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Abstract— Data caching can significantly improve the efficiency
of information access in a wireless ad hoc network by reducing
the access latency and bandwidth usage. However, designing effi-
cient distributed caching algorithms is non-trivial when network
nodes have limited memory. In this article, we consider the cache
placement problem of minimizing total data access cost in ad
hoc networks with multiple data items and nodes with limited
memory capacity. The above optimization problem is known to
be NP-hard. Defining benefit as the reduction in total access
cost, we present a polynomial-time centralized approximation
algorithm that provably delivers a solution whose benefit is
at least one-fourth (one-half for uniform-size data items) of
the optimal benefit. The approximation algorithm is amenable
to localized distributed implementation, which is shown via
simulations to perform close to the approximation algorithm. Our
distributed algorithm naturally extends to networks with mobile
nodes. We simulate our distributed algorithm using a network
simulator (ns2), and demonstrate that it significantly outperforms
another existing caching technique (by Yin and Cao [30]) in all
important performance metrics. The performance differential is
particularly large in more challenging scenarios, such as higher
access frequency and smaller memory.

I. Introduction
Ad hoc networks are multihop wireless networks of small

computing devices with wireless interfaces. The computing
devices could be conventional computers (e.g., PDA, laptop,
or PC) or backbone routing platforms, or even embedded
processors such as sensor nodes. The problem of optimal
placement of caches to reduce overall cost of accessing data
is motivated by the following two defining characteristics of
ad hoc networks. Firstly, the ad hoc networks are multihop
networks without a central base station. Thus, remote access
of information typically occurs via multi-hop routing, which
can greatly benefit from caching to reduce access latency.
Secondly, the network is generally resource constrained in
terms of channel bandwidth or battery power in the nodes.
Caching helps in reducing communication, which results in
savings in bandwidth as well as battery energy. The problem
of cache placement is particularly challenging when each
network node has limited memory to cache data items.

In this paper, our focus is on developing efficient caching
techniques in ad hoc networks with memory limitations.
Research into data storage, access, and dissemination tech-
niques in ad hoc networks is not new. In particular, these
mechanisms have been investigated in connection with sen-
sor networking [15, 25], peer-to-peer networks [1, 17], mesh
networks [18], world wide web [24], and even more general
ad hoc networks [12, 30]. However, the presented approaches

have so far been somewhat “ad hoc” and empirical without
any strong analytical results. In contrast, the theory literature
abounds in analytical studies into the optimality properties of
caching and replica allocation problems (see, for example, [3]).
However, distributed implementations of these techniques and
their performances in complex network settings have not
been investigated. Its even unclear whether these techniques
are amenable to efficient distributed implementations. Our
goal in this paper is to develop an approach that is both
analytically tractable with a provable performance bound in a
centralized setting, and is also amenable to a natural distributed
implementation.

In our network model, there are multiple data items; each
data item has a server, and a set of clients that wish to
access the data item at a given frequency. Each node care-
fully chooses data items to cache in its limited memory to
minimize the overall access cost. Essentially, in this article,
we develop efficient strategies to select data items to cache
at each node. In particular, we develop two algorithms –
a centralized approximation algorithm which delivers a 4-
approximation (2-approximation for uniform-size data items)
solution, and a localized distributed algorithm which is based
on the approximation algorithm and can handle mobility of
nodes and dynamic traffic conditions. Using simulations, we
show that the distributed algorithm performs very close to the
approximation algorithm. Finally, we show through extensive
experiments on ns-2 [11] that our proposed distributed algo-
rithm performs much better than prior approach over a broad
range of parameter values. Ours is the first work to present a
distributed implementation based on an approximation algo-
rithm for the general problem of cache placement of multiple
data items under memory constraint.

The rest of the paper is organized as follows. In Section II,
we formally define the cache placement problem addressed
in this paper, and present an overview of the related work. In
Section III, we present our designed centralized approximation
and distributed algorithms. Section IV presents simulation
results. We end with concluding remarks in Section V.

II. Cache Placement Problem

In this section, we formally define the cache placement
problem addressed in our article, and discuss related work.

A multi-hop ad hoc network can be represented as an undi-
rected graph G(V, E) where the set of vertices V represents
the nodes in the network, and E is the set of weighted edges in



the graph. Two network nodes that can communicate directly
with each other are connected by an edge in the graph. The
edge weight may represent a link metric such as loss rate,
delay, or transmission power. For the cache placement problem
addressed in this article, there are multiple data items and each
data item is served by its server (a network node may act as a
server for more than one data items). Each network node has
limited memory and can cache multiple data items subject to
its memory capacity limitation. The objective of our cache
placement problem is to minimize the overall access cost.
Below, we give a formal definition of the cache placement
problem addressed in this article.

Problem Formulation. Given a general ad hoc network graph
G(V, E) with p data items D1, D2, . . . , Dp, where a data item
Dj is served by a server Sj . A network node may act as a
server for multiple data items. We use mi to represent the
memory capacity of a network node i. For clarity of presen-
tation, we assume uniform-size (occupying unit memory) data
items for now. Our techniques easily generalize to non-uniform
size data items, as discussed later. We use aij to denote the
access frequency with which a network node i request the data
item Dj , and dil to denote the weighted distance between two
network nodes i and l. The cache placement problem is to
select a set of sets of cache nodes M = {M1,M2, . . . ,Mp},
where each network node in Mj stores a copy of Dj , to
minimize the total access cost

τ(G, M) =
∑

i∈V

p∑

j=1

aij ×minl∈({Sj}∪Mj)dil,

under the memory capacity constraint that

|{Mj |i ∈ Mj}| ≤ mi for all i ∈ V,

which means each network node i appears in at most mi sets of
M . The cache placement problem is known to be NP-hard [3].

