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Abstract. Parameterizations have a wide range of applications in atengraph-
ics, geometric design and many other fields of science andegiing. Although
surface parameterizations have been widely studied andedrdeveloped, little
research exists on the volumetric data due to the intrinfficulties in extend-
ing surface parameterization algorithms to volumetric dismin this paper, we
present a technique for parameterizing star-shaped vaslursimg the Green’s
functions. We first show that the Green’s function on the stape has a unique
critical point. Then we prove that the Green'’s functions itatuce a diffeomor-
phism between two star-shaped volumes. We develop algwitb parameter-
ize star shapes to simple domains such as balls and stagespap/cubes, and
also demonstrate the volume parameterization applicatiomiumetric morph-
ing, anisotropic solid texture transfer and GPU-basednaelic computation.

1 Introduction

The recent decade has witnessed the great advancementtacéguarameterizations,
exemplified in a wide range of applications exhibited in sceand engineering. De-
spite these successes, most real-world objects are indagnes rather than surfaces.
It remains both unclear and challenging on how to generalitsting surface param-
eterization methods from surfaces to volumes. And with n@parameterization, we
envision a large pool of applications that can benefit froer#sult, including solid tex-
ture mapping, volumetric tetrahedralization for simdatiand volumetric registration.

Due to the intrinsic difference between surfaces and voyme@ny classical results
on surface parameterization cannot be directly generdhtizeproduce volume param-
eterization. For example, it is well-known that a harmon&mbetween a topological
disk (a genus zero surface with a single boundary) and a ptameex domain is dif-
feomorphic (i.e., bijective and smooth), if the boundarnpriahomeomorphic (i.e., bi-
jective and continuous). This result plays an importare imlsurface parameterization.
Unfortunately, such an approach is not applicable to vokjme., volumetric harmonic
map is not guaranteed to be bijective even though the tagyeth is convex. In this
paper, we aim at handling the challenges by proposing a¢kieally sound algorithm
that can produce a diffeomorphism between two star-shapledhes.
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Our volume parameterization method is strongly motivatethe property of elec-
tric field. Given a closed genus-0 metal surf&ét M denote its interior volume, i.e.,
JdM = S. We construct an electric field by putting a positive electhiarge at a poirtt
insideM, and connecting the boundary surfé&® the ground. Thelectric potential
insideM is aGreen’s functionG : M — R, such that

AG(X) = d(x—c)
{ G|0M = O, (1)

whered(x— c) is the Dirac function. In general, the level se@fG—(r),r ¢ R* oran
isopotential surface is a smooth surfacdinThe gradient of the electric potentidc

is theelectric field Electric field linesare the integration curves of the electric field, i.e.,
the tangent vectors of the electric field lines are paratiehe electric field. Different
electric field lines only intersect at the points where we thet electric charge, or at
the critical point of the potential. Electric field lines gtérom the electric charge and
are orthogonal to the iso-potential surfaces everywharpatticular to the boundary
surfacedM.

If M is a star-shaped volume, every ray cast foimtersectSonly once, and there
are no other critical points of the potential. Thereforéttad iso-potential surfaces can
be topological spheres and all electric field lines intersety at pointc (see Fig. 1).
Since each point insidd is now uniquely determined by a corresponding electric field
line and an iso-potential surface, determining the map eeitviwo star-shaped volumes
is equivalent to constructing the map between the corrafipgriso-potential surfaces
and the electric field lines. Therefore, we map the boundanfase to the unit sphere,
thereby putting each iso-potential surface to a concesptiere, the electric field lines
to the radii, and the centerto the origin. In this way, the star-shaped volume can be
parameterized to the unit solid ball. With the help of baligrmaeterization, the map
between two star shapes can then be constructed by mappgihgkape to the unit
ball and constructing a bijective map between the two unisb&uch a constructed
volumetric map is guaranteed to be a diffeomorphism.

