Surface and Volume Based Techniques for Shape Modeling and Analysis

G. Patané¹, X. Li², David Gu³

¹CNR-IMATI, Italy ²Louisiana State University, USA ³Stony Brook University, USA

SIGGRAPH Asia 2013 Course

David Gu Surface Geometry

(日)

Discrete Optimal Mass Transportation

Minkowski Problem

Example

A convex polygon *P* in \mathbb{R}^2 is determined by its edge lengths A_i and the unit normal vectors \mathbf{n}_i .

Take any $\mathbf{u} \in \mathbb{R}^2$ and project P to \mathbf{u} , then $\langle \sum_i A_i \mathbf{n}_i, \mathbf{u} \rangle = \mathbf{0}$, therefore

$$\sum_i A_i \mathbf{n}_i = \mathbf{0}.$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 >

Minkowski problem - General Case

Minkowski Problem

Given *k* unit vectors $\mathbf{n}_1, \dots, \mathbf{n}_k$ not contained in a half-space in \mathbb{R}^n and $A_1, \dots, A_k > 0$, such that

$$\sum_i A_i \mathbf{n}_i = \mathbf{0},$$

find a compact convex polytope *P* with exactly *k* codimension-1 faces F_1, \dots, F_k , such that area $(F_i) = A_i$, $n_i \perp F_i$.

Minkowski problem - General Case

Theorem (Minkowski)

P exists and is unique up to translations.

Minkowski's Proof

Given $\mathbf{h} = (h_1, \cdots, h_k), h_i > 0$, define compact convex polytope

 $P(\mathbf{h}) = {\mathbf{x} | \langle \mathbf{x}, \mathbf{n}_i \rangle \leq h_i, \forall i }$

Let $Vol : \mathbb{R}^k_+ \to \mathbb{R}_+$ be the volume $Vol(\mathbf{h}) = vol(P(\mathbf{h}))$, then

$$\frac{\partial Vol(\mathbf{h})}{\partial h_i} = area(F_i)$$

using Lagrangian multiplier, the solution (up to scaling) to MP is the critical point of Vol on { $\mathbf{h}|h_i \ge 0, \sum h_i A_i = 1$ }. Uniqueness part is proved using Brunn-Minkowski inequality, which implies (Vol(\mathbf{h}))^{$\frac{1}{n}$} is concave in \mathbf{h} .

A Piecewise Linear convex function

$$f(\mathbf{x}) := \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i | i = 1, \cdots, k\}$$

produces a convex cell decomposition W_i of \mathbb{R}^n :

$$W_i = \{\mathbf{x} | \langle \mathbf{x}, \mathbf{p}_i \rangle + h_i \ge \langle \mathbf{x}, \mathbf{p}_j \rangle + h_j, \forall j \}$$

Namely, $W_i = {\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i }.$

Theorem (Alexandrov 1950)

Given Ω compact convex domain in \mathbb{R}^n , p_1, \dots, p_k distinct in \mathbb{R}^n , $A_1, \dots, A_k > 0$, such that $\sum A_i = Vol(\Omega)$, there exists PL convex function

$$f(\mathbf{x}) := \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i | i = 1, \cdots, k\}$$

unique up to translation such that

$$Vol(W_i) = Vol(\{\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i\}) = A_i.$$

Alexandrov's proof is topological, not variational.

・ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

E

Voronoi Decomposition

David Gu Surface Geometry

・ロト・日本・日本・日本・日本

Voronoi Diagram

Given p_1, \dots, p_k in \mathbb{R}^n , the Voronoi cell W_i at p_i is

$$W_i = \{\mathbf{x} | |\mathbf{x} - \mathbf{p}_i|^2 \le |\mathbf{x} - \mathbf{p}_j|^2, \forall j\}.$$

Power Distance

Given \mathbf{p}_i associated with a sphere (\mathbf{p}_i, r_i) the power distance from $\mathbf{q} \in \mathbb{R}^n$ to \mathbf{p}_i is

$$pow(\mathbf{p}_i, \mathbf{q}) = |\mathbf{p}_i - \mathbf{q}|^2 - r_i^2.$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

