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ABSTRACT
Spatial query execution is an essential functionality of a sen-
sor network, where a query gathers sensor data within a spe-
cific geographic region. Redundancy within a sensor network
can be exploited to reduce the communication cost incurred
in execution of such queries. Any reduction in communi-
cation cost would result in an efficient use of the battery
energy, which is very limited in sensors. One approach to
reduce the communication cost of a query is to self-organize
the network, in response to a query, into a topology that
involves only a small subset of the sensors sufficient to pro-
cess the query. The query is then executed using only the
sensors in the constructed topology.

In this article, we design and analyze algorithms for such
self-organization of a sensor network to reduce energy con-
sumption. In particular, we develop the notion of a con-
nected sensor cover and design a centralized approxima-
tion algorithm that constructs a topology involving a near-
optimal connected sensor cover. We prove that the size of
the constructed topology is within an O(log n) factor of the
optimal size, where n is the network size. We also develop
a distributed self-organization version of our algorithm, and
propose several optimizations to reduce the communication
overhead of the algorithm. Finally, we evaluate the dis-
tributed algorithm using simulations and show that our ap-
proach results in significant communication cost reduction.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Algorithms, Performance
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1. INTRODUCTION
Recent advances in miniature computing with advent of

efficient short-range radios have given rise to strong inter-
est in sensor networks [12, 2]. A sensor network consists of
sensor nodes with a short-range radio and on-board process-
ing capability. Each sensor can also sense certain physical
phenomena like light, temperature, vibrations, or magnetic
field around its location. The purpose of a sensor network
is to process some high-level sensing tasks in a collaborative
fashion, and is periodically queried by an external source to
report a summary of the sensed data/tasks. For example, a
large number of sensors can be scattered in a battlefield for
surveillance purposes to detect certain objects of interest,
say tanks. A typical query could be: Report the number of
tank sightings at 10 minute intervals for the next 24 hours
in a specific region within the battlefield.

Several new design themes have emerged for sensor net-
works. On one hand, the network must be self-configuring
and highly fault-tolerant as the sensors may be deployed
in an “ad hoc” fashion. On the other hand, as each sen-
sor has only limited battery energy, the network as a whole
must minimize total energy usage in order to enable unteth-
ered and unattended operation for an extended time. One
technique to optimize energy usage during query execution
would be for the network to self-organize, in response to a
query, into a logical topology involving a minimum num-
ber of sensor nodes that is sufficient to process the query.
Only the sensors in the logical topology would participate
(communicate with each other) during the query execution.
This is a very effective strategy for energy conservation, es-
pecially when there are many more sensors in the network
than are necessary to process a given query. For example,
two sensors in close enough proximity may generate the same
or similar sensory data and it may be sufficient to involve
only one of the sensors for query processing. The technique
of self-organization exploits such redundancy effectively to
conserve energy.

In order for the above technique to be of value, the num-
ber of control messages used in the self-organization process
must be small, so that the overhead of the technique does
not offset the expected benefit completely. Note that the
overhead is paid only once for a given query, but the ben-
efit is reaped during each execution of the query. Thus, a
high overhead for such a technique could still be tolerated
for highly redundant networks and/or long running queries.

In this paper, we design and analyze competitive algo-
rithms for the above problem of self-organization of a sensor



network into an optimal logical topology in response to a
query. In particular, we design an approximation algorithm
that constructs such a topology in response to a query and
show that the size of the topology returned by the algorithm
is within an O(logn) factor of the size of an optimal topol-
ogy, where n is the number of sensors in the network. We
also design a distributed version of the proposed approxima-
tion algorithm that is run by the sensors in the network and
results in a self-organization of the network into a topology
involving a near-optimal number of sensors. Through fur-
ther analysis and experiments, we also show that the com-
munication overhead of the distributed algorithm is reason-
ably low which makes it very effective over a range of query
and network parameters.

The rest of the paper is organized as follows. In Section
2, we provide a formulation of the problem with examples
and discuss motivations. In Sections 3 and 4, we present
the design and analysis of our proposed centralized approxi-
mation and the distributed self-organization algorithms. In
Section 5, we present the simulation results depicting the
performance of our proposed algorithm. We end with dis-
cussions on related work and concluding remarks in Sections
6 and 7, respectively.

2. PROBLEM FORMULATION AND MO-
TIVATION

In this section, we describe the problem addressed in the
article through an example, present motivation, and give a
formal definition of the problem. We start with a description
of a sensor network model.

A sensor network consists of a large number of sensors
distributed randomly in a geographical region. Each sensor
has a unique identifier (ID) I and is capable of sensing a
well-defined convex region S around itself called the sens-
ing region. More will be said later about sensing regions.
Each sensor also has an a radio interface and can communi-
cate directly with some of the sensors around it. A query in
a sensor network asks for a summarization of some sensed
data/events over some time window and a geographical re-
gion, which is a subset of the overall region covered by the
sensing regions of all the sensors in the network. By default,
the geographical region associated with a sensor network
query is the overall region covered by all the sensors in the
network. A query is typically run multiple times, possibly,
for different time windows.

Our article addresses the following optimization problem
(formally defined later) that arises in sensor networks. Given
a query over a sensor network, select a minimum set of sen-
sors, called connected sensor cover, such that a) the sensing
regions of the selected set of sensors cover the entire ge-
ographical region of the query, and b) the selected set of
sensors form a connected communication graph where there
is an edge between any two sensors that can directly commu-
nication with each other. The following example illustrates
the problem.

EXAMPLE 1. Consider the sensor network shown in Fig-
ure 1. Sensors are represented by small circular dots. We
have numbered the relevant sensors with I1, I2, . . . , I9 and
shown sensing regions (circular Si disks) associated with
some of them (the black nodes/sensors). Let the distance
between sensors I1 and I2 be equal to t. We assume that
any two sensors that are roughly less than t distance apart
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Figure 1: Connected Sensor Coverage Problem.

can directly communicate with each other. Now, let us con-
sider a query over the geographic region represented by the
rectangle R in the figure.