A. Related Work
Below, we categorize the prior work by number of data

items and network topology.

Single Data Item in General Graphs. The general problem of
determining optimal cache placements in an arbitrary network
topology has similarity to two problems in graph theory viz.
facility location problem and the k-median problem. Both the
problems consider only a single facility type (data item) in
the network. In the facility-location problem, setting up a
cache at a node incurs a certain fixed cost, and the goal is to
minimize the sum of total access cost and the setting-up costs
of all caches, without any constraint. On the other hand, the
k-median problem minimizes the total access cost under the
number constraint, i.e., that at most k nodes can be selected as
caches. Both problems are NP-hard, and a number of constant-
factor approximation algorithms have been developed for each
of the problems [9, 10, 16], under the assumption of triangular
inequality of edge costs. Without the triangular inequality
assumption, either problem is as hard as approximating the
set cover [16, 21] and thus, cannot be approximated better
than O(log |V |) unless P = NP. Here, |V | is the size of the

network. In other related work, Nuggehalli et al. [22] formulate
the caching problem in ad hoc networks as a special case of
the connected facility location [26].

Single Data Item in Tree Topology. Several papers in
the literature circumvent the hardness of the facility-location
and k-median problems by assuming that the network has a
tree topology [4, 19, 20, 27, 28]. In particular, Tamir [27] and
Vigneron et al. [28] design optimal dynamic programming
polynomial algorithms for the k-median problem in undirected
and directed trees respectively. In other works, Krishnan et
al. [20] consider placement of k “transparent” caches, Kalpakis
et al. [19] consider a cost model involving reads, writes,
and storage, and Bhattacharya et al. [4] present a distributed
algorithm for sensor networks to reduce the total power
expended. All of the above works consider only a single data
time in a tree network topology.1

Multiple Data Items. Hara [12] proposes three algorithms for
cache placement of multiple data items in ad hoc networks. In
the first approach, each node caches the items most frequently
accessed by itself; the second approach eliminates replications
among neighboring nodes introduced by the first approach; the
third approach require one or more “central” nodes to gather
neighborhood information and determine caching placements.
The first two approaches are largely localized, and hence,
would fare very badly when the percentage of client nodes
in the network is low, or the access frequencies are uniform.
For the third approach, it is hard to find stable nodes to act
as “central nodes” in ad hoc networks because of frequent
failures and movements. All the above approaches assume the
knowledge of access frequencies. In extensions of the above
work, [13] and [14] generalize the above approaches for push-
based systems and updates respectively. In other related works,
Xu et al. [29] discuss placement of “transparent” caches in tree
networks.

Our work on cache placement problem is most closely
related to the works by Yin and Cao [30] and Baev and
Rajaraman [3]. Yin and Cao [30] design and evaluate three
simple distributed caching techniques, viz., CacheData which
caches the passing-by data item, CachePath which caches the
path to the nearest cache of the passing-by data item, and
HybridCache which caches the data item if its size is small
enough, else caches the path to the data. They use LRU policy
for cache replacement. To the best of our knowledge, [30]
is the only work that presents a distributed cache placement
algorithm in a multi-hop ad hoc network with memory con-
straint at each node. Thus, we use the algorithms in [30] as a
comparison point for our study.

Baev and Rajaraman [3] design a 20.5-approximation algo-
rithm for the cache placement problem with uniform-size data
items. For the non-uniform size data items, they show that
there is no polynomial-time approximation unless P = NP.
They circumvent the non-approximability by increasing the
given node memory capacities by the size of the largest
data item, and generalize their 20.5-approximation algorithm.

1[20] formulates the problem in general graphs, but designs algorithms for
tree topologies with single server.



However, their approach (as noted by themselves) is not
amenable to an efficient distributed implementation.

Our Work. In this article, we circumvent the non-
approximability of the cache placement problem by choosing
to maximize the benefit (reduction in total access cost) instead
of minimizing the total access cost. In particular, we design
a simple centralized algorithm that delivers a solution whose
benefit is at least one-fourth (one-half for uniform-size data
items) of the optimal benefit without using any more than
the given memory capacities. To the best of our knowledge,
ours and [3] are the only2 works that present approximation
algorithms for the general placement of cache placement
for multiple data items in networks with memory constraint.
However, as noted before, [3]’s approach is not amenable to an
efficient distributed implementation, while our approximation
algorithm yields a natural distributed implementation which
is localized and shown (using ns2 simulations) to be efficient
even in mobile and dynamic traffic conditions. Moreover, as
stated in Theorem 2, our approximation result is an improve-
ment over that of [3] when optimal access cost is at least
(1/40)th of the total access cost without the caches. Finally,
unlike [3], we do not make the assumption of the cost function
satisfying the triangular inequality.

III. Cache Placement Algorithms
In this section, we first present our centralized approxi-

mation algorithm. Then, we design its localized distributed
implementation that performs very close to the approximation
algorithm in our simulations.