E

Power Diagram

Given p_1, \dots, p_k in \mathbb{R}^n and power weights h_1, \dots, h_k , the power Voronoi cell W_i at p_i is

$$W_i = \{\mathbf{x} | |\mathbf{x} - \mathbf{p}_i|^2 + h_i \leq |\mathbf{x} - \mathbf{p}_j|^2 + h_j, \forall j\}.$$

David Gu Surface Geometry

<ロ> <四> <四> <四> <三< => < 三> <三< => 三

PL convex function vs. Power diagram

Lemma

Suppose $f(x) = \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i\}$ is a piecewise linear convex function, then its gradient map induces a power diagram,

 $W_i = \{\mathbf{x} | \nabla f = \mathbf{p}_i\}.$

Proof.

$$\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i \ge \langle \mathbf{x}, \mathbf{p}_j \rangle + h_j$$
 is equivalent to

$$|\mathbf{x} - \mathbf{p}_i|^2 - 2h_i - |\mathbf{p}_i|^2 \le |\mathbf{x} - \mathbf{p}_j|^2 - 2h_j - |\mathbf{p}_j|^2.$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Theorem (Gu-Luo-Sun-Yau 2012)

 Ω is a compact convex domain in \mathbb{R}^n , p_1, \dots, p_k distinct in \mathbb{R}^n , $s: \Omega \to \mathbb{R}$ is a positive continuous function. For any $A_1, \dots, A_k > 0$ with $\sum A_i = \int_{\Omega} s(\mathbf{x}) d\mathbf{x}$, there exists a vector (h_1, \dots, h_k) so that

$$f(\mathbf{x}) = \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i\}$$

satisfies $\int_{W_i \cap \Omega} \mathbf{s}(\mathbf{x}) d\mathbf{x} = A_i$, where $W_i = {\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i}$. Furthermore, **h** is the minimum point of the convex function

$$E(\mathbf{h}) = \int_{\mathbf{0}}^{\mathbf{h}} \sum_{i=1}^{k} w_i(\eta) d\eta_i - \sum_{i=1}^{k} A_i h_i,$$

where $w_i(\eta) = \int_{W_i(\eta) \cap \Omega} s(\mathbf{x}) d\mathbf{x}$ is the volume of the cell.

æ.

X. Gu, F. Luo, J. Sun and S.-T. Yau, "Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations", arXiv:1302.5472

Image: A marked and A mar A marked and A

Variational Proof

Proof.

For $\mathbf{h} = (h_1, \dots, h_k)$ in \mathbb{R}^k , define the PL convex function f as above and let $W_i(\mathbf{h}) = \{\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i\}$ and $w_i(\mathbf{h}) = vol(W_i(\mathbf{h}))$,

- $H = \{\mathbf{h} \in \mathbb{R}^k | w_i(\mathbf{h}) > 0, \forall i\}$ is non-empty open convex set in \mathbb{R}^k .
- ② $\frac{\partial w_i}{\partial h_j} = \frac{\partial w_j}{\partial h_i} \le 0$ for $i \ne j$. Thus the differential 1-form $\sum w_i(\mathbf{h}) dh_i$ is closed in *H*. Therefore ∃ a smooth $F : H \rightarrow \mathbb{R}$ so that $\frac{\partial F}{\partial h_i} = w_i(h)$
- $\sum \frac{\partial w_i(\mathbf{h})}{\partial h_i} = 0$, due to $\sum w_i(\mathbf{h}) = vol(\Omega)$. Therefore the Hessian of *F* is diagonally dominated, $F(\mathbf{h})$ is convex in *H*.
- *F* is strictly convex in $H_0 = {\mathbf{h} \in H | \sum h_i = 0}$ so that $\nabla F = (w_1, \dots, w_k)$.

If *F* strictly convex on an open convex set Ω in \mathbb{R}^k then $\nabla F : \Omega \to R^k$ is one-one. This shows the uniqueness part of Alexandrov's theorem.

Proof.

It can be shown that the convex function

$$G(\mathbf{h}) = F(\mathbf{h}) - \sum A_i h_i$$

п

E

・ロト ・日 ・ ・ ヨ ・ ・

has a minimum point in H_0 , which is the solution to Alexandrov's theorem.

