Surface and Volume Parameterization Methods

Wei Zeng¹, Tim Yin², David Gu¹ and Shing-Tung Yau²

¹Department of Computer Science University of New York at Stony Brook

> ²Mathematics Department Harvard University

Isogeometric Analysis 2011: Integrating Design and Analysis

(日)

Thanks for the invitation.

(日)

€ 99@

The work is collaborated with Shing-Tung Yau, Feng Luo, Tony Chan, Paul Thompson, Yalin Wang, Ronald Lok Ming Lui, Hong Qin, Dimitris Samaras, Jie Gao, Arie Kaufman, and many other mathematicians, computer scientists and medical doctors.

- Surface Parameterization based on conformal geometry
- Volumetric Parameterization

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣へで

Conformal Geometry

Conformal Map

ヘロン ヘロン ヘビン ヘビン

E

Definition (Conformal Map)

Let $\phi: (S_1, \mathbf{g}_1) \to (S_2, \mathbf{g}_2)$ is a homeomorphism, ϕ is conformal if and only if

$$\phi^*\mathbf{g}_2=e^{2u}\mathbf{g}_1.$$

Conformal Mapping preserves angles.

(日)

Conformal maps Properties

Map a circle field on the surface to a circle field on the plane.

(日)

Quasi-Conformal Map

Diffeomorphisms: map ellipse field to circle field.

David Gu Conformal Geometry

Theoretic Foundation

Conformal Canonical Representations

Theorem (Poincaré Uniformization Theorem)

Let (Σ, \mathbf{g}) be a compact 2-dimensional Riemannian manifold. Then there is a metric $\tilde{\mathbf{g}} = e^{2\lambda} \mathbf{g}$ conformal to \mathbf{g} which has constant Gauss curvature.

Definition (Circle Domain)

A domain in the Riemann sphere $\hat{\mathbb{C}}$ is called a circle domain if every connected component of its boundary is either a circle or a point.

Theorem

Any domain Ω in $\hat{\mathbb{C}}$, whose boundary $\partial \Omega$ has at most countably many components, is conformally homeomorphic to a circle domain Ω^* in $\hat{\mathbb{C}}$. Moreover Ω^* is unique upto Möbius transformations, and every conformal automorphism of Ω^* is the restriction of a Möbius transformation.

(日)

Uniformization of Open Surfaces

(日)

Conformal Canonical Representation

Simply Connected Domains

David Gu

Topological Quadrilaterals

David Gu

Multiply Connected Domains

David Gu Conformal Geometry

<ロ> <同> <同> < 回> < 回> < □> < □> <

E

Multiply Connected Domains

David Gu Conformal Geometry

Multiply Connected Domains

David Gu Conformal Geometry

Multiply Connected Domains

David Gu

Definition (Circle Domain in a Riemann Surface)

A circle domain in a Riemann surface is a domain, whose complement's connected components are all closed geometric disks and points. Here a geometric disk means a topological disk, whose lifts in the universal cover or the Riemann surface (which is \mathbb{H}^2 , \mathbb{R}^2 or \mathbb{S}^2) are round.

Theorem

Let Ω be an open Riemann surface with finite genus and at most countably many ends. Then there is a closed Riemann surface R^* such that Ω is conformally homeomorphic to a circle domain Ω^* in R^* . More over, the pair (R^*, Ω^*) is unique up to conformal homeomorphism.

(日) (四) (三) (三)

Tori with Holes

David Gu Conformal Geometry

High Genus Surface with Holes

David Gu Conformal Geometry

E

Computational Methods

(ロ) (部) (E) (E) E のQC

Methods for Surface Parameterization

- Holomorphic differential method
- Surface Ricci flow

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

æ

All the holomoprhic 1-forms on a metric surface form a group, which is isomorphic to the first de Rham cohomology group. Our method computes the basis of the holomorphic 1-form group.

Harmonic 1-form

Each cohomologous class has a unique harmonic 1-form, which represents a vortex free, source-sink free flow field.

Theorem (Hodge)

All the harmonic 1-forms form a group, which is isomorphic to $H_1(M)$.

E

Holomorphic 1-form

Holomorphic 1-form - Global Conformal Parameterization

David Gu Conformal Geometry

Harmonic 1-form

Harmonic 1-form Basis

David Gu Conformal Geometry

SAC

Harmonic 1-form

Harmonic 1-form Basis

E

Holomorphic 1-form

Holomorphic 1-form Basis

David Gu Conformal Geometry

Discrete Curvature Flow

Isothermal Coordinates

A surface Σ with a Riemannian metric **g**, a local coordinate system (u, v) is an isothermal coordinate system, if

$$\mathbf{g}=\mathbf{e}^{2\lambda(u,v)}(du^2+dv^2).$$

Gaussian Curvature

The Gaussian curvature is given by

$$K(u,v) = -\Delta_{\mathbf{g}}\lambda = -\frac{1}{e^{2\lambda(u,v)}}\Delta\lambda(u,v),$$

where $\Delta = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$.