We can see that sensing regions associated with the black
nodes (I1, I3, I5, I6, I8, I9) are sufficient to cover the query’s
geographic region – the rectangle RQ. However, the set
of black nodes does not form a connected communication
graph, as the sensor nodes I1 and I3 cannot communicate.
However, if we add the grey sensor nodes (I2, I4, I7) to the
black nodes, we get a set of sensors that also forms a con-
nected communication graph as shown in the figure. Thus,
the set of nine sensors I1 to I9 form a connected sensor cover.
Our problem is to find a minimum such cover. 2

2.1 Motivation
The following two characteristics of sensor networks lend

importance to the connected sensor coverage problem.

1. Spatial Queries: Due to the geographical distribu-
tion of sensors in a sensor network, each piece of data
generated in the sensor network has a geographic lo-
cation associated with it in addition to a timestamp[4,
13]. Hence, to specify the data of interest over which
a query should be answered, each query in a sensor
network has a time-window and a geographical region
associated with it [4]. By default, the geographical
region associated with such spatial queries is the full
region covered by sensing regions of all the sensors in
the sensor network.

2. Limited Battery Power: Sensors are miniscule com-
puting devices with a limited battery power. Also,
as evidenced in some recent studies [23], the energy
budget for communication is many times more than
computation with the available technology. Therefore,
minimizing communication cost incurred in answering
a query in a sensor network will result in longer lasting
sensor networks. Hence, communication-efficient exe-
cution of queries in a sensor network is of significant
interest.

The motivation for the connected sensor coverage prob-
lem addressed in this article comes from the presence of
spatial queries in a sensor network and the importance of



executing such queries with minimal energy consumption.
Given a query in a sensor network, we wish to select a small
number of sensors that are sufficient to answer the query
accurately. Also, the selected set of sensors should form a
connected communication graph, so that they can form a
logical routing topology for data gathering and transmis-
sion to the query source. Hence, we wish to select an opti-
mal set of sensors that satisfy the conditions of coverage as
well as connectivity, i.e., an optimal connected sensor cover
as defined before. Constructing an optimal connected sen-
sor cover for a query enables execution of the query in a
very energy-efficient manner, as we need to involve only the
sensors in the computed connected sensor cover for process-
ing the query without compromising on its accuracy. Note
here that we wish to combine coverage and connectivity in
a single algorithm instead of using an alternative approach
of treating them as two separate subproblems, as the opti-
mal solution for the combined problem will be always equal
or better than the solution obtained by solving for optimal
coverage first and then for optimal connectivity. The reason
for this is obvious – the sensors selected for mere connectiv-
ity in this alternative approach also contribute to coverage.
Also, the alternative approach requires two phases and thus
incurs possibly higher overheads. Further discussion on the
alternative approach appears in Section 3, where a Steiner
Tree based approach has been discussed.

The following discussion illustrates the savings in com-
munication achieved by computing a connected sensor cover
prior to the execution of a query.
Comparison with the Naive Approach: Given a query
over a sensor network, a naive way to run the query will be
to simply flood the network with the query. Each sensor
node in the network broadcasts the query message exactly
once and also remembers the ID of the sensor node it re-
ceives the query from. If there are n sensors whose sensing
regions intersect with the query’s region, then using about n
message transmissions, a communication tree spanning the
n sensors could be built within the network in a breadth-first
manner. Each node in the built tree now responds to the
query. The responses propagate upwards in the tree towards
the root of the tree (the query source). This again incurs
a cost of n message transmissions, assuming that responses
are aggregated at each tree node. Thus, the total commu-
nication cost incurred in answering q such queries over the
same region (possibly with different time windows) is 2qn
using the above flooding approach.

Now, consider a connected sensor cover of size m sensors.
As the connected sensor cover set induces a connected com-
munication subgraph, the total cost incurred in executing q
queries over the same region will be D+2qm, where D is the
communication cost incurred in computing the connected
sensor cover. If m is substantially less than n, as would
be the case of reasonably dense sensor networks, construct-
ing a connected sensor cover could result in large savings in
communication cost even with an overhead D cost.

2.2 Formal Definition of the Problem
We now formally define the connected sensor cover prob-

lem addressed in this article. We start with a few definitions.

Definition 1. (Communication Graph; Communica-
tion Distance) Given a sensor network consisting of a set of
sensors I, the communication graph for the sensor network

is the undirected1 graph CG with I as the set of vertices and
an edge between any two sensors if they can communicate
directly with each other. The communication subgraph in-
duced by a set of sensors M is the subgraph of CG involving
only the vertices/sensors in M.

An edge in the communication graph is referred to as a
communication edge between the two given sensors. A path
of sensors between I1 and I2 in the communication graph is
called a communication path between the sensors I1 and I2.
The communication distance between two sensors I1 and I2

is the length of the shortest path between I1 and I2 in the
communication graph (which is the number of sensors on
the shortest path, including I1 and I2). 2

Definition 2. (Connected Sensor Cover; Sensor
Cover) Consider a sensor network consisting of n sensors
I1, I2, . . . , In. Let Si be the sensing region associated with
the sensor Ii. Given a query Q over a region RQ in the net-
work, a set of sensors M = Ii1 , Ii2 , . . . , Iim is said to be a
connected sensor cover for Q if the following two conditions
hold:

1. RQ ⊂ (Si1 ∪ Si2 ∪ . . . Sim )

2. the subgraph induced by M in CG is connected, where
CG is the communication graph of the sensor network.
In other words, any sensor Iij in the connected sensor
cover can communicate with any other sensor Iik

in the
cover, possibly through other sensors in the selected set
M.