David Gu Surface Geometry

Geometric Interpretation

One can define a cylinder through $\partial \Omega$, the cylinder is truncated by the xy-plane and the convex polyhedron. The energy term $\int^{h} \sum w_{i}(\eta) d\eta_{i}$ equals to the volume of the truncated cylinder.

• Imp • Imp • Imp •

The convex energy is

$$E(h_1,h_2,\cdots,h_k) = \sum_{i=1}^k A_i h_i - \int_{\mathbf{0}}^{\mathbf{h}} \sum_{j=1}^k W_j dh_j,$$

Geometrically, the energy is the volume beneath the parabola.

(ロ) (部) (E) (E) (E)

The gradient of the energy is the areas of the cells

$$\nabla E(h_1, h_2, \cdots, h_k) = (A_1 - w_1, A_2 - w_2, \cdots, A_k - w_k)$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

E

The Hessian of the energy is the length ratios of edge and dual edges,

$$\frac{\partial w_i}{\partial h_j} = \frac{|\mathbf{e}_{ij}|}{|\bar{\mathbf{e}}_{ij}|}$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

- Initialize h = 0
- Compute the Power Voronoi diagram, and the dual Power Delaunay Triangulation
- Sompute the cell areas, which gives the gradient ∇E
- Compute the edge lengths and the dual edge lengths, which gives the Hessian matrix of *E*, *Hess*(*E*)
- Solve linear system

$$\nabla E = Hess(E)dh$$

Update the height vector

$$(h) \leftarrow \mathbf{h} - \lambda d\mathbf{h},$$

where λ is a constant to ensure that no cell disappears

Repeat step 2 through 6, until $||d\mathbf{h}|| < \varepsilon$.

Optimal Mass Transport Mapping

・ロ・ ・ 四・ ・ 回・ ・ 回・

= 990

Optimal Transport Problem

Earth movement cost.

(ロ)

E

Optimal Mass Transportation

Problem Setting

Find the best scheme of transporting one mass distribution (μ, U) to another one (ν, V) such that the total cost is minimized, where U, V are two bounded domains in \mathbb{R}^n , such that

$$\int_U \mu(x) dx = \int_V v(y) dy,$$

 $0 \le \mu \in L^1(U)$ and $0 \le v \in L^1(V)$ are density functions.

David Gu Surface Geometry

Optimal Mass Transportation

For a transport scheme s (a mapping from U to V)

 $s: \mathbf{x} \in U \rightarrow \mathbf{y} \in V,$

the total cost is

$$C(s) = \int_U \mu(\mathbf{x}) c(\mathbf{x}, s(\mathbf{x})) d\mathbf{x}$$

where $c(\mathbf{x}, \mathbf{y})$ is the cost function.

The cost of moving a unit mass from point *x* to point *y*.

$$Monge(1781): c(x, y) = |x - y|.$$

This is the natural cost function. Other cost functions include

$$\begin{array}{lll} c(x,y) &=& |x-y|^{p}, p \neq 0\\ c(x,y) &=& -\log |x-y|\\ c(x,y) &=& \sqrt{\varepsilon+|x-y|^{2}}, \varepsilon > 0 \end{array}$$

Any function can be cost function. It can be negative.

(日)

Problem

Is there an optima mapping $T: U \rightarrow V$ such that the total cost \mathscr{C} is minimized,

$$\mathscr{C}(T) = \inf\{\mathscr{C}(s) : s \in \mathscr{S}\}$$

where \mathscr{S} is the set of all measure preserving mappings, namely $s: U \to V$ satisfies

$$\int_{{f s}^{-1}(E)}\mu({f x})d{f x}=\int_E v({f y})d{f y}, orall ext{ Borel set } E\subset V$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

크

- Economy: producer-consumer problem, gas station with capacity constraint,
- Probability: Wasserstein distance
- Image processing: image registration
- Digital geometry processing: surface registration

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

크

Image Registration

A. Tannenbaum: Medical image registration

E ▶ ★ E ▶ E

Determine the locations of gas stations $\{p_1, p_2, \dots, p_k\}$ with capacities $\{c_1, c_2, \dots, c_k\}$ in a city with gasoline consumption density μ , such that the total square of distances from each family to the corresponding gas station is minimized.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Surface Registration

Z. Su, W. Zeng, R. Shi, Y. Wang, J. Sun, J. Gao, X. Gu, "Area Preserving Brain Mapping", CVPR, June, 2013.

Three categories:

- **O** Discrete category: both (μ, U) and (v, V) are discrete,
- Semi-continuous category: (μ, U) is continuous, (ν, V) is discrete,
- Continuous category: both (μ, U) and (ν, V) are continuous.