Conformal Metric Deformation

Definition

Suppose Σ is a surface with a Riemannian metric,

$$\mathbf{g}=\left(egin{array}{cc} g_{11} & g_{12} \ g_{21} & g_{22} \end{array}
ight)$$

Suppose $\lambda : \Sigma \to \mathbb{R}$ is a function defined on the surface, then $e^{2\lambda} \mathbf{g}$ is also a Riemannian metric on Σ and called a conformal metric. λ is called the conformal factor.

$$\bm{g} \rightarrow e^{2\lambda} \bm{g}$$

Conformal metric deformation.

Angles are invariant measured by conformal metrics.

Yamabe Equation

Suppose $\bar{\mathbf{g}} = e^{2\lambda} \mathbf{g}$ is a conformal metric on the surface, then the Gaussian curvature on interior points are

$$\bar{K} = e^{-2\lambda}(-\Delta_{\mathbf{g}}\lambda + K),$$

geodesic curvature on the boundary

$$\bar{k_g} = e^{-\lambda}(-\partial_n\lambda + k_g).$$

E

Uniformization

Theorem (Poincaré Uniformization Theorem)

Let (Σ, \mathbf{g}) be a compact 2-dimensional Riemannian manifold. Then there is a metric $\tilde{\mathbf{g}} = e^{2\lambda} \mathbf{g}$ conformal to \mathbf{g} which has constant Gauss curvature.

Definition (Hamilton's Surface Ricci Flow)

A closed surface with a Riemannian metric \mathbf{g} , the Ricci flow on it is defined as

$$\frac{dg_{ij}}{dt} = -Kg_{ij}.$$

If the total area of the surface is preserved during the flow, the Ricci flow will converge to a metric such that the Gaussian curvature is constant every where.

Key Idea

$$K = -\Delta_{\mathbf{g}}\lambda$$
, Roughly speaking, $\frac{dK}{dt} = \Delta_{\mathbf{g}}\frac{d\lambda}{dt}$. Let $\frac{d\lambda}{dt} = -K$, then
 $\frac{dK}{dt} = \Delta_{\mathbf{g}}K + K^2$
Heat equation!

Hyperbolic Ricci Flow

Computational results for genus 2 and genus 3 surfaces.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

E

Computational results for genus 2 and genus 3 surfaces.

(日)
Quasi-Conformal Mappings

Quasi-Conformal Map

Most homeomorphisms are quasi-conformal, which maps infinitesimal circles to ellipses.

Beltrami-Equation

Beltrami Coefficient

Let $\phi : S_1 \to S_2$ be the map, *z*, *w* are isothermal coordinates of S_1 , S_2 , Beltrami equation is defined as $\|\mu\|_{\infty} < 1$

$$\frac{\partial \phi}{\partial \bar{z}} = \mu(z) \frac{\partial \phi}{\partial z}$$

Solving Beltrami Equation

The problem of computing Quasi-conformal map is converted to compute a conformal map.

Solveing Beltrami Equation

Given metric surfaces (S_1, \mathbf{g}_1) and (S_2, \mathbf{g}_2) , let z, w be isothermal coordinates of $S_1, S_2, w = \phi(z)$.

$$\mathbf{g}_1 = \mathbf{e}^{2u_1} dz d\bar{z} \tag{1}$$

$$\mathbf{g}_2 = \mathbf{e}^{2u_2} dw d\bar{w}, \qquad (2)$$

Then

- φ : (S₁, g₁) → (S₂, g₂), quasi-conformal with Beltrami coefficient μ.
- $\phi: (S_1, \phi^* \mathbf{g}_2) \rightarrow (S_2, \mathbf{g}_2)$ is isometric
- $\phi^* \mathbf{g}_2 = \mathbf{e}^{u_2} |dw|^2 = \mathbf{e}^{u_2} |dz + \mu d\bar{dz}|^2$.
- $\phi: (S_1, |dz + \mu d\bar{dz}|^2) \rightarrow (S_2, \mathbf{g}_2)$ is conformal.

