Surface and Volume Based Techniques for Shape Modeling and Analysis

G. Patané ${ }^{1}, \mathrm{X} . \mathrm{Li}^{2}$, David Gu ${ }^{3}$

${ }^{1}$ CNR-IMATI, Italy
${ }^{2}$ Louisiana State University, USA
${ }^{3}$ Stony Brook University, USA
SIGGRAPH Asia 2013 Course

Discrete Optimal Mass Transportation

Minkowski Problem

Minkowski problem - 2D Case

Example

A convex polygon P in \mathbb{R}^{2} is determined by its edge lengths A_{i} and the unit normal vectors \mathbf{n}_{i}.

Take any $\mathbf{u} \in \mathbb{R}^{2}$ and project P to \mathbf{u}, then $\left\langle\sum_{i} A_{i} \mathbf{n}_{i}, \mathbf{u}\right\rangle=\mathbf{0}$, therefore

$$
\sum_{i} A_{i} \mathbf{n}_{i}=\mathbf{0} .
$$

Minkowski problem - General Case

Minkowski Problem

Given k unit vectors $\mathbf{n}_{1}, \cdots, \mathbf{n}_{k}$ not contained in a half-space in \mathbb{R}^{n} and $A_{1}, \cdots, A_{k}>0$, such that

$$
\sum_{i} A_{i} \mathbf{n}_{i}=\mathbf{0}
$$

find a compact convex polytope P with exactly k codimension-1 faces F_{1}, \cdots, F_{k}, such that

(1) $\operatorname{area}\left(F_{i}\right)=A_{i}$,
(2) $\mathbf{n}_{i} \perp F_{i}$.

Minkowski problem - General Case

Theorem (Minkowski)
P exists and is unique up to translations.

Minkowski's Proof

Given $\mathbf{h}=\left(h_{1}, \cdots, h_{k}\right), h_{i}>0$, define compact convex polytope

$$
P(\mathbf{h})=\left\{\mathbf{x} \mid\left\langle\mathbf{x}, \mathbf{n}_{i}\right\rangle \leq h_{i}, \forall i\right\}
$$

Let $\mathrm{Vol}: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}_{+}$be the volume $\operatorname{Vol}(\mathbf{h})=\operatorname{vol}(P(\mathbf{h}))$, then

$$
\frac{\partial \operatorname{Vol}(\mathbf{h})}{\partial h_{i}}=\operatorname{area}\left(F_{i}\right)
$$

using Lagrangian multiplier, the solution (up to scaling) to MP is the critical point
 of Vol on $\left\{\mathbf{h} \mid h_{i} \geq 0, \sum h_{i} A_{i}=1\right\}$. Uniqueness part is proved using Brunn-Minkowski inequality, which implies $(\operatorname{Vol}(\mathbf{h}))^{\frac{1}{n}}$ is concave in \mathbf{h}.

Piecewise Linear Convex Function

A Piecewise Linear convex function

$$
f(\mathbf{x}):=\max \left\{\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i} \mid i=1, \cdots, k\right\}
$$

produces a convex cell decomposition W_{i} of \mathbb{R}^{n} :

$$
W_{i}=\left\{\mathbf{x} \mid\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i} \geq\left\langle\mathbf{x}, \mathbf{p}_{j}\right\rangle+h_{j}, \forall j\right\}
$$

Namely, $W_{i}=\left\{\mathbf{x} \mid \nabla f(\mathbf{x})=\mathbf{p}_{i}\right\}$.

Alexandrov Theorem

Theorem (Alexandrov 1950)

Given Ω compact convex domain in $\mathbb{R}^{n}, p_{1}, \cdots, p_{k}$ distinct in \mathbb{R}^{n},
$A_{1}, \cdots, A_{k}>0$, such that
$\sum A_{i}=\operatorname{Vol}(\Omega)$, there exists PL convex function

$$
f(\mathbf{x}):=\max \left\{\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i} \mid i=1, \cdots, k\right\}
$$

unique up to translation such that

$$
\operatorname{Vol}\left(W_{i}\right)=\operatorname{Vol}\left(\left\{\mathbf{x} \mid \nabla f(\mathbf{x})=\mathbf{p}_{i}\right\}\right)=A_{i} .
$$

Alexandrov's proof is topological, not variational.