@ (b) (© (d)

Fig. 1. Electric field on the star shape. Given a metal surfgose put a positive charge at the
center (the red point) and then conné&to the ground (shown in (a)). The electric field is a
Green’s function shown in (b). If the surfa&is star-shaped, then the Green'’s function has a
unique critical point. As a result, all iso-potential swda are topological spheres (shown in (c)).
The electric field line (red curve in (d)) is perpendiculaatbiso-potential surfaces.
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Our contributions include

— First, we show that the Green’s function on star shapes hasjaeicritical point
and all level sets inside the star shape are topologicakrsph&hen we prove that
the Green’s function can induce a diffeomorphism betweenstar shapes. To our
knowledge, this is the first constructive proof of the exiseeof a diffeomorphism
between two non-trivial shapes.

— Secondly, based on our theoretical results, we developitiigts to parameterize
star shapes to star-shaped domains, such as solid ballssarghaped polycubes.

— Thirdly, we showcase a variety of applications that beneditif our volume pa-
rameterization method, including volumetric morphingisatropic solid texture
transfer and GPU-based volumetric computation.

The remaining of the paper is organized as follows. We firgflyrdiscuss the
previous work in Section 2. Next, we introduce the theorle#ickground in Section 3,
and present our volume parameterization algorithm in 8eeti Experimental results
are then reported in Section 5. We conclude this work in 8e@&i The theoretic proofs
are presented in the Appendix.

2 Previous Work

Extensive research has been done on surface parametaridat to its wide applica-
tions in computer graphics. The surveys of [1][2] provideallent reviews on various
kinds of mesh parameterization techniques. In the followime briefly review the re-
lated work on volumetric meshing and volumetric harmonipma

Labelle and Shewchuk introduced the isosurface stuffingrdlgn to generate tetra-
hedron meshes with bounded dihedral angles in [3]. The veltiodiscrete Laplace-
Beltrami operator used in this work generalizestbheanformula in the surface case;
the cotanvalue of dihedral angles is used to replace those of corrgdeanThe range
of the dihedral angles affects the parameterization quaitDelaunay-based varia-
tional approach to isotropic tetrahedral meshing is iniczdi by Alliez et al. in [4];
this method can produce well-shaped tetrahedra by enemgynzation. Tandem algo-
rithm is introduced to isosurfaces extraction and simglifan in [5]. The volumetric
harmonic map depends on volumetric Laplacian; Zhou et &lapplied volumetric
graph Laplacian to large mesh deformation.

Harmonicity in volumes can be similarly defined via the vairig Laplacian, which
governs the smoothness of the mapping function. Wang et]atiydied the formula of
harmonic energy defined on tetrahedral meshes and comphgetiscrete volumetric
harmonic maps by a variational procedure. Volumetric p&tanization using funda-
mental solution method is introduced in [8] and applied tuweetric deformation and
morphing. Other than that, harmonic volumetric parameggion for cylinder volumes
is applied for constructing tri-variate spline fitting in[#ll the above approaches rely
on volumetric harmonic maps. Unfortunately, as pointedpratiously in Section 1,
these volumetric harmonic maps cannot guarantee bijecta@pings even though the
target domain is convex.
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Besides the volumetric harmonic map, another stream o&relestudies the mean
value coordinates for closed triangular mesh [10,11]. Meaine coordinates are a
powerful and flexible tool to define a map between two volurkksvever, there is no
guarantee that the computed map is a diffeomorphism.

Our approach differs intrinsically from these existing eggrhes in two-fold. First,
we solve the Green'’s functions on star shapes and show thedghltant functions have
unique critical points. As a result, the Green'’s functioduped map is guaranteed to
be a diffefomorphism. Second, we use fundamental solutichadg12, 8, 13] rather
than the conventional volumetric harmonic map [7], since fiilndamental solution
method is truly meshless, thus, it does not depend on thehedral mesh. In sharp
contrast, volumetric harmonic map heavily depends on thaditgyuof the tetrahedral
mesh. Irregular tetrahedralization may lead to numericalreand degeneracy of the
volumetric harmonic map even on convex or star shapes.