A. Centralized Greedy Algorithm (CGA)
The designed centralized algorithm is essentially a greedy

approach, and we refer to it as CGA (Centralized Greedy
Algorithm). CGA starts with all network nodes having all
empty memory pages, and then, iteratively caches data items
into memory pages maximizing the benefit in a greedy manner
at each step. Thus, at each step, the algorithm picks a data item
Dj to cache into an empty memory page r of a network node
such that the benefit of caching Dj at r is the maximum among
all possible choices of Dj and r at that step. The algorithm
terminates when all memory pages have been cached with data
items.

For formal analysis of CGA, we first define a set of variables
Aijk, where selection of a variable Aijk indicates that the
kth memory page of node i has been selected for storage of
data item Dj , and reformulate the cache placement problem in
terms of selection of Aijk variables. Recall that for simplicity
we have assumed that each data item is of unit size, and
occupies one memory page of a node.

Problem Formulation using Aijk. Given a network graph
G(V, E), where each node i ∈ V has a memory capacity of
mi pages, and p data items D1, . . . , Dp in the network with the
respective servers S1, . . . , Sp. Select a set Γ of variables Aijk,
where i ∈ V , 1 ≤ j ≤ p, 1 ≤ k ≤ mi, and if Aijk ∈ Γ and

2[2] presents a competitive online algorithm, but uses polylog-factor bigger
memory capacity at nodes compared to the optimal.

Aij′k ∈ Γ then j = j′, such the total access cost τ(G, Γ) (as
defined below) is minimized. Note that the memory constraint
is subsumed in the restriction on Γ that if Aijk ∈ Γ, then
Aij′k /∈ Γ for any j′ 6= j. The total access cost τ(G, Γ) for a
selected set of variables can be easily defined as:

τ(G, Γ) =
p∑

j=1

∑

i∈V

aij ×minl∈({Sj}∪{i′|Ai′jk∈Γ})dil.

Note that the set of cache nodes Mj that store a particular
data item Dj can be easily derived from the selected set of
variables Γ.

Centralized Greedy Algorithm (CGA). CGA works by
iteratively selecting a variable Aijk that gives the highest
“benefit” at that stage. The benefit of adding a variable Aijk

into an already selected set of variables Γ is the reduction in
the total access cost if the data item Dj is cached into the
empty kth memory page of the network node i. The benefit
of selecting a variable is formally defined below.

Definition 1: (Benefit of selecting Aijk.) Let Γ denote
the set of variables that have been already selected by the
centralized greedy algorithm at some stage. The benefit of a
variable Aijk (i ∈ V , j ≤ p, k ≤ mi) with respect to Γ is
denoted as β(Aijk,Γ) and is defined as follows:
β(Aijk,Γ) =




Undefined if Aij′k ∈ Γ, j′ 6= j
0 if Aijk′ ∈ Γ
τ(G, Γ)− τ(G, Γ ∪ {Aijk}) otherwise

where τ(G, Γ) is as defined before. The first condition of the
above definition stipulates that if the kth memory page of
the node i is not empty (i.e., has already been selected to
store another data item j′ due to Aij′k ∈ Γ), then the benefit
β(Aijk,Γ) is undefined. The second condition specifies that
the benefit of a variable Aijk with respect to Γ is zero if the
data item Dj has already been stored at some other memory
page k′ of the node i. ¤

Algorithm 1: Centralized Greedy Algorithm (CGA)
BEGIN

Γ = ∅;
while (there is a variable Aijk with defined benefit)

Let Aijk be the variable with maximum β(Aijk,Γ).
Γ = Γ ∪ {Aijk};

end while;
RETURN Γ;

END. ♦
The total running time of CGA is O(p2|V |3m), where |V | is
the size in the network, m is the average number of memory
pages in a node, and p is the total number of data items. Note
that the number of iterations in the above algorithm is bounded
by |V |m, and at each stage we need to compute at most pV
benefit values where each benefit value computation may take
O(pV ) time.

Theorem 1: CGA (Algorithm 1) delivers a solution whose
total benefit is at least half of the optimal benefit.
Proof: Let L be the total number of iterations of CGA. Note
that L is equal to the total number of memory pages in the



network. Let Γl be the set of variables selected at the end of
lth iteration, and let ζl be the variable added to the set Γl−1

in the lth iteration. Let ζl be a variable Aijk signifying that
in the lth iteration CGA decided to store jth data item in the
kth memory page of the i node. Without loss of generality,
we can assume that the optimal solution also stores data items
in all memory pages. Now, let λl be the variable Aij′k where
j′ is the data item stored by the optimal solution in the kth

memory page of node i. By the greedy choice of ζl, we have

β(ζl, Γl−1) ≥ β(λl,Γl−1), ∀l ≤ L. (1)

Let O be the optimal benefit,3 and C be the benefit of the
CGA solution. Note that4

C =
L∑

l=1

β(ζl, Γl−1). (2)

Now, consider a modified network G′ wherein each node i has
a memory capacity of 2mi. We construct a cache placement
solution for G′ by taking a union of data items selected
by CGA and data items selected in an optimal solution for
each node. More formally, for each variable λl = Aij′k as
defined above, create a variable λ′l = Aij′k′ where k′ =
mi + k. Obviously, the benefit O′ of the set of variables
{ζ1, ζ2, . . . , ζL, λ′1, λ

′
2, . . . , λ

′
L} in G′ is greater than or equal

to the optimal benefit O in G. Now, to compute O′, we
add the variables in the order of ζ1, ζ2, . . . , ζL, λ′1, λ

′
2, . . . , λ

′
L

and add up the benefits of each newly added variable. Let
Γ′l = {ζ1, ζ2, . . . , ζL} ∪ {λ1, λ2, . . . , λl}, and recall that Γl =
{ζ1, ζ2, . . . , ζl}. Now, we have

O ≤ O′ =
L∑

l=1

β(ζl,Γl−1) +
L∑

l=1

β(λ′l, Γ
′
l−1)

= C +
L∑

l=1

β(λ′l,Γ
′
l−1) From (2)

≤ C +
L∑

l=1

β(λl,Γl−1) Since λl = λ′l, Γl−1 ⊆ Γ′l−1

≤ 2C From (1) and (2)

The following theorem follows from the above theorem and
the definition of benefit, and shows that our above result is an
improvement of the 20.5-approximation result of [3] when the
optimal access cost is at least (1/40)th of the total access cost
without the caches.

