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Abstract. Parameterizations have a wide range of applications in computer graph-
ics, geometric design and many other fields of science and engineering. Although
surface parameterizations have been widely studied and arewell developed, little
research exists on the volumetric data due to the intrinsic difficulties in extend-
ing surface parameterization algorithms to volumetric domain. In this paper, we
present a technique for parameterizing star-shaped volumes using the Green’s
functions. We first show that the Green’s function on the starshape has a unique
critical point. Then we prove that the Green’s functions caninduce a diffeomor-
phism between two star-shaped volumes. We develop algorithms to parameter-
ize star shapes to simple domains such as balls and star-shaped polycubes, and
also demonstrate the volume parameterization applications: volumetric morph-
ing, anisotropic solid texture transfer and GPU-based volumetric computation.

1 Introduction

The recent decade has witnessed the great advancements of surface parameterizations,
exemplified in a wide range of applications exhibited in science and engineering. De-
spite these successes, most real-world objects are in fact volumes rather than surfaces.
It remains both unclear and challenging on how to generalizeexisting surface param-
eterization methods from surfaces to volumes. And with volume parameterization, we
envision a large pool of applications that can benefit from the result, including solid tex-
ture mapping, volumetric tetrahedralization for simulation, and volumetric registration.

Due to the intrinsic difference between surfaces and volumes, many classical results
on surface parameterization cannot be directly generalized to produce volume param-
eterization. For example, it is well-known that a harmonic map between a topological
disk (a genus zero surface with a single boundary) and a planar convex domain is dif-
feomorphic (i.e., bijective and smooth), if the boundary map is homeomorphic (i.e., bi-
jective and continuous). This result plays an important role in surface parameterization.
Unfortunately, such an approach is not applicable to volumes, i.e., volumetric harmonic
map is not guaranteed to be bijective even though the target domain is convex. In this
paper, we aim at handling the challenges by proposing a theoretically sound algorithm
that can produce a diffeomorphism between two star-shaped volumes.
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Our volume parameterization method is strongly motivated by the property of elec-
tric field. Given a closed genus-0 metal surfaceS, let M denote its interior volume, i.e.,
∂M = S. We construct an electric field by putting a positive electric charge at a pointc
insideM, and connecting the boundary surfaceS to the ground. Theelectric potential
insideM is aGreen’s function, G : M → R, such that

{

∆G(x) = δ (x−c)
G|∂M ≡ 0,

(1)

whereδ (x−c) is the Dirac function. In general, the level set ofG, G−1(r), r ∈ R
+ or an

isopotential surface is a smooth surface inM. The gradient of the electric potential∇G
is theelectric field. Electric field linesare the integration curves of the electric field, i.e.,
the tangent vectors of the electric field lines are parallel to the electric field. Different
electric field lines only intersect at the points where we putthe electric charge, or at
the critical point of the potential. Electric field lines start from the electric charge and
are orthogonal to the iso-potential surfaces everywhere, in particular to the boundary
surface∂M.

If M is a star-shaped volume, every ray cast fromc intersectSonly once, and there
are no other critical points of the potential. Therefore, all the iso-potential surfaces can
be topological spheres and all electric field lines intersect only at pointc (see Fig. 1).
Since each point insideM is now uniquely determined by a corresponding electric field
line and an iso-potential surface, determining the map between two star-shaped volumes
is equivalent to constructing the map between the corresponding iso-potential surfaces
and the electric field lines. Therefore, we map the boundary surface to the unit sphere,
thereby putting each iso-potential surface to a concentricsphere, the electric field lines
to the radii, and the centerc to the origin. In this way, the star-shaped volume can be
parameterized to the unit solid ball. With the help of ball parameterization, the map
between two star shapes can then be constructed by mapping each shape to the unit
ball and constructing a bijective map between the two unit balls. Such a constructed
volumetric map is guaranteed to be a diffeomorphism.

(a) (b) (c) (d)

Fig. 1. Electric field on the star shape. Given a metal surfaceS, we put a positive charge at the
center (the red point) and then connectS to the ground (shown in (a)). The electric field is a
Green’s function shown in (b). If the surfaceS is star-shaped, then the Green’s function has a
unique critical point. As a result, all iso-potential surfaces are topological spheres (shown in (c)).
The electric field line (red curve in (d)) is perpendicular toall iso-potential surfaces.
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Our contributions include

– First, we show that the Green’s function on star shapes has a unique critical point
and all level sets inside the star shape are topological spheres. Then we prove that
the Green’s function can induce a diffeomorphism between two star shapes. To our
knowledge, this is the first constructive proof of the existence of a diffeomorphism
between two non-trivial shapes.

– Secondly, based on our theoretical results, we develop algorithms to parameterize
star shapes to star-shaped domains, such as solid balls and star-shaped polycubes.