Our work is also related to polycube map which can be usedeapatametric do-
main for the volume parameterization. Tarini et al. pioeeea method to construct
polycube map by projecting the vertices to the polycube doifial]. Wang et al. pre-
sented an intrinsic approach to construct polycube mapsigaiaranteed to be a diffeo-
morphism [15]. Later, they developed a method that allovesusbers to freely specify
the extraordinary points on the 3D models [16]. Lin et al.sprged an automatic al-
gorithm to construct polycube map with simple geometry aqelogy [17]. Using the
divide-and-conquer strategy, He et al. developed a polyecoap construction method
that can process large 3D models [18].

3 Theoretic Foundation

This section briefly introduces the theoretic foundatiostaf shape parameterization;
see the detailed proof in the Appendix section.

A volumeM is called astar shapdf there exists a point € M such that any ray
cast fromc intersects the boundary & only once. The point is called the center of
M. In particular, any convex volume is a star shape, where r@yior point can serve
as the center. From the implementation point of view, coimguhe intersection of a
ray with a surface is typically computationally expensiVaus, we use an alternative
approach to define a star shape:

Lemma 1. A volume M is a star shape if and only if there exists a poiatM such
that for any boundary poirp € M,

(c—p,n(p)) <0, @
wheren(p) is the normal vector g and(, ) is the dot product.

The following lemmas reveal some nice properties of stapsta@and lay a crucial
role in our work.

Lemma 2 (Green’sfunction on a star shape)Suppose M is a star shape with a center
ce M, Gisthe Green'’s function (see Eqn. (1)) with a pole,ahenc s the only critical
point of G.
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Lemma 3. Suppose M is a star shape with a center M, G is the Green’s function
with a pole atc. Then for any re R¥, the level set GX(r) is topologically equivalent
to a sphere.

Let y1 andys be two integration curves of the gradient fieldls. If y3 andys inter-
sect at poinp, i.e.,p € y1 Ny, thendG(p) must be zero. Namelp must be a critical
point of G. SinceG has only one critical point, y3 andy, only intersect at the cen-
ter c. Furthermore, each integration curveld® intersects the boundary surfagil
perpendicularly.

Amap between two star-shaped voluriveandM with centers andg, respectively,
can be constructed in the following manner. First we compuigective map between
their boundarie® : dM — dM. Then we compute two Green’s functioBsandG on
M andM with polesc andg, respectively. Let € R, then the level seG~1(r) c M
matches the level s&~1(r) c M. Let p € dM, the integration curve throughin M
matches the integration curve througfp) in M. The centers o andM are mapped
to each other. Each interior point (other than the originhé&intersection of a unique
level set and a unique integration curve, therefore, eveigtpn M can be uniquely
mapped to a point iivi.

Therefore, we arrive at the following theorem, which laysvddhe theoretic foun-
dation of our volumetric parameterization algorithm.

Theorem 1. Suppose M anM are star-shaped volumes with centemndg, G and@
are Green’s functions with poles@andc, respectively. If the boundary map — oM
is a diffeomorphism, then the map ¥ — M induced by G anés is also a diffeomor-
phism.

Theorem 1 laid down the foundation of the proposed volumarpaterization frame-
work. We should point out that even thoughndt are poles of the Green'’s functio@s
and, the induced mayp : M — M is smooth everywhere including the palsince we
definef(c) := €. This can be elucidated by the physical meaning of Greem'stfon.
Consider the phenomenon of a grounded conducting surfaceusing a charged
body at the centet. The electric potential inside the volume bounded by théaser
is the Green’s function. If the volume is a solid ball and tleater is the origin, then
parameterization induced by the Green function is equitate the polar coordinate.
The center is the pole of the polar parameterization, butrthpping between two balls
induced by the polar coordinates has no singularity [19].

Remark. Gergen showed that the gradient of a Green'’s function in rassi@ped
three dimensional region never vanish[20]. This implied there is no interior singu-
larity of the Green function, therefore the level sets apotogical spheres, the integra-
tion curves of the gradient field do not intersect eithersTdives alternative proof for
our main theoretic result.