Theorem 2: If the access cost without the caches is less
than 40 times the optimal access cost using optimal cache
placement, then the total access cost of the CGA solution is
less than 20.5 times the optimal access cost. ¤
Non-uniform Size Data Items and Set-up Costs. To handle
non-uniform size data items, CGA continues to select data
items in the order of their benefit per unit size until each
node’s memory is exceeded by the last data item cached. At

3Note that a solution with optimal benefit also has optimal access cost.
4Note that O 6=PL

l=1 β(λl, Γl−1). Also, in spite of (2), the benefit value
C is actually independent of the order in which ζl are selected.

the end of the above process, the CGA picks the better of the
following two feasible solutions: (i) Each node caches only
its last data item, (ii) Each node caches all the selected data
items except the last. For (i) to be feasible, we assume that
size of the largest data item in the system is less than the
memory capacity of any node. It can be shown that above
process yields a solution whose benefit is at least 1/4 of the
optimal benefit. Our techniques can also be easily generalized
to incorporate set-up costs of placing a cache at a node, by
extending the benefit function appropriately. For the rest of
the article, we assume arbitrary size data items.

B. Distributed Greedy Algorithm (DGA)
In this subsection, we describe a localized distributed imple-

mentation of CGA. We refer to the designed distributed imple-
mentation as DGA (Distributed Greedy Algorithm). The ad-
vantage of DGA is that it adapts to dynamic traffic conditions,
and can be easily implemented in an operational (possibly,
mobile) network with low communication overheads. While
we cannot prove any bound on the quality of the solution
produced by DGA, we show through extensive simulations
that the performance (in terms of the quality of the solution
delivered) of the DGA is very close to that of the CGA. The
DGA is formed of two important components – nearest-cache
tables and localized caching policy – as described below.

Nearest-cache Tables. For each network node, we maintain
the nearest node (including itself) that has a copy of the
data item Dj for each data item Dj in the network. More
specifically, each node i in the network maintains a nearest-
cache table, where an entry in the nearest-cache table is of the
form (Dj , Nj) where Nj is the closest node that has a copy of
Dj . Note that if i is the server of Dj or has cached Dj , then
Nj is i. In addition, if a node i has cached Dj , then it also
maintains an entry (Dj , N

2
j ), where N2

j is the second-nearest
cache, i.e., the closest node (other than i itself) that has a copy
of Dj . The second-nearest cache information is helpful when
node i decides to remove the cached item Dj . Note that if i
is the server of Dj , then Nj is i. The above information is in
addition to any information (such as routing tables) maintained
by the underlying routing protocol. The nearest-cache tables
at network nodes in the network are maintained as follows in
response to cache placement changes.

Addition of a Cache. When a node i caches a data item Dj , it
broadcasts an AddCache message to all of its neighbors. The
AddCache message contains the tuple (i,Dj) signifying the
ID of the originating node and the ID of the newly cached data
item. Consider a node l that receives the AddCache message
(i,Dj). Let (Dj , Nj) be the nearest-cache table entry at node
l signifying that Nj is the cache node currently closest to l
that has the data item Dj . If dli < dlNj ,5 then the nearest-
cache table entry (Dj , Nj) is updated to (Dj , i), and the
AddCache message is forwarded by l to all of its neighbors.
Otherwise, the node l sends the AddCache message to the
single node Nj (which could be itself) so that Nj can possibly

5The distance values are assumed to be available from the underlying
routing protocol.



update information about its second-nearest cache. The above
process maintains correctness of nearest-cache entries in a
static network with bounded communication delays because
of the following fact. Any node whose nearest-cache table
entry needs to change in response to addition of a cache at
node i is guaranteed to have a path P to i such that every
intermediate node on P will need to change its nearest-cache
table entry (and hence, forward the AddCache message). In
addition, the second-nearest cache entries are also correctly
maintained because of the following observation. If node i1
has cached the data item Dj and the second-nearest cache to
i1 is i2, then there exist two neighboring nodes i3 and i4 (not
necessarily different from i1 or i2) on the shortest path from
i1 to i2 such that the nearest-cache node of i3 is i1 and of i4
is i2.
Deletion of a Cache. To efficiently maintain the nearest-cache
tables in response to deletion of a cache, we maintain a cache
list Cj for each data item Dj at its server Sj . The cache
list Cj contains the set of nodes (including Sj) that have
cached Dj . To keep the cache list Cj up to date, the server
Sj is informed whenever the data time Dj is cached at or
removed from a node. Note that the cache list Cj is almost
essential for the server Sj to efficiently update Dj at the
cache nodes. Now, when a node i removes a data item Dj

