efficient implementa-
tion of join in sensor networks, and designed various approaches.
One of our designed approaches, viz. Perpendicular Approach
(PA), is quite load-balanced and significantly outperforms (in
terms of network lifetime) other approaches over a wide range
of parameter values. Our future work is focussed on design of an
in-network deductive query engine, and developing techniques for
multiple query optimization and selection of views to materialize
in the context of sensor networks.

REFERENCES

[1] D. Abadi, S. Madden, and W. Lindner. REED: Robust,
efficient filtering and event detection in sensor networks. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2005.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous
query language: semantic foundations and query execution.
The VLDB Journal, 15, 2006.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings
of the ACM Symposium on Principles of Database Systems
(PODS), 2002.

[4] B. Bonfils and P. Bonnet. Adaptive and decentralized
operator placement for in-network query processing. In
Proceedings of the International Workshop on Information
Processing in Sensor Networks (IPSN), 2003.

[5] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proceeding of the International Con-
ference on Mobile Data Management (MDM), 2001.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a
scalable continuous query system for internet databases. In
Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data (SIGMOD), 2000.

[7] S. Cheung, M. Ammar, and M. Ahamad. The grid protocol:
A high performance scheme for maintaining replicated data.
In Proceedings of the International Conference on Database
Engineering (ICDE), 1990.

[8] V. Chowdhary and H. Gupta. Communication-efficient
implementation of join operation in sensor networks. In
Proceedings of the International Conference on Database
Systems for Advanced Applications (DASFAA), 2005.

[9] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation of
a declarative sensor network system. In Proceedings of the
International Conference on Embedded Networked Sensor
Systems (SenSys), 2007.

[10] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In Proceedings of the ACM
SIGMOD Conference on Management of Data (SIGMOD),
2003.

[11] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions.
In Proceedings of the ACM Symposium on Computation
Geometry (SoCG), 2004.

[12] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-based approximation querying in sensor
networks. VLDB Journal, 2005.

[13] L. Ding, N. Mehta, E. Rundensteiner, and G. Heineman.
Joining punctuated streams. In Proceedings of the In-
ternational Conference on Extending Database Technology
(EDBT), 2004.

[14] D. Abadi et al. Aurora: a new model and architecture for
data stream management. The VLDB Journal, 12, 2003.

[15] D. Abadi et al. The Design of the Borealis Stream Process-
ing Engine. In Proceedings of the International Conference
on Innovative Data Systems Research (CIDR), 2005.

[16] H. Gupta et al. Deductive approach for programming
sensor networks. Technical report, Stony Brook University,
2007. http://www.cs.sunysb.edu/˜hgupta/ps/
logicSN.pdf.

[17] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing. In Proceedings of the ACM SIGMOD Confer-
ence on Management of Data (SIGMOD), 2003.

[18] S. Madden et al. TinyDB: In-network query processing in
TinyOS. http://telegraph.cs.berkeley.edu/
tinydb.

[19] K. Fall and K. Varadhan (Eds.). The ns manual. http:
//www-mash.cs.berkeley.edu/ns.

[20] L. Golab and M. Ozsu. Processing sliding window multi-
joins in continuous queries over data streams. In Proceed-

14

ings of the International Conference on Very Large Data
Bases (VLDB), 2003.

[21] R. Govindan, J. Hellerstein, W. Hong, S. Madden,
M. Franklin, and S. Shenker. The sensor network as a
database. Technical report, University of Southern Califor-
nia, 2002.

[22] L. Guibas. Sensing, tracking, and reasoning with relations.
IEEE Signal Processing Magazine, 19(2), 2002.

[23] H. Gupta, V. Navda, S. Das, and V. Chowdhary. Energy-
efficient gathering of correlated data in sensor networks. In
Proceedings of the International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), 2005.

[24] M. Hammad, W. Aref, and A. Elmagarmid. Stream window
join: tracking moving objects in sensor-network databases.
In Proceedings of the International Conference on Scientific
and Statistical Database Management (SSDBM), 2003.

[25] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless
sensor networks with low-level naming. Proceedings of the
Symposium on Operating Systems Principles (SOSP), 2001.

[26] T. Ibaraki and T. Kameda. On the optimal nesting order
for computing n-relational joins. ACM Transactions on
Database Systems (TODS), 1984.