4 Volume Parameterization Using Green’s Functions

This section presents the algorithmic detail of paramategistar-shaped volumes to
simple domains, such as the unit ball and star-shaped pmdgcu
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4.1 Parameterizing a star shape to a ball

Input: S, the boundary mesh of a star-shaped volivhe
Output: f : M — B3 is diffeomorphism

1.1 Find the center of M;

1.2 Compute the Green'’s function on My;GM — R;

1.3 Map the centec to the center oB3, f(c) = 0;

1.4 Parameterize the boundary points by constructing a condébspherical
mappingp : oM — B3,

15 for every interior verteyp € M

16 Trace the integration curvg from p to the boundary poing € dM;

_ _9@
17 Setflp) = g5
1.8 end for
Algorithm 1: Ball parameterization of star shapes.

Step 1. Star shape verification and center detectiormhe input of our algorithm
is a closed genus-0 surfaBevhich encloses a volunid, i.e.,S= dM. Sis represented
by a triangular mesh with verticds; }! ;. First, we need to verify whethdd is star-
shaped. If it is true, we determine the centeMbf Note that for a given star shape,
there could be infinite possible choices for the centers hadlistribution of Green’s
function. A badly chosen center may introduce severe bittseinolume parameteriza-
tion. Thus, we prefer a geometry-aware center, where aalatioice is a center that is
close to the center of massiMf. This leads to the following linear constrained quadratic
programming problem:

.10
min —le\ti—Vill2
c n&
subjectto{c—v;,nj) <0 i=1,---,n.

The objective function aims to minimize the distance betwtbe centec and the center
of mass, where the linear constraints precisely ensuredteetdd center satisfies the
star shape requirement (see Eqn. 3MIfs not star-shaped, then no valid solution will
be found. In our implementation, we use the MOSEK optim@asoftware [21] to
solve this quadratic programming problem.

Step 2. Computing Green’s functions oM and B2. Next, we compute the Green’s
function on the star-shaped voluriveusing the method detailed in the fundamental so-
lution [12, 8]. Suppose we have an electric chaggat pointp;, the electric potential
caused by at pointr is
_ 1 a

ar|pi—r|’

K(ai,pi;r)

We need to pum electric charge$q;i} atm points{p;} on an offset surface above the
boundary surface aM, such that on the bounda#\M, the total potential equals zero,

m
Gm(r) = _ZK(qi,pi:r)+G(1,c;r) =0,Vr € M,
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M high

low

(a) boundary (c) source oints (d) Green’s

(b) centerc

surfacedM on offset surface  function onM
P c LXe)
g -
K
q'= ¢(q)
(e) Green’s ) @: M — B3 (9) integration (h) integration
function onB3 : curve inM curve inB3
(i) Soccer ball texture oi3 (j) Soccer ball texture oM

Fig. 2. Green’s function induces a diffeomorphism between the gtapeM and the unit ball
B3. The input model is a triangular mesh (shown in (a)) which@ses a star-shaped volume.
The red point in (b) shows the star shape center. Then we dentipet Green’s function oM
using the fundamental solution method. (¢) The source mdatted on the offset surface aM.
(d) The Green’s function oM. (e) The Green’s function of® which is given by a closed form
formula% — 1. (f) The boundary parameterization by constructing a @onél spherical map
@: IM — dB3. (g) We parameterize the interior pomby tracing the integration curveto the
boundary pointy. Note that the integration curve is perpendicular to thesisdaces ofG. (h)

The image op is given byﬁpp))”. (i) and (j) show the volume rendering of a soccer ball textur
onM andB3, respectively.
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\
opP
-
b OM — OP i
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oM

| oM — oB° oP — 0B’
OB}, OB}
(a) polycube magp (b) Green's (c) Green's
induces a map frondB3, to dB3 function function
onM onP

Fig. 3. Parameterizing a star shapkto a polycubeP using the Green'’s function. We first con-
struct the conformal polycube map: M — JdP. Then, we parameteriZzd and P to the ball
using Algorithm 1. The conformal polycube magpinduces an identity map betwe@ﬂﬁf,, and
d]B%,%. The volume parameterization is then givenfoy fy o f;l.

whereq;’'s are unknowns. The equation is converted to a dense linsséera, which
can be solved using the singular value decomposition mgithmdded in Matlab. As
suggested in [8], we placea = 0.6n source points on the offset surface with offset
distance equals.05 times the main diagonal ™.