A set of sensors that satisfies only the first condition is called
a sensor cover for Q in the network. 2

Connected Sensor Coverage Problem: Given a sensor
network and a query over the network, the connected sensor
coverage problem is to find the smallest connected sensor
cover.

The connected sensor coverage problem is NP-hard as the
less general problem of covering points using line segments
is known to be NP-hard [16]. Constructing a minimum con-
nected sensor cover for a query in a sensor network enables
the query to be computed by involving a minimum num-
ber of sensors without compromising on the accuracy of the
query result.

2.3 A Note on Sensing Regions
The sensing region associated with a sensor signifies an

area for which the sensor can take the full responsibility for
sensing a given physical phenomenon within a desired confi-
dence. The real semantics of a sensing region is application
specific. For example, for target detection/tracking applica-
tions, the sensing region is a region around the sensor within
which the sensor can detect a target with a pre-determined
minimum confidence. In such applications, the sensing re-
gion for a sensor could be modeled as a circular region of
radius d around itself, where d is the distance beyond which
a target cannot be detected within a given confidence. In
some other applications, sensing regions are defined in terms
of the resolution of the application queries or the correlation
of the sensed data. For example, consider an application

1The algorithms and results in this article also apply to di-
rected communication graphs, but we make the assumption
for simplicity.
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Figure 2: Subelements and Valid Subelements.

that gathers temperature samples in a geographical region
monitored by a sensor network. Now, due to the spatial na-
ture of temperature, temperature values at any two points
that are less than d distance apart may be highly correlated.
In such a case, we can again define sensing regions of circular
radius d around each sensor.

As discussed above, typically, we can determine the sens-
ing region for each sensor either as a static approximation
of the sensor’s location and capabilities, or as a function of
query’s resolution, or application’s confidence requirements.
The concept of sensing region similar to ours has been used
in recent research, for example, by Slijepcevic and Potkon-
jak in [25], which addresses a closely related problem, and
more recently, by Shakkottai et al. in [24].

If the sensing region is not known a priori, we can solve the
connected sensor coverage problem iteratively for increasing
sensing regions and pick the minimum solution whose gath-
ered data is sufficiently accurate in comparison with the
collective data of all the sensors. Otherwise, without the
assumption of sensing regions, the connected sensor cover-
age problem could be formulated as a problem of selecting
a minimum connected set of sensors such that every point
in the query region gets a minimum amount of “exposure”
from the selected set of sensors. Such a concept of exposure
has been defined in [22] albeit in a different context.

In our treatment, the sensing regions can take any convex
shape. The convexity assumption is needed to make Obser-
vation 1 (defined later). The convexity assumption will be
true in practice, unless there are impregnable obstacles in
the sensor network region. For ease of presentation, we have
shown circular sensing regions in the figures throughout this
article.

3. CENTRALIZED APPROXIMATION AL-
GORITHM

In this section, we present the approximation algorithm
for the connected sensor coverage problem. The algorithm
runs in polynomial time and guarantees a solution whose
size is within O(r log n) of the optimal, where r is the link
radius of the sensor network and is defined later. One of
the important features of our algorithm is that it can be
easily transformed into a distributed version that has low
communication overhead.

Definition 3. (Subelement; Valid Subelements) Con-
sider a geographic region with a number of sensing regions.
A subelement is a set of points. Two points belong to same
subelement iff they are covered by the same set of sensing

regions. In other words, a subelement is a minimal region
that is formed by an intersection of a number of sensing re-
gions. Given a query region RQ, a subelement is valid if its
region intersects with RQ.

In Figure 2, where RQ is the given query region, there are
fourteen subelements numbered 1 to 14, of which only 1 to
11 are valid subelements. 2

Algorithm Description: We designed a greedy algorithm
to select a connected sensor cover of near-optimal size. In
short, the greedy algorithm works by selecting, at each stage,
a path (communication path) of sensors that connects an
already selected sensor to a partially covered sensor. The
selected path is then added to the already selected sensors
at that stage. The algorithm terminates when the selected
set of sensors completely cover the given query region.

A more formal and complete description of the designed
greedy algorithm is as follows. Let us assume that M is the
set of sensors already selected for inclusion in the connected
sensor cover by the greedy algorithm at any stage. Initially,
M is an empty set. The algorithm starts with including in
M an arbitrary sensor that lies within the query’s region. At
each stage, the greedy algorithm selects a sensor C (based
on a criteria described later) along with a path/sequence
of sensors P that forms a communication path between C
and some sensor in M . The selected path of sensors P,
which includes C, is then added to M . Thus, at any stage
of the algorithm, the communication subgraph induced by
M is connected. Also, if at each stage, the selected path
of sensors P covers some yet uncovered (by M) area of the
query’s region, then the algorithm will eventually terminate
with M as the connected sensor cover.

We now describe the criteria used in selection of C and
P at any given stage of the algorithm. Any sensor Ci /∈ M
whose sensing region contains a valid subelement, that has
been covered by a sensor in M , becomes a candidate sen-
sor, i.e., a potential candidate for selection as C. For each
such candidate sensor Ci, we construct a candidate path Pi

of sensors that forms a communication path connecting Ci

to some sensor in M . The candidate path Pi that covers
the maximum number of uncovered valid subelements per
sensor (defined as benefit of Pi) is added to M at that stage
of the algorithm. We will illustrate the working of the al-
gorithm through an example (Example 2) and describe the
algorithm formally in Algorithm 1. First, we define some
terms introduced in the above description.

Definition 4. (Candidate Sensor; Candidate Path)
Let M be the set of sensors already selected by the algo-
rithm. A sensor C is called as a candidate sensor if C /∈ M
and the sensing region of C intersects with the sensing region
of some sensor in M . A candidate path is a sequence/path of
sensors that form a communication path connecting a candi-
date sensor C with some sensor in M . We use |P | to denote
the length of a candidate path P . 2

Definition 5. (Uncovered Valid Subelements; Bene-
fit of a Candidate Path) An uncovered valid subelement
is a valid subelement that is not covered by any sensing re-
gion of a sensor in M , the set of sensors already selected for
inclusion in the connected sensor cover by the algorithm. In
Figure 2, if M contains the sensors corresponding to the two
left-most sensing disks S and S′, then the uncovered valid
subelements are 8, 9, 10, and 11.
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Figure 3: Working of the Centralized Algorithm.