[27] J. Kang, J. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. In Proceedings of the
International Conference on Database Engineering (ICDE),
2003.

[28] B. Karp and H. T. Kung. Greedy perimeter stateless routing
for wireless networks. In Proceedings of the International
Conference on Mobile Computing and Networking (Mobi-
Com), 2000.

[29] S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei. Event
detection using data service middleware in distributed sensor
networks. Wireless Sensor Networks of Telecomm. Systems,
2004.

[30] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks:
balancing push and pull for discovery in sensor networks. In
Proceedings of the International Conference on Embedded
Networked Sensor Systems (SenSys), 2004.

[31] H. Lu, M. Shan, and K. Tan. Optimization of multi-way
join queries for parallel execution. In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
1991.

[32] M. Srivastava. Power Considerations for Sensor Net-
works. http://ipsn.acm.org/2001/slides/
Srivastava.pdf.

[33] S. Madden and M. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In
Proceedings of the International Conference on Database
Engineering (ICDE), 2002.

[34] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
A tiny aggregation service for ad-hoc sensor networks. In
Proceedings of the Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[35] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. In Proceedings of the ACM SIGMOD Conference
on Management of Data (SIGMOD), 2003.

[36] S. Madden and J. M. Hellerstein. Distributing queries over
low-power wireless sensor networks. In Proceedings of

the ACM SIGMOD Conference on Management of Data
(SIGMOD), 2002.

[37] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management
in a data stream management system. In Proceedings of
the International Conference on Innovative Data Systems
Research (CIDR), 2003.

[38] A. Pandit and H. Gupta. Efficient implementation of range-
joins in sensor networks. In Proceedings of the International
Conference on Database Systems for Advanced Applications
(DASFAA), 2006.

[39] S. Patil, S. Das, and A. Nasipuri. Serial data fusion
using space-filling curves in wireless sensor networks. In
Proceedings of the International Conference on Sensor and
Ad Hoc Communications and Networks (SECON), 2004.

[40] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu. Data-centric storage in sensornets
with GHT, a geographic hash table. Mobile Networks and
Applications, 8(4), 2003.

[41] J. Richardson, H. Lu, and K. Mikkilineni. Design and eval-
uation of parallel pipelined join algorithms. In Proceedings
of the ACM SIGMOD Conference on Management of Data
(SIGMOD), 1987.

[42] R. Sarkar, X. Zhu, and J. Gao. Double rulings for in-
formation brokerage in sensor networks. In Proceedings
of the International Conference on Mobile Computing and
Networking (MobiCom), 2006.

[43] A. Savvides, M. Srivastava, L. Girod, and D. Estrin. Chap-
ter: Localization in sensor networks. Kluwer Academic
Publishers, 2004.

[44] D. Schneider and D. DeWitt. A performance evaluation of
four parallel join algorithms in a shared-nothing multipro-
cessor environment. In Proceedings of the ACM SIGMOD
Conference on Management of Data (SIGMOD), 1989.

[45] U. Srivastava, K. Munagala, and J. Widom. Operator
placement for in-network stream query processing. In Pro-
ceedings of the ACM Symposium on Principles of Database
Systems (PODS), 2005.

[46] U. Srivastava and J. Widom. Memory-limited execution of
windowed stream joins. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2004.

[47] K. Tan and H. Lu. Processing multi-join query in parallel
systems. In Symposium on Applied Computing, 1992.

[48] Y. Xing, J. Hwang, U. Cetintemel, and S. Zdonik. Providing
resiliency to load variations in distributed stream processing.
In Proceedings of the International Conference on Very
Large Data Bases (VLDB), 2006.

[49] T. W. Yan and H. Garcia-Molina. The SIFT information
dissemination system. ACM Transactions on Database
Systems (TODS), 24, 1999.

[50] S. Yang, J. Wu, and J. Cao. Connected k-hop clustering
in ad hoc networks. In Proceedings of the International
Conference on Parallel Processing (ICPP), 2005.

[51] Y. Yao and J. Gehrke. The cougar approach to in-network
query processing in sensor networks. SIGMOD Record,
31(3), 2002.

[52] Y. Yao and J. Gehrke. Query processing in sensor networks.
In Proceedings of the International Conference on Innova-
tive Data Systems Research (CIDR), 2003.