from its local cache, it first requests Cj from the server Sj .
Then, the node i broadcasts a DeleteCache message with
the information (i,Dj , Cj) to all of its neighbors. Consider
a node l that receives the DeleteCache message and let
(Dj , Nj) be its nearest-cache table entry. If Nj = i, then
the node l updates its nearest-cache entry using Cj , and
forwards the DeleteCache message to all its neighbors.
Otherwise, the node l sends the DeleteCache message to
the node Nj , based on the the argument similar to the case of
AddCache. An alternate strategy that does not require cache
lists is to assume that Cj = {Sj}; however, such a strategy
will definitely lead to more access cost.
Integrated Cache-Routing Tables. Nearest-caching tables can
be used in conjunction with any underlying routing protocol to
reach the nearest cache node, as long as the distances to other
nodes are maintained by the routing protocol (or available oth-
erwise). If the underlying routing protocol maintains routing
tables [23], then the nearest-cache tables can be integrated
with the routing tables as follows. For a data item Dj , let Hj

be the next node on the shortest path to Nj , the closest node
storing Dj . Now, if we maintain a cache-routing table having
entries of the form (Dj ,Hj , δj) where δj is the distance to
Nj , then there is no need for routing tables. However, note
that maintaining cache-routing tables instead of nearest-cache
tables and routing tables doesn’t offer any clear advantage in
terms of number of messages transmissions.

Mobile Networks. To handle mobility of nodes, we could
maintain the integrated cache-routing tables in the similar
vein as routing tables [23] are maintained in mobile ad hoc
networks. Alternatively, we could have the servers periodically
broadcast the latest cache lists. In our simulations, we adopted
the latter strategy, since it precludes the need to broadcast
AddCache and DeleteCache messages to some extent.

Localized Caching Policy. The caching policy of DGA is as
follows. Each node computes benefit of data items based on its
“local traffic” observed for a sufficiently long time. The local
traffic of a node i includes its own local data requests, non-
local data requests to data items cached at i, and the traffic
that the node i is forwarding to other nodes in the network.
Local Benefit. We refer to the benefit computed based on
node’s local traffic as the local benefit. For each data item Dj

not cached at node i, the node i calculates the local benefit
gained by caching the item Dj , while for each data item
Dj cached at node i, the node i computes the local benefit
lost by removing the item. In particular, the local benefit Bij

of caching (or removing) Dj at node i is the reduction (or
increase) in access cost given by

Bij = tijδj ,

where tij is the access frequency observed by node i for the
item Dj in its local traffic, and δj is the distance from i to Nj

(or N2
j ) – the nearest-node other than i that has the copy of

the data item Dj . Using the nearest-cache tables, each node
can compute the local benefits of data items in a localized
manner using only local information. Since the traffic changes
dynamically (due to new cache placements), each node needs
to continually recompute local benefits based on most recently
observed local traffic.
Caching Policy. A node decides to cache the most beneficial
(in terms of local benefit per unit size of data item) data items
that can fit in its local memory. When the local cache memory
of a node is full, the following cache replacement policy is
used. Let |D| denote the size of a data item (or a set of data
items) D. If the local benefit of a newly available data item Dj

is higher than the total local benefit of some set D of cached
data items where |D| > |Dj |, then the set D is replaced by
Dj . Since, adding or replacing a cache entails communication
overhead (due to AddCache or DeleteCache messages),
we employ a concept of benefit threshold. In particular, a data
item is newly cached only if its local benefit is higher than
the benefit threshold, and a data item replaces a set of cached
data items only if the difference in their local benefits is greater
than the benefit threshold.

Distributed Greedy Algorithm (DGA). The above compo-
nents of nearest-cache table and cache replacement policy are
combined to yield our Distributed Greedy Algorithm (DGA)
for cache placement problem. In addition, the server uses the
cache list to periodically update the caches in response to
changes to the data at the server. The departure of DGA from
CGA is primarily in its inability to gather information about all
traffic (access frequencies). In addition, the inaccuracies and
staleness of the nearest-cache table entries (due to message
losses or arbitrary communication delays) may result in ap-
proximate local benefit values. Finally, in DGA, the placement
of caches happens simultaneously at all nodes in a distributed
manner, which is in contrast to the sequential manner in which
the caches are selected by the CGA. However, DGA is able to
cope with dynamically changing access frequencies and cache
placements. As noted before, any changes in cache placements
trigger updates in the nearest-cache table, which in turn affect



the local benefit values. Below is a summarized description of
the DGA.

Algorithm 2: Distributed Greedy Algorithm (DGA)
Setting

A network graph G(V, E) with p data items.
Each node i has a memory capacity of mi pages.
Let Θ be the benefit threshold.

Program of Node i
BEGIN

When a data item Dj passes by:
if local memory has available space and (Bij > Θ)
then cache Dj

else if there is a set D of cached data items such that
(local benefit of D < Bij −Θ) and (|D| ≥ |Dj |),
then replace D with Dj .

When a data item Dj is added to local cache
Notify the server of Dj .
Broadcast an AddCache message containing (i,Dj)

When a data item Dj is deleted from local cache
Get the cache list Cj from the server of Dj

Broadcast a DeleteCache message with (i,Dj , Cj)
On receiving an AddCache message (i′, Dj)

if i′ is nearer than current nearest-cache for Dj ,
then update nearest-cache table entry and

broadcast the AddCache message to neighbors
else send the message to the nearest-cache of i

On receiving a DeleteCache message (i′, Dj , Cj)
if i′ is the current nearest-cache for Dj

then update the nearest-case of Dj using Cj , and
broadcast the DeleteCache message.

else send the message to the nearest-cache of i

For mobile networks, instead of AddCache and
DeleteCache messages, for each data item, its server
periodically broadcasts (to the entire network) the latest
cache list.