Voronoi Decomposition

Voronoi Diagram

Voronoi Diagram

Given p_{1}, \cdots, p_{k} in \mathbb{R}^{n}, the Voronoi cell W_{i} at p_{i} is

$$
W_{i}=\left\{\mathbf{x}| | \mathbf{x}-\left.p_{i}\right|^{2} \leq\left|\mathbf{x}-p_{j}\right|^{2}, \forall j\right\} .
$$

Power Distance

Power Distance

Given \mathbf{p}_{i} associated with a sphere $\left(\mathbf{p}_{i}, r_{i}\right)$ the power distance from $\mathbf{q} \in \mathbb{R}^{n}$ to \mathbf{p}_{i} is

$$
\operatorname{pow}\left(\mathbf{p}_{i}, \mathbf{q}\right)=\left|\mathbf{p}_{i}-\mathbf{q}\right|^{2}-r_{i}^{2} .
$$

Power Diagram

Given p_{1}, \cdots, p_{k} in \mathbb{R}^{n} and power weights h_{1}, \cdots, h_{k}, the power Voronoi cell W_{i} at p_{i} is

$$
W_{i}=\left\{\mathbf{x}| | \mathbf{x}-\left.p_{i}\right|^{2}+h_{i} \leq\left|\mathbf{x}-p_{j}\right|^{2}+h_{j}, \forall j\right\} .
$$

PL convex function vs. Power diagram

Lemma

Suppose $f(x)=\max \left\{\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i}\right\}$ is a piecewise linear convex function, then its gradient map induces a power diagram,

$$
W_{i}=\left\{\mathbf{x} \mid \nabla f=\mathbf{p}_{i}\right\}
$$

Proof.

$\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i} \geq\left\langle\mathbf{x}, \mathbf{p}_{j}\right\rangle+h_{j}$ is equivalent to

$$
\left|x-p_{i}\right|^{2}-2 h_{i}-\left|p_{i}\right|^{2} \leq\left|x-p_{j}\right|^{2}-2 h_{j}-\left|p_{j}\right|^{2} .
$$

Variational Proof

Theorem (Gu-Luo-Sun-Yau 2012)

Ω is a compact convex domain in $\mathbb{R}^{n}, p_{1}, \cdots, p_{k}$ distinct in \mathbb{R}^{n}, $s: \Omega \rightarrow \mathbb{R}$ is a positive continuous function. For any
$A_{1}, \cdots, A_{k}>0$ with $\sum A_{i}=\int_{\Omega} s(\mathbf{x}) d \mathbf{x}$, there exists a vector $\left(h_{1}, \cdots, h_{k}\right)$ so that

$$
f(\mathbf{x})=\max \left\{\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i}\right\}
$$

satisfies $\int_{W_{i} \cap \Omega} s(\mathbf{x}) d \mathbf{x}=A_{i}$, where $W_{i}=\left\{\mathbf{x} \mid \nabla f(\mathbf{x})=\mathbf{p}_{i}\right\}$. Furthermore, \mathbf{h} is the minimum point of the convex function

$$
E(\mathbf{h})=\int_{0}^{\mathbf{h}} \sum_{i=1}^{k} w_{i}(\eta) d \eta_{i}-\sum_{i=1}^{k} A_{i} h_{i}
$$

where $w_{i}(\eta)=\int_{W_{i}(\eta) \cap \Omega} s(\mathbf{x}) d \mathbf{x}$ is the volume of the cell.

Variational Proof

X. Gu, F. Luo, J. Sun and S.-T. Yau, "Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations", arXiv:1302.5472

Variational Proof

Proof.

For $\mathbf{h}=\left(h_{1}, \cdots, h_{k}\right)$ in \mathbb{R}^{k}, define the PL convex function f as above and let $W_{i}(\mathbf{h})=\left\{\mathbf{x} \mid \nabla f(\mathbf{x})=\mathbf{p}_{i}\right\}$ and $w_{i}(\mathbf{h})=\operatorname{vol}\left(W_{i}(\mathbf{h})\right)$,
(1) $H=\left\{\mathbf{h} \in \mathbb{R}^{k} \mid w_{i}(\mathbf{h})>0, \forall i\right\}$ is non-empty open convex set in \mathbb{R}^{k}.
(2) $\frac{\partial w_{i}}{\partial h_{j}}=\frac{\partial w_{j}}{\partial h_{i}} \leq 0$ for $i \neq j$. Thus the differential 1 -form $\sum w_{i}(\mathbf{h}) d h_{i}$ is closed in H. Therefore \exists a smooth $F: H \rightarrow \mathbb{R}$ so that $\frac{\partial F}{\partial h_{i}}=w_{i}(h)$
(3) $\sum \frac{\partial w_{i}(\mathbf{h})}{\partial h_{j}}=0$, due to $\sum w_{i}(\mathbf{h})=\operatorname{vol}(\Omega)$. Therefore the Hessian of F is diagonally dominated, $F(\mathbf{h})$ is convex in H.
(4) F is strictly convex in $H_{0}=\left\{\mathbf{h} \in H \mid \sum h_{i}=0\right\}$ so that $\nabla F=\left(w_{1}, \cdots, w_{k}\right)$.
If F strictly convex on an open convex set Ω in \mathbb{R}^{k} then
$\nabla F: \Omega \rightarrow R^{k}$ is one-one. This shows the uniqueness part of Alexandrov's theorem.