The benefit of a candidate path P is the total number
of uncovered valid subelements covered by the sensors in P
divided by the number of sensors that are in P but not in
M . The most beneficialcandidate path is the candidate path
that has the most benefit among the given set of candidate
paths. 2

EXAMPLE 2. Figure 3 shows a set sensors M (solid cir-
cular dots), the region covered by M , query region RQ, and
sensing disks corresponding to some of the sensors not in
M (hollow circular dots). Figure 3 (a) and (b) depict two
consecutive stages of the algorithm.

Let us consider the stage of the algorithm shown in Fig-
ure 3 (a). At this stage, there are at least four candidate
sensors viz. C1, C2, C3, C4, as shown in the figure. The can-
didate paths associated with the candidate sensors are re-
spectively P1, P2, P3, P4 as shown. For sake of clarity, we
have not shown the set of sensors involved in the candidate
paths P3 and P4, but the figure shows the actual communi-
cation edges and sensors involved in the candidate paths P1

and P2. Let us assume that the most beneficial candidate
path at this stage is P2. The algorithm then chooses P2 as
P and adds the sensors C1, I2, and C2 to the set M .

The addition of sensors C1, I2, C2 to M yields the next
stage of the algorithm shown in Figure 3 (b). At this stage,
the sensor I5 becomes a candidate sensor, while C1 no longer
remains a candidate sensor. Also, the figure shows the re-
calculated and new candidate paths connecting each of the
candidate sensors C3, C4, I5 to some sensor in M . Here,
we have assumed that the candidate path P4 doesn’t change
from the previous stage, while the candidate path P3 changes
to the communication edge (C3, C2). Now, at this stage, if
P3 is the most beneficial path at this stage, the algorithm
would add the sensor C3 to M , which yields the next stage
(now shown in the figure). Finally, if the algorithm adds
to M a candidate path P4 connecting C4 to some sensor in
M , the set of sensors M would now cover the entire query
region and the algorithm returns the new M (obtained by
adding C3, C4, and other sensors in P4 to the M shown in

Figure 3 (b)) as the connected set cover. 2

Algorithm 1. Centralized Algorithm

Input: A sensor network consisting of the set of
sensors {I1, I2, . . . , In}. Each sensor Ii has a
sensing region Si associated with it. A query Q
over a region RQ in the network.

Output: A connected sensor cover M for query Q.

BEGIN
Let Q be the set of sensors whose sensing region
intersects with RQ. Let M denote the set of
sensors selected by the algorithm at a given stage.
Let RM be the region covered by M .
M := {Ii}, for some Ii ∈ Q.
while (RQ 6⊆ RM)

Let SC be the set of candidate sensors in Q,
i.e., the set of sensors in Q− M whose sensing
region intersects with some sensor in M .
Max Benefit := 0;
for each Ci ∈ SC

Find the most beneficial candidate path Pi

for the candidate sensor Ci, i.e., a candidate
path Pi with maximum benefit such that
Pi = <Ii0, Ii1, Ii2, . . . , Iil> for some l,
where Iil ∈ M, Ii0 = Ci,
and Iij can communicate directly to Ii(j−1).
Benefit := (No. of valid subelements covered
by the region ((Si0 ∪ Si1 ∪ . . . Sil) − RM ))/l;
if (Benefit > Max Benefit)

Max Benefit := Benefit;
P := Pi;

end if;
end for;
M := M ∪ P;

end while;
RETURNM ;

END. 3



Observation 1. The maximum number of subelements in
a 2-dimensional plane with n disks is n(n−1)+1. If we have
n convex objects, each having l sides, then the maximum
number of subelements is ln(n + 1). 2

From the observation, it is easy to see that Algorithm 1
can be implemented in O(n3) time, where n is the total
number of sensors in the network, by building shortest com-
munication paths for all pairs of sensors in O(n3) time at
the beginning.

Definition 6. (Link Radius) The link radius of a sensor
network is defined as the maximum communication distance
between any two sensors whose sensing regions intersect. 2

Theorem 1. Algorithm 1 returns a connected sensor cover
of size at most (r − 1)(1 + log d)|OPT |, where |OPT | is the
size of the optimal sensor cover (not necessarily connected),
d is the maximum number of subelements in a sensing region,
and r is the link radius of the sensor network. From Obser-
vation 1, the connected sensor cover size is within O(r log n)
factor of the optimal.

Proof. Whenever, a candidate path of sensors P is se-
lected for addition to M by Algorithm 1, we charge the
uncovered valid subelements covered by P with (|P| − 1),
the number of the unselected (not in M) sensors in P. The
charge (|P| − 1) is spread uniformly on each of the uncov-
ered valid subelements covered by P. Hence, each uncovered
valid subelement gets charged by (|P|− 1)/EP units, where
EP is the number of uncovered valid subelements covered
by P.

Let OPT be an optimal sensor cover for the given query
region in the sensor network. Let us consider a sensor Ii ∈
OPT and try to compute the maximum charge accumulated
by the sensing region Si of Ii during the entire course of Al-
gorithm 1. At each stage of the algorithm, some uncovered
valid subelements in the sensing region Si get covered by
the path of sensors P selected at that stage. Let ej be the
number of uncovered valid subelements of Si after the jth it-
eration of the while loop (jth stage) of the algorithm. Here,
e0 is the total number of valid subelements of Si. Now, the
number of uncovered valid subelements of Si covered dur-
ing the jth iteration is ej−1 − ej. Note that ej−1 − ej may
be zero, if there are no uncovered valid subelements of Si

covered in the jth iteration.
If Pj is the candidate path selected for addition at the jth

iteration and EP j is the number of uncovered valid subele-

ments covered by Pj , then the total charge T accumulated
by Si during the entire course of the algorithm is:

T =

j=k�
j=1

(ej−1 − ej) ∗ (|Pj| − 1)/EPj ,

assuming the loop runs for k iterations. As our goal is to
only compute an upper bound on T , let us assume, with-
out loss of generality, that all the terms in the above series
are non-zero, i.e., for all j, Pj covers a non-zero number of
uncovered valid subelements in Si.