Kantorovich's Approach

Both (μ, U) and (v, V) are discrete. μ and v are Dirac measures. (μ, U) is represented as

$$\{(\mu_1, \mathbf{p}_1), (\mu_2, \mathbf{p}_2), \cdots, (\mu_m, \mathbf{p}_m)\},\$$

(v, V) is

$$\{(v_1,\mathbf{q}_1),(v_2,\mathbf{q}_2),\cdots,(v_n,\mathbf{q}_n)\}.$$

A transportation plan $f : {\mathbf{p}_i} \to {\mathbf{q}_j}, f = {f_{ij}}, f_{ij}$ means how much mass is moved from (μ_i, \mathbf{p}_i) to $(v_j, \mathbf{q}_j), i \le m, j \le n$. The optimal mass transportation plan is:

 $\min_{f} f_{ij} c(\mathbf{p}_i, \mathbf{q}_j)$

with constraints:

$$\sum_{j=1}^{n} f_{ij} = \mu_i, \sum_{i=1}^{m} f_{ij} = \nu_j.$$

Optimizing a linear energy on a convex set, solvable by linear programming method.

Kantorovich's Approach

Kantorovich won Nobel's prize in economics.

$$\min_{f}\sum_{ij}f_{ij}c(\mathbf{p}_{i},\mathbf{p}_{j}),$$

such that

$$\sum_{i} f_{ij} = \mu_i, \sum_{i} f_{ij} = \nu_j.$$

mn unknowns in total. The complexity is quite high.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

E

Theorem (Brenier)

If $\mu, \nu > 0$ and U is convex, and the cost function is quadratic distance,

$$c(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}|^2$$

then there exists a convex function $f: U \to \mathbb{R}$ unique upto a constant, such that the unique optimal transportation map is given by the gradient map

$$T: \mathbf{x} \to \nabla f(\mathbf{x}).$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

크

Continuous Category: In smooth case, the Brenier potential $f: U \rightarrow \mathbb{R}$ statisfies the Monge-Ampere equation

$$det\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right) = \frac{\mu(\mathbf{x})}{\nu(\nabla f(\mathbf{x}))}$$

and $\nabla f: U \rightarrow V$ minimizes the quadratic cost

$$\min_{f} \int_{U} |\mathbf{x} - \nabla f(\mathbf{x})|^2 d\mathbf{x}$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

크

Semi-Continuous Category: Discrete Optimal Transportation Problem

Given a compact convex domain U in \mathbb{R}^n and p_1, \dots, p_k in \mathbb{R}^n and $A_1, \dots, A_k > 0$, find a transport map $T : \Omega \to \{p_1, \dots, p_k\}$ with $vol(T^{-1}(p_i)) = A_i$, so that T minimizes the transport cost

$$\int_U |\mathbf{x} - T(\mathbf{x})|^2 d\mathbf{x}.$$

Alexandrov Map vs Optimal Transport Map

Theorem (Aurenhammer-Hoffmann-Aronov 1998)

Alexandrov map ∇f is the optimal transport map.

(日)

Optimal Transport Map Examples

Optimal Transport Map Examples

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Normal Map

David Gu Surface Geometry

Conformal mapping

Area-preserving mapping

・ロ・・ (日・・ ヨ・・

David Gu Surface Geometry

◆□> <圖> < 图> < 图> < 图> < 图</p>

X. Zhao, Z. Su, X. Gu, A. Kaufman, J. Sun, J. Gao, F. Luo, "Area-preservation Mapping using Optimal Mass Transport", IEEE TVCG, 2013.

(日)

(a) 2x (b) 3x (c) 4x (d) 6x

David Gu Surface Geometry

◆□> <圖> < 图> < 图> < 图> < 图</p>

David Gu Surface Geometry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

David Gu Surface Geometry

(日)