The Green’s function of8® (with the origin as the center) has a closed form,
Ge(p) = % — 1, wherer is the distance fronp to the origin.

Step 3. Parameterizing the boundary pointsFurthermore, we compute the bound-
ary mapg: dM — B3. Since the boundary of the unit ball is the spH&#gthe conformal
spherical mapping [22] is a diffeomorphism, and thus, cawesas the boundary map.

Step 4. Parameterizing the interior points.The interior of the volume is repre-
sented by a tetrahedral mesh. We use Tetgen [23] to genetettebedral mesh for a
given surface mesto meet the boundary constraints. To improve the meshintfgua
we employ the variational tetrahedral meshing techinglierfich can significantly re-
duce the slivers and produce well-shaped tetrahedral rme$he tetrahedral mes¥
is represented bl = (V,E,F, T) whereV,E,F, andT are the vertex, edge, face, and
tetrahedra sets, respectively. The Green'’s fundigris represented as a piecewise lin-
ear functionGy :V — R. The gradient of5 can be computed as follows: suppase
is a tetrahedron with verticgs;, vj, v, vi }, the face on the tetrahedron against verex
is fi; similarly vj, v, andv; are againsfj, f, andf, respectively. We defing to be
the vector along the normal df with length equal to 2 times the areafpfand so can
Sj,S,S be defined. Then, the gradient@f; in t;j is a constant vector field

OGm = Gm(Vi)s + Gm(Vj)sj + Gm (Vi) +Gm()s -
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We then define the vertex gradient as the average of the gtadietors in the neigh-
boring tetrahedra.

Finally, the parameterization froM to B2, f : M — B2 is constructed as follows.
We map the centerto the origin, i.e., the center @&?3. Given an interior poinp € M
(other than the cente&)), we trace the integration curyeof the gradient field fronp, y
intersects the boundary surfag®! atq, theny corresponds to the radius Bf through
the point@(q). Suppose the Green’s function valuepas Gy (p), then the image of
is defined by -

¢\q
P =G+t

Figure 2 illustrates the pipeline of parameterizing the Hegd to a solid ball. To vi-

sualize the parameterization, we design a soccer ballrexinB? and then map it to

the dog head. Note that the iso-parameter surfackkéme curved, but the cut view is
obtained by a cutting plane. Thus, the texture on the intéiseplane in Fig. 2(1) may

look irregular.

Input : boundary meshes of a star shapeand a star-shaped polycuBe
Output: f : M — P is diffeomorphism

2.1 Parameterize P to the unit balpf P — B3;

2.2 Parameterize M to the unit baljf: M — B3,

2.3 Construct the polycube map: oM — 0P;

2.4 Construct the map between two balis B — B3, induced by the
polycube map;

25 Compute the composite map ¥ — P, f = fy oo fz .

Algorithm 2 : Polycube parameterization of star shapes

4.2 Parameterizing a star shape to a polycube

Ball parameterization is useful for the star shapes whiskmible the geometry of the
sphere. However, a general star shape may be significafféyetit from a ball. Thus,
ball parameterization may result in large distortions. $tarh cases, we propose to use
the star-shaped polycube as the parametric domain sinesdinbles the input object
better than the ball.