Now, EP1/(|P1|−1) ≥ (e0−e1)/(r−1) and EPj /(|Pj|−
1) ≥ ej−1/(r − 1) for j ≥ 2, as Ii (along with a candidate
path of length at most r and benefit of at least ej−1/(r−1))
becomes a candidate sensor eligible for selection as soon as

some valid subelement of Ii gets covered by a sensor in M .
Thus,

T/(r − 1) ≤ 1 +

j=k�
j=2

(ej−1 − ej)/ej−1.

Using some algebra ([8], Chapter 35.3), the above gives
T ≤ (r − 1)(1 + log e0), where e0 < d is the total number of
valid subelements in Si. As the total charge spread (on the
sensing regions of the optimal sensor cover, OPT ) during
each stage of the algorithm is the number of new sensors
added to M , the total charge accumulated on the sensing
regions of all the sensors in OPT is equal to number of
sensors in the solution returned by the algorithm. Thus,
the size of the solution M returned by Algorithm 1 is at
most (r − 1)(1 + log d)|OPT |. Note that both r and d are
functions of network density.

Steiner Tree Based Approach: One way to solve the
connected sensor cover problem would be to construct a sen-
sor cover and then build a Steiner tree [3] to connect the sen-
sors in the sensor cover. This Steiner tree based approach is
conceptually simpler and yields the same theoretical bound
(O(r log n)) on the size of the solution returned. However,
the distributed implementation of such an approach would
require two phases – one to compute the sensor cover and
then another to construct the Steiner tree, and thus will pos-
sibly incur a higher communication cost than our proposed
distributed algorithm in Section 4. Nevertheless, Steiner
tree based approach could be used in scenarios, where the
sensors selected for coverage and those selected for connec-
tivity incur different costs with the former paying higher,
as the activity of sensing and related signal processing may
incur energy costs. We are investigating the Steiner tree
based algorithm for various possibilities of relative sensing
and communication costs, as part of our future work.

3.1 Weighted Version
Algorithm 1 can be generalized to handle the weighted

version of the connected sensor coverage problem. In the
weighted setting, each sensor has a weight associated and we
wish to select a connected sensor cover with the minimum
total weight. In practice, we would assign higher weights to
sensors that have a lower battery life and/or are critical to
the viability of the sensor network so that they have a lesser
chance of being selected.

The benefit of a candidate path in the weighted case is
defined as the total number of uncovered valid subelements
covered by P divided by the total weight of the sensors that
are in P , but not M . Thus, to handle the weighted case, the
value of Benefit in the algorithm is computed as follows:

Benefit = (Number of valid subelements covered by the re-

gion ((Si0 ∪ Si1 ∪ . . . Sil ∩ RQ)− RM ))/( � l−1
j=0 wij), where

wij is the weight of the sensor Iij.

Definition 7. (Weighted Communication Distance;
Weighted Link Radius) The weighted communication dis-
tance between two sensors is the weight of the minimum
weighted communication path between them.

The weighted link radius of a sensor network is defined
as the maximum weighted communication distance between
any two sensors whose sensing regions intersect. 2



Theorem 2. For the weighted connected sensor coverage
problem, the generalization of Algorithm 1 returns a con-
nected sensor cover of total weight at most r(1+log d)|OPT |,
where |OPT | is the total weight of an optimal sensor cover,
d is the maximum number of subelements in a sensing re-
gion, and r is the weighted link radius of the sensor network.

Proof. The proof follows the proof of Theorem 1. How-
ever, in the weighted case, the total charge T accumulated
by Si is given by:

T =

j=k�
j=1

(ej−1 − ej) ∗ (WPj − wil)/EPj ,

where WPj is the total weight of the sensors in Pj. Now,

EP1/(WP1 − w1l) ≥ (e0 − e1)/r and EPj /(WP j − wil) ≥
ej−1/r for j ≥ 2, as Ii (along with a candidate path of
weight at most r and benefit of at least ej−1/r) becomes a
candidate sensor eligible for selection as soon as some valid
subelement of Ii gets covered by a sensor in M . Thus,

T/r ≤ 1 +

j=k�
j=2

(ej−1 − ej)/ej−1.

Similar to the previous proof, the above gives T ≤ r(1 +
log e0), where e0 is the total number of valid subelements in
Si. Note that the total charge accumulated on the sensing
regions of all the sensors in OPT is equal to number of
sensors in the solution returned by the algorithm. Thus, the
total weight of the solution M returned by the algorithm is
at most r(1 + log d)|OPT |.

4. DISTRIBUTED SELF-ORGANIZATION
ALGORITHM

In this section, we describe the self-organizing distributed
version of Algorithm 1. As stated before, one of the key
features of our proposed approximation algorithm is that it
lends to a very natural distributed algorithm.

Like the centralized algorithm, the self-organizing distributed
algorithm goes through a sequence of stages to build a con-
nected sensor cover within the sensor network for a given
query. Throughout the course of the algorithm, the sensor
network maintains the following values:

• M , a set of sensors that have already been selected for
inclusion in the connected sensor cover by the algo-
rithm. Like the centralized algorithm described in the
previous section, the distributed algorithm also incre-
ments M by adding a candidate path of sensors to M
at each stage.