Variational Proof

Proof.

It can be shown that the convex function

$$
G(\mathbf{h})=F(\mathbf{h})-\sum A_{i} h_{i}
$$

has a minimum point in H_{0}, which is the solution to Alexandrov's theorem.

Geometric Interpretation

One can define a cylinder through $\partial \Omega$, the cylinder is truncated by the xy-plane and the convex polyhedron. The energy term $\int^{\mathrm{h}} \sum w_{i}(\eta) d \eta_{i}$ equals to the volume of the truncated cylinder.

Computational Algorithm

The convex energy is

$$
E\left(h_{1}, h_{2}, \cdots, h_{k}\right)=\sum_{i=1}^{k} A_{i} h_{i}-\int_{0}^{\mathbf{h}} \sum_{j=1}^{k} W_{j} d h_{j}
$$

Geometrically, the energy is the volume beneath the parabola.

Computational Algorithm

The gradient of the energy is the areas of the cells

$$
\nabla E\left(h_{1}, h_{2}, \cdots, h_{k}\right)=\left(A_{1}-w_{1}, A_{2}-w_{2}, \cdots, A_{k}-w_{k}\right)
$$

Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual edges,

$$
\frac{\partial w_{i}}{\partial h_{j}}=\frac{\left|e_{i j}\right|}{\left|\bar{e}_{i j}\right|}
$$

Computational Algorithm

(1) Initialize $\mathbf{h}=\mathbf{0}$
(2) Compute the Power Voronoi diagram, and the dual Power Delaunay Triangulation
(3) Compute the cell areas, which gives the gradient ∇E
(9) Compute the edge lengths and the dual edge lengths, which gives the Hessian matrix of $E, \operatorname{Hess}(E)$
(0) Solve linear system

$$
\nabla E=\operatorname{Hess}(E) d \mathbf{h}
$$

(6) Update the height vector

$$
(h) \leftarrow \mathbf{h}-\lambda d \mathbf{h},
$$

where λ is a constant to ensure that no cell disappears
(3) Repeat step 2 through 6 , until $\|d \mathbf{h}\|<\varepsilon$.

Optimal Mass Transport Mapping

Optimal Transport Problem

Earth movement cost.

Optimal Mass Transportation

Problem Setting

Find the best scheme of transporting one mass distribution (μ, U) to another one (v, V) such that the total cost is minimized, where U, V are two bounded domains in \mathbb{R}^{n}, such that

$$
\int_{U} \mu(x) d x=\int_{V} v(y) d y
$$

$0 \leq \mu \in L^{1}(U)$ and $0 \leq v \in L^{1}(V)$ are density functions.

Optimal Mass Transportation

For a transport scheme s (a mapping from U to V)

$$
s: \mathbf{x} \in U \rightarrow \mathbf{y} \in V,
$$

the total cost is

$$
C(s)=\int_{U} \mu(\mathbf{x}) c(\mathbf{x}, s(\mathbf{x})) d \mathbf{x}
$$

where $c(\mathbf{x}, \mathbf{y})$ is the cost function.

Cost Function $c(x, y)$

The cost of moving a unit mass from point x to point y.

$$
\text { Monge(1781) : } c(x, y)=|x-y| \text {. }
$$

This is the natural cost function. Other cost functions include

$$
\begin{aligned}
& c(x, y)=|x-y|^{p}, p \neq 0 \\
& c(x, y)=-\log |x-y| \\
& c(x, y)=\sqrt{\varepsilon+|x-y|^{2}}, \varepsilon>0
\end{aligned}
$$

Any function can be cost function. It can be negative.

Optimal Transportation Map

Problem

Is there an optima mapping $T: U \rightarrow V$ such that the total cost
\mathscr{C} is minimized,

$$
\mathscr{C}(T)=\inf \{\mathscr{C}(s): s \in \mathscr{S}\}
$$

where \mathscr{S} is the set of all measure preserving mappings, namely $s: U \rightarrow V$ satisfies

$$
\int_{s^{-1}(E)} \mu(x) d x=\int_{E} v(y) d y, \forall \text { Borel set } E \subset V
$$

Applications

- Economy: producer-consumer problem, gas station with capacity constraint,
- Probability: Wasserstein distance
- Image processing: image registration
- Digital geometry processing: surface registration

Image Registration

A. Tannenbaum: Medical image registration

Determine the locations of gas stations $\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$ with capacities $\left\{c_{1}, c_{2}, \cdots, c_{k}\right\}$ in a city with gasoline consumption density μ, such that the total square of distances from each family to the corresponding gas station is minimized.