END. ♦
Performance Analysis. Note that the performance guarantee
of CGA (i.e., proof of Theorem 1) holds even if the CGA
were to consider the memory pages in some arbitrary order
and select the most beneficial caches for each one of them.
Now, based on the above observation, if we assume that local
benefit is reflective of the accurate benefit (i.e., if the local
traffic seen by a node i is the only traffic that is affected
by caching a data item at node i), then DGA also yields a
solution whose benefit is one-fourth of the optimal benefit.
Our simulation results in Section IV-A show that DGA and
CGA indeed perform very close.

IV. Performance Evaluation
We demonstrate through simulations the performance of our

designed cache placement algorithms over randomly generated
network topologies. We first compare the relative quality of
the solutions returned by CGA and DGA. Then, we turn
our attention to application level performance in complex
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Fig. 1. Performance comparison of CGA and DGA. Here, each data item is
unit size and number of clients (for each data item) is 250.

network settings, and evaluate our designed DGA with re-
spect to a naive distributed algorithm and the HybridCache
algorithm [30] using the ns-2 simulator [11].

A. CGA vs. DGA
In this subsection, we evaluate the relative performance of

CGA and DGA, by comparing the benefits of the solutions
delivered.

For the purposes of implementing a centralized strategy,
we use our own simulator for implementation and comparison
of our designed algorithms. In our simulator, DGA is imple-
mented as a dynamically evolving process wherein initially
all the memory pages are free and the nearest-cache table
entries point to the corresponding servers. This initialization
of nearest-cache table entries results in traffic being directed
to servers, which triggers caching of data items at nodes,
which in turn causes changes in the nearest-cache tables and
further changes in cache placements. The process continues
until convergence. To provide a semblance of an asynchronous
distributed protocol, our simulation model updates routing and
nearest-cache table entries in an arbitrary order across nodes.
Simulation Parameters. In our cache placement problem, the
relevant parameters are: (i) number of nodes in the network,
(ii) transmission radius Tr (two nodes can directly transmit
with each other iff they are within Tr distance from each
other), (iii) number of data items, (iv) number of clients
accessing each data item, (v) memory capacity on each node.
The first two parameters are related to network topology, the
next two parameters are application-dependent, and the last
parameter is the problem constraint (property of the nodes).
Here, we assume each data item to be of unit size (one memory



page). Below, we present a set of plots wherein we vary some
of the above parameters, while keeping the others constant.

Varying Number of Data Items and Memory Capacity.
Figure 1(a) plots the access costs for CGA and DGA against
the number of data items in the network for different local
memory capacities. Here, the network size is 500 nodes in
a 30 × 30 area.6 We use a transmission radius (Tr) of 5
units. The memory capacity in each node is expressed as the
percentage of the number of data items in the network. We
vary the number of data items from 500 to 1000, and the
memory capacity of each node from 1% to 5% of the number
of data items. The number of clients accessing each data items
is fixed at 50% of the number of nodes in the network.

We observe that the access cost increases with the number of
data items as expected. Also, as expected, we see that CGA
performs slightly better since it exploits global information,
but DGA performs quite close to CGA. The performance
difference between the algorithms decreases with increasing
memory capacity, since with increasing memory capacity both
the algorithms must converge to the same solution (access cost
zero) as all client nodes will eventually be able to cache all the
data items they wish to access. While this degenerate situation
is not reached, the trend is indeed observed.

Varying Network Size and Transmission Radius. In the
next plot (Figure 1(b)), we fix the number of data items in
the network to 1000 and the memory capacity of each node
to 2% of data items. As before, 50% of the network nodes act
as clients for each of the data item. In this plot, we vary the
network size from 100 nodes to 500 nodes and transmission
radius (Tr) from 3 to 8. Essentially, Figure 1(b) shows the
access cost as a function of network size and transmission
radius for the two algorithms. Once again, as expected CGA
slightly outperforms DGA, but DGA performs very close to
CGA.

B. DGA vs. HybridCache
In this subsection, we compare DGA with the HybridCache

approach proposed in [30] by simulating both approaches in
ns2 [11] (version 2.27). The ns2 simulator contains models for
common ad hoc network routing protocols, IEEE Standard
802.11 MAC layer protocol, and two-ray ground reflection
propagation models [7]. The DSDV routing protocol [23] is
used to provide routing services. For comparison, we also
implemented a Naive approach, wherein each node caches any
passing-by data item if there is free memory space and uses
LRU (least recently used) policy for replacement of caches.
We start with presenting the simulation setup, and then present
the simulation results in the next subsection.

B.1 Simulation Setup
In this subsection, we briefly discuss the network set up,

client query model, data access pattern model, and perfor-
mance metrics used for our simulations.

6Since the complexity of CGA is a high-order polynomial, the running time
is quite slow. Thus, we have not been able to evaluate the performance on
very large networks.