• SP , a set of candidate paths. Recall that, a candidate
path is a sequence of sensors that form a communica-
tion path connecting a candidate sensor to some sen-
sor in M , where a candidate sensor is a sensor whose
sensing region intersects with some sensing region of a
sensor in M . Each candidate sensor has exactly one
candidate path associated with it.

• P, the most recently added candidate path, and C, the
candidate sensor associated with P.

Each sensor in the network is aware of its membership in
M , or P, or in a candidate path in SP . Also, the most
recently added candidate sensor C stores the values M, SP,
and P. Each stage of the distributed algorithm consists of
the following sequence of transmission phases.

1. Candidate Path Search: The most recently added
candidate sensor C broadcasts a Candidate Path Search
(CPS) message to all sensors within 2r communica-
tion hops, to select new candidate paths and candi-
date sensors. Here, r is the link radius of the sensor
network. We choose 2r (instead of r) so that the CPS
message from C reaches even those candidate sensors
whose sensing disks intersect with that of other sensors
in P, the most recently added candidate path associ-
ated with C.

2. Candidate Path Response: Any sensor I that re-
ceives a CPS message checks to see if it is a candidate
sensor, i.e., if I’s sensing region intersects with the
sensing region of some sensor in M . If I is a candidate
sensor, it unicasts a Candidate Path Response (CPR)
message to the originating sensor C of the CPS mes-
sage. The CPR message contains as candidate path P
the sequence of sensors (including I) that the received
CPS message passed through since its origination.

3. Selection of Best Candidate Path/Sensor: The
sensor C, which was the originator of the CPS mes-
sages in the current stage, collects all the CPR mes-
sages sent to it by the candidate sensors. The candi-
date path P contained in each received CPR message
is added by C, after appropriate truncation, to SP ,
the set of candidate paths being maintained by the
sensor network. After having received all the CPR
messages sent to C during this stage, the sensor C se-
lects the most beneficial candidate path Pnew among
all the candidate paths in SP . Let, Cnew be the candi-
date sensor associated with the picked candidate path
Pnew, and let Inew be the set of sensors in the candi-
date path Pnew. The sensor C unicasts a NewC mes-
sage to Cnew with the following updated information:
M = M ∪ Inew; P = Pnew; SP = SP − Pnew.
Note that SP has also been augmented with all the
candidate paths received in the CPR messages.

4. Repeat: The sensor Cnew receives the NewC message
sent to it by C. After receiving the message, Cnew up-
dates the value C to itself (i.e., C = Cnew). That com-
pletes the current stage of the algorithm. The above
process repeats till the selected set of sensors M cover
the entire query region in the sensor network.

The above distributed algorithm guarantees a self-organiza-
tion of the sensor network into a logical topology that repre-
sents a connected sensor cover for the given query. To reduce
the size of the CPS and NewC messages, we represent the set
M by only the boundary sensors, i.e., the sensors that are
on the boundary of the region M covers. On an average,
the number of boundary sensors should be the square root
of the number of sensors in M .



4.1 Optimizations to Reduce Number of Mes-
sages

The following optimization techniques have been used by
the distributed algorithm to reduce the number of messages
incurred during the self-organization.

1. To reduce the number of messages for coordination,
we reuse the candidate paths computed for candidate
sensors at later stages of the algorithm. In contrast,
the centralized algorithm recomputes the (best) candi-
date paths for each candidate sensor at each stage and
picks the most beneficial candidate path. However, the
distributed algorithm does optimize already computed
candidate paths by truncating them if some sensor in
the candidate path has been newly added to M . Also,
the distributed algorithm does recalculate the benefit
of each candidate path in SP at each stage.

2. To compute the benefit of a candidate path, the dis-
tributed algorithm computes the area of the uncovered
query region covered by the candidate path instead of
the number of uncovered valid subelements covered by
the candidate path.

3. To reduce the number of broadcast CPS messages, we
stipulate that if a sensor has already been selected in
M then it does not broadcast a CPS message received
from another sensor. Also, a sensor broadcasts a CPS
broadcast message only once during any one stage of
the algorithm.

We observed through extensive experiments (as shown
later in Figure 4(b)) that the above optimizations do not
increase the size of the connected sensor cover constructed.
However, they do result in substantial savings in communi-
cation cost.
Number of Messages: If the NewC messages are trans-
mitted through an optimal path within M , it is not diffi-
cult to show that the total number of messages transmit-
ted during the entire course of the distributed algorithm is
O(k(log m + b)) for uniformly distributed sensors, where k
is the number of stages the algorithm goes through before
terminating, m is the size of connected sensor cover con-
structed, b is the maximum number of sensors within 2r
communication hops of any sensor. Here, as in the simula-
tion experiments in the next section, we assume piggyback-
ing of CPR messages at each stage, i.e., during the CPR
phase each sensor waits sufficiently long to collect all CPR
messages intended to pass through it, and then unicasts all
the collected CPR messages to the C in one message.

5. PERFORMANCE EVALUATION
We have constructed a simulator to evaluate the perfor-

mance of the distributed self-organization algorithm, and
contrast it with the naive flooding-based approach (see Sec-
tion 2.1). The simulator uses randomly placed sensor nodes
in a rectangular region. All sensor nodes have a circular
sensing region of radius s associated with them. A commu-
nication edge exists between two sensor nodes if they are
within a certain distance, called transmission radius, from
each other. The size of the rectangular region, number of
nodes (n), sensing radius (s), and transmission radius (t)
are input parameters of the simulator. The link radius (r)

is computed in terms of the above parameters and will be
described later.

The simulator only models message transmissions. It does
not model any link layer protocol or wireless channel char-
acteristics. Thus, all the messages in the simulator are
transmitted in an error-free manner.2 Also, the passage of
time is modeled in a time-stepped fashion, wherein during
each step, each node receives messages, performs appropri-
ate computations in response to these messages, and then
sends out messages as a result of these computations. While
such a simulator models an idealized communication subsys-
tem, it is sufficient for our purpose, as we are only interested
in counting message transmissions.