Surface Registration

Z. Su, W. Zeng, R. Shi, Y. Wang, J. Sun, J. Gao, X. Gu, "Area Preserving Brain Mapping", CVPR, June, 2013.

Solutions

Three categories:
(1) Discrete category: both (μ, U) and (v, V) are discrete,
(2) Semi-continuous category: (μ, U) is continuous, (v, V) is discrete,
(3) Continuous category: both (μ, U) and (v, V) are continuous.

Kantorovich's Approach

Both (μ, U) and (v, V) are discrete. μ and v are Dirac measures. (μ, U) is represented as

$$
\left\{\left(\mu_{1}, \mathbf{p}_{1}\right),\left(\mu_{2}, \mathbf{p}_{2}\right), \cdots,\left(\mu_{m}, \mathbf{p}_{m}\right)\right\}
$$

(v, V) is

$$
\left\{\left(v_{1}, \mathbf{q}_{1}\right),\left(v_{2}, \mathbf{q}_{2}\right), \cdots,\left(v_{n}, \mathbf{q}_{n}\right)\right\}
$$

A transportation plan $f:\left\{\mathbf{p}_{i}\right\} \rightarrow\left\{\mathbf{q}_{j}\right\}, f=\left\{f_{i j}\right\}, f_{i j}$ means how much mass is moved from $\left(\mu_{i}, \mathbf{p}_{i}\right)$ to $\left(v_{j}, \mathbf{q}_{j}\right), i \leq m, j \leq n$. The optimal mass transportation plan is:

$$
\min _{f} f_{i j} c\left(\mathbf{p}_{i}, \mathbf{q}_{j}\right)
$$

with constraints:

$$
\sum_{j=1}^{n} f_{i j}=\mu_{i}, \sum_{i=1}^{m} f_{i j}=v_{j}
$$

Optimizing a linear energy on a convex set, solvable by linear programming method.

Kantorovich's Approach

Kantorovich won Nobel's prize in economics.

$$
\min _{f} \sum_{i j} f_{i j} c\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right),
$$

such that

$$
\sum_{j} f_{i j}=\mu_{i}, \sum_{i} f_{i j}=v_{j}
$$

$m n$ unknowns in total. The complexity is quite high.

Brenier's Approach

Theorem (Brenier)

If $\mu, v>0$ and U is convex, and the cost function is quadratic distance,

$$
c(\mathbf{x}, \mathbf{y})=|\mathbf{x}-\mathbf{y}|^{2}
$$

then there exists a convex function $f: U \rightarrow \mathbb{R}$ unique upto a constant, such that the unique optimal transportation map is given by the gradient map

$$
T: \mathbf{x} \rightarrow \nabla f(\mathbf{x})
$$

Brenier's Approach

Continuous Category: In smooth case, the Brenier potential $f: U \rightarrow \mathbb{R}$ statisfies the Monge-Ampere equation

$$
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)=\frac{\mu(\mathbf{x})}{v(\nabla f(\mathbf{x}))},
$$

and $\nabla f: U \rightarrow V$ minimizes the quadratic cost

$$
\min _{f} \int_{U}|\mathbf{x}-\nabla f(\mathbf{x})|^{2} d \mathbf{x} .
$$

Semi-Continuous Category: Discrete Optimal Transportation Problem

Given a compact convex domain U in \mathbb{R}^{n} and p_{1}, \cdots, p_{k} in \mathbb{R}^{n} and $A_{1}, \cdots, A_{k}>0$, find a transport map $T: \Omega \rightarrow\left\{p_{1}, \cdots, p_{k}\right\}$ with $\operatorname{vol}\left(T^{-1}\left(p_{i}\right)\right)=A_{i}$, so that T minimizes the transport cost

$$
\int_{U}|\mathbf{x}-T(\mathbf{x})|^{2} d \mathbf{x}
$$

Alexandrov Map vs Optimal Transport Map

Theorem (Aurenhammer-Hoffmann-Aronov 1998)

Alexandrov map ∇f is the optimal transport map.

Optimal Transport Map Examples

Optimal Transport Map Examples

Normal Map

Visualization

Conformal mapping

Area-preserving mapping

Visualization

Visualization

X. Zhao, Z. Su, X. Gu, A. Kaufman, J. Sun, J. Gao, F. Luo, "Area-preservation Mapping using Optimal Mass Transport", IEEE TVCG, 2013.

Visualization

(a) Front view

(b) Angle-preserving

(c) Area-preserving

(d) Back view

Angle-perserving parameterization vs. area-preserving parameterization

(a) 2 x

(b) $3 x$

(c) 4 x

(d) 6 x

Importance driven parameterization. The Buddha's head region is magnified by different factors

Visualization

Visualization

Visualization