Given a star shapd and a polycub®, we want to find a bijective and smooth map
f : M — P. Rather than computing the map directly, we first indivitigpbrameterize
M andP to the unit balls using Algorithm 1 (see Sec 4.1). Then we segkooth map
between two ballg) : ]Bﬁ,, — IB%%. Finally, the polycube parameterization is given by the
composite mag = fy oo fot,

The polycube parameterization can be illustrated clearlhk following commu-

tative diagram:
M f:M—P

fMZM—>]B§’/|

\ prP—>]B|:;”,

B3

3

M .23 _p3
By —Bp
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Note that there exists infinitely many smooth maps betweerutvit balls, but different
Y could result in different volumetric parameterization.firad a low-distortion volu-
metric parameterization, i.e., mapping the head of Moa {§g. 3(a)) to the top of the
polycube, and so on, the polycube map can serve as a feasilsheléiry constraint. In
our implementation, we choose the approach of conformaigpdle map (for genus-0
surfaces) [15]. Figure 3 illustrates the pipeline of partarieing the star shapes to the
polycube.

Fig. 4. Parameterizing the pig model to a polycube. Row 1 and 2 shewdlume rendering of
the volumetric data and polycube parameterization resgdget

(a) Ball parametei@atusing our method

Fig. 5. Comparison. We map the dog head to unit ball using volumb&imonic map [7] and our
approach. As shown in the cut view of iso-parametric cureesmethod is more robust and leads
to hexahedral meshes with better quality. Our approach@lsoantees that the iso-parametric
curve which follow the direction of the gradient is orthogbto the other two iso-parametric
curves which span the iso-surface of the Green'’s function.
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5 Experimental Results and Applications

This section showcases the experimental results and ayafiapplications that can
benefit from our star-shape parameterization method, frolanvetric morphing to
volume-based computation on the GPU.

Results.Figure 4 shows the parameterization of the pig-shaped apirida polycube.
The volume rendering and the cut views reveal the qualithefdarameterization.

We compared our method with the volumetric harmonic map owkfi]. As men-
tioned above, the volumetric harmonic map is not guararttebd homeomorphic even
though the domain is convex. In Figure 5, we parameterizedtdr model to the unit
ball. As shown in the cut view and iso-parametric curvesjoethod is robust and leads
to hexahedral meshes with better quality.

2 CC

Fig. 6. Volumetric morphing between the star and the Venus head.

Volumetric Morphing. To morph from one star-shape to another, we parameterize
them to a common parametric domain, such as a ball and themaae a smooth map
(e.g., identity map in our current implementation) betwtenballs. Figure 6 shows a
running example from star to Venus head.

Anisotropic Solid Texture. Solid textures [24], or anisotropic solid textures [25}, al
low us to fill the interior of 3D models with spatially-vangrand anisotropic texture
patterns. Takayama et al. [25] proposed a lapped textureagip [26] to synthesize
anisotropic solid textures by pasting solid texture exarg[24] repeatedly over the
tetrahedron structure of 3D geometries. This approach esultrin high-quality and
large-scale solid textures with low computation cost; &ate such a texture, the user,
however, has to mark up volumetric tensor field and edit th&ute in a geometry-
dependent fashion.

Our star-shape volume parameterization method can fustibaden the applicabil-
ity of the lapped solid texture results to a larger pool ofrgetric models. As illustrated
in Figure 7, we can first parameterize a given star shape #sabéen pre-synthesized
with lapped solid texture to a solid ball using the Greentgfion; hence, we can trans-
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@ﬁ’(

Fig. 7. Transferring the anisotropic solid texture from kiwi (coln 1) to star shapes (column 2:
dog head; column 3: star).

fer the synthesized texture information from the input getsin model to our star-
shape model through the common parametric ground. Our apprallows the reuse
of synthesized anisotropic solid textures without inaugradditional texture synthesis.
Furthermore, since our volume parameterization methoddif@omorphism, we can
guarantee the bijectivity and smoothness in the textunstea process, as demonstrated
in Figure 7.

GPU-based Volumetric Computation.Another advantage of having a smooth volume
parameterization is the luxury of being able to perform catapons throughout the
volume by taking the computation process to the highlyestmed parametric domain.
Here we can parameterize the given star-shape model by anoodbe (or polycube) so
that the data inside the parametric domain can naturally dbeeted by a 3D texture;
as a result, we can carry out the computation on the GPU aridefuaccelerate the
computation performance.