As in Section 2.1, let D be the number of messages needed
to compute the connected sensor cover and m be the size of
the computed connected sensor cover. We assume that the
spatial query runs over the entire geographic region with a
randomly selected sensor as the query source. The simula-
tor computes D and m, for a given set of input parameters.
Let us assume that the query runs q times. We evaluate the
threshold value qθ, such that for q > qθ the overall message
cost for the query using our distributed self-organization al-
gorithm is lower than the message cost using the naive ap-
proach. The number qθ is obtained by equating D +2qm to
2qn and then solving for q, which gives

qθ =
D

2(n − m)
.

In the simulation results that follow, we have used a 100×100
area. Sensors have a sensing radius s = 4. We vary the num-
ber of sensors (n) and transmission radius (t); t is varied
from 2 to 9, and n from 1600 to 4000. This range of pa-
rameters allows us to study performance for very sparse to
very dense networks. Our experiments with still lower val-
ues of t and n showed that the network was too sparse that
a connected sensor cover did not exist. Also, for t > 8, the
sensors with intersecting sensor disks are reachable within
one hop (i.e., r = 2). Thus, one set of experiments for t > 8
is sufficient.

Note also that only the spatial density of the sensors and
the ratio of the sensing and transmission radii affect the
performance of the algorithm. Thus, there is no need to
vary the size of the area and the sensing radius.

Before we describe the performance plots, we add a note
below on computation of the link radius r. While an exact
computation is neither necessary nor practical, it is impor-
tant to have fair idea of the value of r for the given param-
eters of the network. Too large a value will increase the
discovery cost D. Too small a value will decrease cost, but
may result in sub-optimal solutions (i.e., large m) or may
even fail to reach a solution.
Calculation of the link radius (r): Consider two sen-
sors I1 and I2 whose sensing disks touch, i.e., the distance
between them is 2s. Now, if there are enough sensors in
between I1 and I2 on the straight line connecting I1 and
I2, there will be a communication path of length 2s/t + 1
connecting I1 and I2. We characterize a network as dense if
there exist enough (2s/t) number of sensors evenly spread in
between (along the line connecting) any two sensors with in-
tersecting sensing disks. The link radius r should be (2s/t+

2The effect of transmission errors or message losses is a part
of our future work. Our algorithms can be extended to use
local repair mechanisms to compensate for message losses.
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Figure 4: Size of the sensor cover (m) computed by the distributed algorithm and the its ratio with that
computed by the centralized algorithm (m/mc), shown for various transmission radii and number of sensors.

1) for such dense networks.
Without going through a complex probabilistic analysis, it

is not possible to accurately calculate the minimum number
of random sensors required in a given area for a network to
be dense (as defined above) with high probability. We do
not feel that such an analysis is warranted as an accurate
computation of r is not essential. For our evaluation, we
simply consider networks with more than 4s/t sensors within
a distance 2s (i.e., with a linear density of 2/t) as dense.
Since we are using a 100×100 area, a dense network should
have at least (200/t)2 sensors. Thus, for dense networks with
more than (200/t)2 sensors, we use r = (2s/t+1). For a non-
dense network, we simply use a proportionate density factor
to “inflate” the value of r, i.e., for a network with n sensors
where n < (200/t)2, we use r = (2s/t+ 1) ∗ ((200/t)2/n). A
fractional value of the computed r is simulated by using a
probablity for the last hop forwarding of the CPS message.
For example, if r = 2.3, the CPS massage on the third hop
is forwarded with 30% probablity.
Simulation Results: Figure 4 plots m and ratio m/mc for
various values of n and transmission radius t, where m and
mc are the sizes of the connected sensor covers computed
by the distributed algorithm and the centralized algorithm
respectively. Note that m and mc are very small relative to
the network size n except for low n and t when the commu-
nication graph is very sparse and there is low redundancy in
the network. Figure 4(b) depicts excellent performance of
the distributed algorithm relative to the centralized version.
The ratio m/mc always remains close to the ideal value of
1. Note here that the distributed algorithm includes opti-
mizations mentioned in Section 4.1. Thus, the optimizations
introduced in the distributed algorithm to reduce commu-
nication cost do not impact the m/mc ratio, which remains
close to the ideal. Also, the above observation validates our
method for computation of r. In fact, lower values of r could
be possibly used without impacting the m/mc ratio signifi-
cantly, but reducing the communication cost D. Thus, the
performance our algorithm could be further improved.

Figure 5(a) depicts how the communication cost D in the

distributed algorithm changes with n and t. The explanation
for the cusp shape of the D vs. t plot is as follows. From the
above discussion, there is a threshold value of t, above which
the network becomes dense for a constant n. This threshold
is tθ = 200/

√
n. Given a network of size n, for t < tθ (non-

dense networks), the number of neighbors b within 2r hops
of a sensor is very high, as b ∝ (rt)2 ∝ 1/t4 based on our
computation of r for non-dense networks. Hence, we see a
high number of messages for very low t, which makes sense
as the communication graph is sparse for low t.

Now, for t > tθ, the network is dense and r = 2s/t + 1.
Thus, b, which is proportional to rt, remains almost constant
for t > tθ. However, with the increase in t, the link radius r
decreases which causes an increase in k, the number of stages
of the algorithm. With b and m (as seen in Figure 4(a))
being relatively constant, the increase in number of stages
causes a slow increase in the number of messages. Also, as
tθ ∝ 1/

√
n, tθ is larger for smaller n. Hence, we see that the

minimum number of messages reached for 1600-2000 number
of sensors is at t = 5, while for higher number of sensors
(n) the minimum is reached at a lower transmission radius
(t = 3).