Quasi-Conformal Map Examples

Quasi-Conformal Map Examples

David Gu Conformal Geometry

・ロト ・雪 ・ ・ 雪 ・ ・ 目 ・

E

Based on surface parameterization method

- Volumetric harmonic map
- Oreen's function on Star Shape
- Oirect product decomposition
- Volumetric curvature flow

• (1) • (

Suppose we want to compute a volumetric mapping $\phi : V \rightarrow D$,

 Compute a conformal mapping between the boundary surfaces

$$\psi: \partial V \to \partial D$$

Compute a volumetric harmonic mapping with Dirichlet boundary condition

$$\Delta \phi = \mathbf{0}, \phi|_{\partial V} = \psi.$$

(日) (圖) (E) (E) (E)

E

Volumetric Harmonic Mapping

・ロト ・雪 ・ ・ 雪 ・ ・ 目 ・

E

Suppose V is a star shape with the center o, then each ray from the center intersects the boundary of V only once.

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A

- Compute the Green's function G on V, centered at o, such that $G|_{\partial V} = 0$.
- Trace the gradient line from the center to the boundary.
- Sonformal map the boundary to the unit sphere.
- The level sets of G are mapped to concentric spheres, the gradient lines are mapped to the radii of the unit ball.

Theorem

The mapping must be a diffeomorphism.

(日)

David Gu Conformal Geometry

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

E

David Gu Conformal Geometry

E

◆□ → ◆□ → ◆ 三 → ◆ 三 → 三 三

Direct Product Method

The volume can be decomposed as the direct product of a surface and a curve (or circle), $V = S \times C$,

- Decompose the boundary surface of V to top T, bottom B and wall W.
- 2 Conformal parameterize the top B, $\phi : B \rightarrow S$.
- Sompute a harmonic function f, such that

$$\begin{cases} f(p) = 1 \quad p \in T \\ f(p) = 0 \quad p \in B \\ \Delta f = 0 \end{cases}$$

Trace the gradient line of f, then maps the volume to $S \times [0, 1]$.

Theorem

The mapping must be a diffeomorphism.

David Gu Conformal Geometry

David Gu Conformal Geometry

(日) (圖) (目) (目) []

◆□→ ◆圖→ ◆필→ ◆理→ □ 世

David Gu Conformal Geometry

◆□> ◆□> ◆三> ◆三> 三 のへで

David Gu Conformal Geometry

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ●

◆□→ ◆圖→ ◆필→ ◆理→ □ 世

Suppose the given volume has complicated topology, such that the boundary surfaces are with high genus. Then we can compute the canonical hyperbolic Riemannian metric of the volume, and embed the universal covering space of the volume in three dimensional hyperbolic space \mathbb{H}^3 .

A (10) A (10) A (10) A

Hyperbolic Volumetric Curvature Flow

- Triangulate the volume to truncated tetrahedra.
- Compute the curvature on each edge of the tetrahedra mesh

$$K(\mathbf{e}_{ij}) = 2\pi - \sum_{kl} \theta_{ij}^{kl},$$

where θ_{ij}^{kl} is the dihedral angle on the edge (e_{ij} in the tetrahedron [v_i, v_j, v_k, v_l].

Run curvature flow,

$$\frac{dI_{ij}}{dt} = K_{ij}$$

where I_{ij} is the edge length of e_{ij} .

Theorem

If the input 3-manifold is a hyperbolic 3-manifold with complete geodesic boundary, then the curvature flow will converge to the canoical hyperbolic metric.

Hyperbolic Volumetric Curvature Flow

a. input 3-manifold

b. embedding of its UCS in \mathbb{H}^3

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

E

Geometric Modeling Application: Manifold Spline

Manifold Spline

- Convert scanned polygonal surfaces to smooth spline surfaces.
- Conventional spline scheme is based on affine geometry. This requires us to define affine geometry on arbitrary surfaces.
- This can be achieved by designing a metric, which is flat everywhere except at several singularities (extraordinary points).
- The position and indices of extraordinary points can be fully controlled.

(日)

Extraordinary Points

- Fully control the number, the index and the position of extraordinary points.
- For surfaces with boundaries, splines without extraordinary point can be constructed.
- For closed surfaces, splines with only one singularity can be constructed.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

크

Converting a polygonal mesh to TSplines with multiple resolutions.

Converting scanned data to spline surfaces.

David Gu Conformal Geometry

(日)

Converting scanned data to spline surfaces, the control points, knot structure are shown.

Polycube Map

Compute polycube maps for high genus surfaces.

David Gu Conformal Geometry

Converting scanned data to spline surfaces, the control points, knot structure are shown.

David Gu
Manifold Spline

Polygonal mesh to spline, control net and the knot structure.

David Gu

Conformal Geometry

Manifold Spline

Manifold Spline

Volumetric spline.

David Gu Conformal Geometry

E

For more information, please email to zengwei@cs.sunysb.edu and gu@cs.sunysb.edu.

Thank you!

(日)