In detail, we first parameterize a given star-shape model byb@ shape so that
the reaction-diffusion data (concentration values, etar) be naturally modeled as
3D textures stored in our GPU implementation. Here, we eynala extend Turing’s
reaction-diffusion model [27, 28] to three-dimensionald &xpectedly, 3D sphere-like
spot patterns will be developed when the chemical concéoisreach a dynamic equi-
librium state. Furthermore, we employ Witkin and Kass’s moelt [29] to account for
the distortion caused by the parameterization (since wepatgrthe reaction-diffusion
on the parameterization grid): Given the parameterizétiom star-shape to cube, we
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compute the local Jacobian per voxel element over the 3Dpeteization grid; then,
we can compute the metric tensor as a three-by-three niteixJ" J. Hence, we can
adaptively and locally modify the rate of diffusion by the@gonal values in the metric
matrix; this allows us to temper the reaction-diffusiontpat, thereby compensating
the volumetric distortion in the parameterization. Fig8ighows the reaction-diffusion
results on the Venus head model.

6 Conclusion and Future Work

This paper presented a volume parameterization technigstdr shapes. On the theo-
retical side, we showed that the Green'’s function in a dtapsd volume has a unique
critical point and then give a constructive proof of the &xige of a diffeomorphism
between two star shapes. On the application side, we deagllgorithms to parame-
terize star shapes to simple domains such as solid ballstandreped polycubes. We
also applied the star shape parameterization to severbtatgns, such as volumetric
morphing, anisotropic solid texture transfer and GPU-agsdumetric computing.

The proposed technique has several limitations that cahttedurther investiga-
tions. First, the current framework only applies to staaystd volumes. However, most
real-world shapes are not star-shaped. One possible@oligtiparameterize volumes
of arbitrary topology and geometry is to segment the shafedrset of disjoint star
shapes, then parameterize each shape individually, anty falae patches together
with a certain order of continuity. As a future direction, wél develop automatic
techniques to facilitate the segmentation and gluing ploees. Second, from the im-
plementation point of view, we solve the Green'’s functiomggundamental solution
method, which requires solving a dense linear system. Thigsjot efficient when the
number of source points is too large.
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Appendix
We prove the main theoretical results in this appendix.

Lemma 1A volume M is a star shape if and only if there exists a poiatM such that
for any boundary poinp € dM,

(¢—p;n(p)) <0, 3)

wheren(p) is the normal vector at the poiipt
Proof Assume the boundary surfad® is represented by the zero level set of an im-
plicit function f : R® — R, i.e., dM = f1(0) and the interior points € M satisfy
f(r)<oO.

(= necessary condition) ¥ is a star shape, for any boundary pgirk M, the
rayp — cintersect®M only once and the intersection poinpisThus, for any € [0, 1],
the pointq = p+ &c—p € M is insideM. Then, for a smalf > 0,

f(q) = f(p)+&v f(p)- (c—p)+O(e?|c—p|?).

Note thatf (p) =0 andf(qge) <0, thus, 7 f(p)-(ge —p) < 0. Sincesy/ f (p) points to the

normal directiom(p), andc— p has the same direction gs— p, then(c—p,n(p)) <O0.
(<= sulfficient condition) Given a poirt € M, for every boundary poinp, (c—

p.n(p)) < 0 holds. Assum is not a star shape, then there exists a ray fcomhich



16 Xia et al.

intersecte/M at least twice. Without loss of generality, sayandp, are the first two
intersection points ang; is closer toc. Consider a poing = £(p1 — p2) + p2 with
€ > 0. Clearly,q is on the segmeri;p, and out ofM. Thus, f(q) > 0. Using Taylor
expansion,

f(q) = f(p2) + &V f(p2) - (P1— p2) + O(€?(|p1 — P2|?).

Note thatf (p2) = 0 andsy f (p2) points to the same direction as normép,), p1 — p2
points to the same direction as- py, thus,s7 f(p2) - (p1 — p2) < 0 andf(q) <0, con-
tradiction! Q.E.D.