Network Setup. We simulated our algorithms on a network of
randomly placed 100 nodes in an area of 2000×500 m2. Note
that the nominal radio range for two directly communicating
nodes in the ns2 simulator is about 250 meters. In our
simulations, we assume 1000 data items of varying sizes, two
randomly placed servers S0 and S1 where S0 stores the data
items with even IDs and S1 stores the the data items with odd
IDs. We choose the size of a data item randomly between 100
and 1500 bytes.7

Client Query Model. In our simulations, each network node
is a client node. Each client node in the network sends out a
single stream of read-only queries. Each query is essentially
a request for a data item. The time interval between two
consecutive queries is known as the query generate time and
follows exponential distribution with mean value Tquery which
we vary from 3 to 40 seconds. We do not consider values of
Tquery less than 3 secs, since they result in a query success
ratio of much less than 80 % for Naive and HybridCache
approaches. Here, the query success ratio is defined as the
percentage of the queries that receive the requested data item
within the query success timeout period. In our simulations,
we use a query success timeout of 40 seconds.

The above client query model is similar to the model used
in previous studies [8, 30]. However, query generation process
differs slightly from the one used in [30] in how the queries
are generated. In [30], if the query response is not received
within the query success timeout period, then the same query
is sent repeatedly until it succeeds, while on success of a
query, a new query is generated (as in our model) after some
random interval.8 Our querying model is better suited (due
to exact periodicity of querying) for comparative performance
evaluation of various caching strategies, while the querying
model of [30] depicts a more realistic model of a typical
application (due to repeated querying until success).

Cache Updates. In our simulations, we do not explicitly use
any updates of the caches from the servers, since they will
generate additional update traffic that will have similar affect
on all the three techniques compared. This will also add new
metrics to evaluate such as age and freshness of day, since the
accessed data could be stale because of message losses and
delays. In this article, we restrict ourselves to studying query
delays and related metrics.

Data Access Models. For our simulations, we use the follow-
ing two patterns for modeling data access frequencies at nodes.

1) Spatial pattern. In this pattern of data access, the data
access frequencies at a node depends on its geographic
location in the network area such that nodes that are
closely located have similar data access frequencies.
More specifically, we start with laying the given 1000
data items uniformly over the network area in a grid-
like manner resulting in a virtual coordinate for each

7The maximum data size used in [30] is 10 KBytes, which is not a practical
choice due to lack of MAC layer fragmentation/reassembly mechanism in the
2.27 version of ns2 we used.

8In the original simulation code of HybridCache ([30]), the time interval
between two queries is actually 4 seconds plus the query generate time (which
follows exponential distribution with mean value Tquery).
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Fig. 2. Varying mean query generate time on spatial data access pattern. (a) Avg. Query Delay, (b) Query Success Ratio, (c) Total Number of Messages.
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Fig. 4. Varying cache size on spatial data access pattern. Here, Tquery = 10 secs. (a) Avg. Query Delay, (b) Query Success Ratio, (c) Total No. of Messages.

data item. Then, each network node accesses the 1000
data items in a Zipf-like distribution [5, 31], with the
access frequencies of the data items ordered by the
distance of the data item’s virtual coordinates from
the network node. More specifically, the probability of
accessing (which can be mapped to access frequency)
the jth(1 ≤ j ≤ 1000) closest data item is represented
by Pj = 1

jθ
P1000

h=1 1/hθ , where 0 ≤ θ ≤ 1. Here, we have
assumed the number of data items to be 1000. When
θ = 1, the above distribution follows the strict Zipf
distribution, while for θ = 0, it follows the uniform
distribution. As in [30], we choose θ to be 0.8 based on
real web trace studies [5].

2) Random pattern. In this pattern of data access, each node
uniformly accesses a predefined set of 200 data items
chosen randomly from the given 1000 data items.

Performance Metrics. We measure three performance metrics
for comparison of various caching strategies, viz., average
query delay, total number of messages, and query success ratio.
Query delay is defined as the time elapsed between query
request and query response, and average query delay is the
average of query delays over all queries. Total number of mes-
sages includes all message transmissions between neighboring
nodes, including messages due to queries, maintenance of
nearest-cache tables and cache-lists, and periodic broadcast of

cache-lists in mobile networks. Messages to implement routing
protocol are not counted, as they are the same in all three
approaches compared. Query success ratio has been defined
before. Each data point in our simulation results is an average
over five different random network topologies, and to achieve
stability in performance metrics, each of our experiments is run
for sufficiently long time (20000 seconds for our experiments).

DGA Parameter Values. We now present a brief discussion
on choice of values of benefit threshold and local traffic
window size for DGA. For static networks, we compute
local benefits based on the most recent 1000 queries. Since,
the data access frequencies remains static in our experiment
setting, computing local benefits based on as large a number
of queries as possible is a good idea. However, we observed
that most recent 1000 queries are sufficient to derive complete
knowledge of local traffic. For mobile networks with spatial
data access pattern, the access frequencies at a client node
change with the node’s location. Thus, we compute local
benefits using only 50 recent queries.

Also, we chose a benefit threshold value of 0.008 when
the cache size is default 75 KBytes (capable of storing 100
average sized data items), based on the typical benefit value of
the 100th most beneficial data item at a node. We use similar
methodology for choosing benefit threshold values for other
values of cache sizes.