Figure 5(b) plots qθ vs. n for different values of t. This
plot is somewhat similar to the plot of D, because of the
strong dependency of qθ on D. Notice that the value of qθ

is fairly small – almost always less than 7 except when the
communication graph is very sparse (low n together with
low t). This shows that except for very sparse networks, our
self-organization technique will always save energy relative
to the naive flooding approach, whenever the query runs for
more than about 7 times – longer runs giving more energy
saving benefits.

6. RELATED WORK
The work most closely related to ours is that by Slijepc-

sevic and Potkonjak [25], where the authors consider power-
efficient organization of sensor networks. They introduce a
heuristic that selects mutually exclusive sets of sensors, the
members of each of those sets together completely cover the
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Figure 5: The communication cost (D) for the distributed algorithm and the threshold value of q (qθ) shown
for various transmission radii and number of sensors.

monitored/query area. As only one set of sensors need to be
active at any time, their technique results in energy savings
while preserving coverage. They only present a centralized
algorithm which does not extend easily to a distributed algo-
rithm. Moreover, they do not consider the communication
cost incurred in the execution of their heuristic or the query.
Hence, they do not require the selected sets to be connected.
We should note that a repeated execution of our algorithm
gives a good heuristic for the problem addressed in their
work. In other closely related work, Shakkottai et al. in [24]
consider an unreliable sensor grid-network and derive neces-
sary and sufficient conditions for the coverage of the region
and connectivity of the network in terms of the transmission
radius, sensing radius, and failure rate of the sensors.

In [21], the authors formulate coverage problems to ad-
dress the quality of service (surveillance) provided by a sen-
sor network. In particular, they address the problem of find-
ing maximal paths of lowest and highest observabilities in a
sensor network, which is very different than our connected
sensor coverage problem. The work in [19] addresses the
problem of selecting a set of k base stations from a given
set of n stations to maximize radio coverage. The issue of
connectivity, query execution, or energy-efficiency does not
arise in the radio coverage setting.

There has been a significant amount of work on developing
efficient mechanisms to broadcast a message in a mobile ad
hoc network. The idea here is to suppress redundant broad-
casts by using only a small number of nodes to broadcast
but ensuring that all the nodes in the network receive the
broadcast message. The above described problem of select-
ing a minimum number of nodes such that each node in the
network is either selected or a neighbor of a selected node is
known as the minimum dominating connected set (MDCS)
problem [14]. The work in wireless network research com-
munity [9, 18, 26, 1, 7] has primarily focussed on developing
energy-efficient distributed algorithms to construct a near-
optimal dominating connected set. However, the notion of
dominating set is significantly different than that of sensor
cover.

Other related problems based on various other notions of
coverage are as follows. The Art Gallery Problem [20, 10]
considers placement of observers in a room such that each
point in the room is “seen” by at least one observer. The
Art Gallery Problem was solved optimally in 2D and shown
to be NP-hard in 3D case. The essential difference of the Art
Gallery and the related problems with our connected sensor
coverage problem is that the Art Gallery and related prob-
lems require an optimal placement of observers, while our
problem deals with an optimal selection of already placed
sensors. From that perspective, the geometric variations
[16, 17, 5] of the classic set cover problem are more related
to our problem. However, none of the geometric set cover
variations addressed in the literature deal with the notion of
connectivity. For the disk-cover problem [5], there is a poly-
nomial algorithm that delivers a constant-factor approxima-
tion, however, the approximation algorithm does not gener-
alize to other geometric regions (not even rectangles) and
due to involved computation required, the straightforward
distributed implementation would incur a very large number
of messages.

There has been some other work done on optimizing en-
ergy consumption in sensor networks. For example, in [6],
heuristic techniques have been designed to put sensor net-
work nodes in inactive states based on the observed con-
nectivity in the network and loss of messages. In [15], a
randomized clustering algorithm has been devised to select
cluster heads in a sensor network so that the energy budget
for relaying information to a gateway is distributed evenly
among sensor nodes. None of the above work deals with the
notions of spatial coverage or connectivity.

7. CONCLUSIONS
We have designed efficient algorithms for self-organization

in sensor networks. The self-organization algorithms exploit
the redundancy in the sensor network to select a small subset
of sensors (called connected sensor cover) that is sufficient
to process a given query. The motivation is to conserve the
overall battery power of the network. We show that the



centralized algorithm computes a near-optimal solution –
within logarithmic bound of the optimal. The distributed
version uses certain optimizations to reduce message over-
heads and the simulations show that the size of the solution
delivered is of almost the same size as the centralized algo-
rithm.

The sensors that are not selected in the connected sensor
cover are not used during query execution, but may be used
during the self-organization phase. Since the communica-
tion cost incurred in a query execution is proportional to
the number of sensors involved, our scheme is able to reduce
communication cost substantially. The cost savings are pro-
portional to (i) the density of the network (which reflects on
the redundancy) and (ii) the number of times the query is
run – longer running queries result in greater cost savings
as it reduces the amortized overhead cost of running the
self-organization algorithm. We show through simulations
that the overhead cost is indeed small enough that running
queries for more than a few times (about 7) starts generating
cost savings for a wide range of sensor network parameters.

The weighted version algorithm takes into account the re-
maining battery power in the sensors so that sensors running
low on battery has a smaller chance of being selected in the
connected sensor cover. This gives a tremendous flexibil-
ity for balancing the available energy budget in the network
among all sensors, thus providing a longer operational life
time. It also worthwhile to note that while we focused pri-
marily on communication cost savings as a method to con-
serve battery power, our technique can potentially provide
further savings depending on the architecture of the sen-
sor. For example, the sensors not in the connected sensor
cover can be put to sleep for the duration of time the query
is to run (assuming, of course, that they are not used for
other concurrent queries). Our technique can also be used
to compute multiple disjoint connected sensor covers in a
distributed manner. Multiple connected sensor covers can
be useful for very long running queries; different covers can
be used at different times to balance the battery drain over
different sensors.
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