Lemma 2 [Green’s function on a star shapeSuppose M is a star shape with a center
ce M, G is the Green’s function with a pole at c, then c is the onifyoal point of G.
Proof Without loss of generality, we assurnés at the origin inR3. Let B(c,€) be a
small ball centered atwith radiuse. Consider the following function, the inner product
of the pointp = (X, %2, %3) and the gradient o at p,

0G 0G 0G
f(p) = (p,0G) = de_Xl erzd_xz +X3d_x3'

By direct computation, it is easy to verify that

02 G
Af:(ZO_xﬁxZXid_xi):O'

In details, ) ) 5
0 aG 0°G 9°G
- ) =2 — =
ox2 (IZ X% ) ox2 - ,ZX' X%’

therefore

2
(Z ;—Xﬁ)(zxig—)(j) =2AG+ inAg—;;.

Becausés is harmonic, thereforeﬁ% is also harmonic, and the above equation equals
zero.

Thereforef (p) is a harmonic function oivl/B(c, €). According to the maximum
principle of harmonic mapd, reaches its max and min values on the boundary surfaces
JdM anddB(c, ). Here by definition, and is the pole off, f is negative ordB(c,¢).
BecauseM is a star shape, oM, (n, p) > 0, wheren is the normal orp to dM. OG is
orthogonal tadM and is on the opposite direction of Therefore f is always negative
in the whole volumeM /B(c, €), UG is non-zero inM /B(c, €). Sincee is arbitrary,[1G
is non-zero for all points itM/{c}. We conclude tha© has no critical points ifM
exceptc. Q.E.D.

Lemma 3 Suppose M is a star shape with a center &, G is the Green'’s function
with a pole at c. Then for anye R, the level set G(r) is a topological sphere.
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Proof Letr € RT, G1(r) is the level set 06. G~1(0) is the boundary o1, M, which

is a topological sphere. By lemma 2, there is no critical tsimG~2([0,r]). According

to Morse theoryG—1(r) andG—1(0) share the same topology. In fact, we can start from
a pointp € G~1(r) and trace along the integration curve of the gradier@ ahd reach

a unique poing on G~1(0), this gives us a diffeomorphism fro@=1(r) to G-1(0).
Q.E.D.

Theorem 1 Suppose M and/i are star-shaped volumes with centers ¢ @nds and
G are Green’s functions with the poles at ¢ afidespectively. The Green’s functions
induce foliations. If the boundary maM — M is a diffeomorphism, the map M M
constructed using the foliations is a diffeomorphism.
Proof We first introduce the concepts fafliation andleaf.

A dimensionm foliation of an n-dimensional manifoldM is a covering by charts
U; together with maps® : U; — R", such that on the overlap$ NUj, the transition
functions@; = ¢ o ¢ * take the form

@ (xY) = (@7, & (x.Y))

wherex denotes the firah — m coordinatesy denotes the lagh coordinates. In each
chartU; the x = conststripes match up with the stripes &h). The stripes piece to-
gether from chart to chart to form maximal connected inyatyi immersed submani-
folds called thdeaves

The we show the proof. Lé¥; be the foliation oM by topological spheres induced
by the level sets o6, F, be the foliation ofM induced by the gradient lines @.
We choose an open cover M/{c}, {(Ua, @)}, Uq is the union for leaves itfr,
Uq = Uf, f € F, such thaty, : Uy — R3, leaves inF; are mapped to the planes=
const leaves inF, are mapped to line&,y) = const {(Uq, @)} is a differential atlas.
Similarly, we can construct a differential atlas Mif/{&}, {U,(ZJB}, the level sets and
the integration lines are mapped to canonical planes oothalgo thez-axis and lines
parallel to thez-axis.

The restriction of the map : M — M on the local coordinate system

fap =@ ofod™: @(Ua) — @(Up)
has the following form
fCXB (Xaya Z) - (g(xay)vz)v
whereg(x,y) is determined by the restriction éfon the boundaryf|sy : OM — OM.
The restriction is a diffeomorphism, theref@x, y) is a diffeomorphism, and, is a

diffeomorphism. Becaudd, andUg is arbitrarily chosenf itself is a diffeomorphism.
Q.E.D.