B.2 Simulation Results
We now present simulation results comparing the three

caching strategies, viz., Naive Approach, HybridCache ap-
proach of [30], and our DGA, under the random and spatial
data access patterns (as defined above) and study the effect of
various parameter values on the performance metrics.
Varying Mean Query Generate Time. In Figure 2, we vary the
mean query generate time Tquery in the spatial data access
pattern while keeping the cache size as constant and all
network nodes as client nodes. We choose the cache size to
be big enough to fit about 100 average sized data items (i.e.,
75 KBytes). We observe that our DGA outperforms the other
two approaches in terms of all three performance metrics of
query average delay, query success ratio, and total number
of messages. In comparison with HybridCache strategy, our
DGA has an average query delay of less than half for all
parameter values, always has better query success ratio and
lower message overhead. For the mean query generate time of
3 seconds, average query delay in all approaches is high, but
our DGA outperforms HybridCache by a more than a factor of
10. Also, for very low mean query generate times, our DGA
has a significantly better query success ratio. Figure 3 depicts
similar observations for the random access data patterns,
except that for mean query generate time of 5 second we have
a slightly worse average query delay than that of HybridCache
(but a significantly better query success ratio).
Varying Cache Memory Size. In Figure 4, we vary the local
cache size of each node in the spatial data access pattern
while keeping the mean query generate time Tquery constant
at 10 seconds. We vary the local cache size from 15 KBytes
(capable of storing 20 data items of average size) to 150
KBytes. We observe in Figure 4 that our DGA outperforms the
HybridCache approach consistently for all cache sizes and in
terms of all three performance metrics. The difference in the
average query delay is much more significant for lower cache
size – which suggests that our DGA is very judicious in choice
of data items to cache. Note that HybridCache performs even
worse than the Naive Approach when each node’s memory is
15 KB.
Mobile Networks. Till now, we have restricted our discussion
and simulations to ad hoc networks with static nodes. Now, we
present performance comparison of various caching strategies
for mobile ad hoc networks, wherein the mobile nodes move
based on the “random waypoint” movement model [6]. In
the random waypoint movement model, initially nodes are
placed randomly in the area. Each node selects a random
destination and moves towards the destination with a speed
selected randomly from (0 m/s, vmax m/s). After the node
reaches its destination, it pauses for a period of time (chosen
to be 300 seconds in our simulations as in [30]) and repeats
the movement pattern.

In Figure 5, we compare various cache placement algo-
rithms under the spatial data access pattern for varying mean
query generate time, while keeping other parameters constant
(vmax = 2 m/s and local cache size = 75 KBytes). We
observe that our DGA again outperforms HybridCache and
Naive approaches in terms of query delay and query success

ratio for all values of Tquery. In particular, the average query
delay of DGA is almost always better than HybridCache by
up to a factor of 2, with the query success ratio of DGA being
always better by a few percentages. Also, in terms of number
of messages, our DGA performs only slightly worse than the
other two algorithms.

In Figure 6, we compare various cache placement algo-
rithms under the spatial data access pattern for increasing
mobility, i.e. vmax values, while keeping other parameters
constant (Tquery = 10 seconds and local cache size = 75
KBytes). Again, we observe that our DGA outperforms Hy-
bridCache and Naive approaches for most mobilities. For very
high mobilities (vmax ≥ 15 m/s), our DGA performs slightly
worse than HybridCache in terms of average query delay, but
has a significantly better query success ratio (78 % versus 95
%). Note that a significantly better query success ratio is more
desirable than a slightly better average query delay. Again,
in terms of number of messages, our DGA performs slightly
worse than the other two algorithms.

Summary of Simulation Results. Our simulation results can
be summarized as follows. Both the HybridCache and DGA
approaches outperform the Naive approach in terms of all
three performance metrics, viz., average query delay, query
success ratio, and total number of messages. Our designed
DGA almost always outperforms the Hybrid approach in terms
of all performance metrics for a wide range of parameters
of mean query generate time, local cache size, and mobility
speed. In particular, for frequent queries or smaller cache size,
the DGA approach has a significantly better average query
delay and query success ratio. For very high mobility speeds,
the DGA approach has a slight worse average query delay, but
significantly better query success ratio. Much of the success
of DGA comes from the optimized placement of caches. This
not only reduces query delay, but also message transmissions,
which in turn leads to less congestion and hence fewer lost
messages due to collisions or buffer overflows at the network
interfaces. This, in turn provides a better success ratio. This
“snowballing” effect is very apparent in challenging cases such
as frequent queries and small cache sizes.

V. Conclusions

We have developed a paradigm of data caching techniques to
support effective data access in ad hoc networks. In particular,
we have considered memory capacity constraint of the network
nodes, and developed efficient algorithms to determine near-
optimal cache placements to maximize reduction in overall
access cost. Reduction in access cost leads to communication
cost savings and hence, better bandwidth usage and energy
savings. Our later simulation experience with ns2 also shows
that better bandwidth usage also in turn leads to less message
losses and thus, better query success ratio.

The novel contribution in our work is the development
of a 4-approximation centralized algorithm, which is nat-
urally amenable to a localized distributed implementation.
The distributed implementation uses only local knowledge of
traffic. However, our simulations over a wide range of network
and application parameters show that the performance of the
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Fig. 6. Varying vmax in spatial data access pattern. Here, Tquery = 10 seconds. (a) Avg. Query Delay, (b) Query Success Ratio, (c) Total Number of
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two algorithms is quite close. We note that ours is the first
work that presents a distributed implementation based on an
approximation algorithm for the problem of cache placement
of multiple data items under memory constraint.

We further compare our distributed algorithm with a com-
petitive algorithm (HybridCache) presented in literature that
has a similar goal. This comparison uses the ns2 simulator
with a complete wireless networking protocol stack including
dynamic routing. We consider a broad range of application
parameters and both stationary and mobile networks. These
evaluations show that our algorithm significantly outperforms
HybridCache, particularly in more challenging scenarios, such
as higher query frequency and smaller memory.
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