– Thirdly, we showcase a variety of applications that benefit from our volume pa-
rameterization method, including volumetric morphing, anisotropic solid texture
transfer and GPU-based volumetric computation.

The remaining of the paper is organized as follows. We first briefly discuss the
previous work in Section 2. Next, we introduce the theoreticbackground in Section 3,
and present our volume parameterization algorithm in Section 4. Experimental results
are then reported in Section 5. We conclude this work in Section 6. The theoretic proofs
are presented in the Appendix.

2 Previous Work

Extensive research has been done on surface parameterization due to its wide applica-
tions in computer graphics. The surveys of [1][2] provide excellent reviews on various
kinds of mesh parameterization techniques. In the following, we briefly review the re-
lated work on volumetric meshing and volumetric harmonic map.

Labelle and Shewchuk introduced the isosurface stuffing algorithm to generate tetra-
hedron meshes with bounded dihedral angles in [3]. The volumetric discrete Laplace-
Beltrami operator used in this work generalizes thecotanformula in the surface case;
thecotanvalue of dihedral angles is used to replace those of corner angles. The range
of the dihedral angles affects the parameterization quality. A Delaunay-based varia-
tional approach to isotropic tetrahedral meshing is introduced by Alliez et al. in [4];
this method can produce well-shaped tetrahedra by energy minimization. Tandem algo-
rithm is introduced to isosurfaces extraction and simplification in [5]. The volumetric
harmonic map depends on volumetric Laplacian; Zhou et al. [6] applied volumetric
graph Laplacian to large mesh deformation.

Harmonicity in volumes can be similarly defined via the vanishing Laplacian, which
governs the smoothness of the mapping function. Wang et al. [7] studied the formula of
harmonic energy defined on tetrahedral meshes and computed the discrete volumetric
harmonic maps by a variational procedure. Volumetric parameterization using funda-
mental solution method is introduced in [8] and applied to volumetric deformation and
morphing. Other than that, harmonic volumetric parameterization for cylinder volumes
is applied for constructing tri-variate spline fitting in [9]. All the above approaches rely
on volumetric harmonic maps. Unfortunately, as pointed outpreviously in Section 1,
these volumetric harmonic maps cannot guarantee bijectivemappings even though the
target domain is convex.
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Besides the volumetric harmonic map, another stream of research studies the mean
value coordinates for closed triangular mesh [10, 11]. Meanvalue coordinates are a
powerful and flexible tool to define a map between two volumes.However, there is no
guarantee that the computed map is a diffeomorphism.

Our approach differs intrinsically from these existing approaches in two-fold. First,
we solve the Green’s functions on star shapes and show that the resultant functions have
unique critical points. As a result, the Green’s function induced map is guaranteed to
be a diffeomorphism. Second, we use fundamental solution method [12, 8, 13] rather
than the conventional volumetric harmonic map [7], since the fundamental solution
method is truly meshless, thus, it does not depend on the tetrahedral mesh. In sharp
contrast, volumetric harmonic map heavily depends on the quality of the tetrahedral
mesh. Irregular tetrahedralization may lead to numerical error and degeneracy of the
volumetric harmonic map even on convex or star shapes.

Our work is also related to polycube map which can be used as the parametric do-
main for the volume parameterization. Tarini et al. pioneered a method to construct
polycube map by projecting the vertices to the polycube domain [14]. Wang et al. pre-
sented an intrinsic approach to construct polycube map thatis guaranteed to be a diffeo-
morphism [15]. Later, they developed a method that allows the users to freely specify
the extraordinary points on the 3D models [16]. Lin et al. presented an automatic al-
gorithm to construct polycube map with simple geometry and topology [17]. Using the
divide-and-conquer strategy, He et al. developed a polycube map construction method
that can process large 3D models [18].

3 Theoretic Foundation

This section briefly introduces the theoretic foundation ofstar shape parameterization;
see the detailed proof in the Appendix section.

A volumeM is called astar shapeif there exists a pointc ∈ M such that any ray
cast fromc intersects the boundary ofM only once. The pointc is called the center of
M. In particular, any convex volume is a star shape, where any interior point can serve
as the center. From the implementation point of view, computing the intersection of a
ray with a surface is typically computationally expensive.Thus, we use an alternative
approach to define a star shape:

Lemma 1. A volume M is a star shape if and only if there exists a pointc ∈ M such
that for any boundary pointp ∈ ∂M,

(c−p,n(p)) ≤ 0, (2)

wheren(p) is the normal vector atp and(,) is the dot product.

The following lemmas reveal some nice properties of star shapes and lay a crucial
role in our work.

Lemma 2 (Green’s function on a star shape).Suppose M is a star shape with a center
c∈M, G is the Green’s function (see Eqn. (1)) with a pole atc, thenc is the only critical
point of G.
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Lemma 3. Suppose M is a star shape with a centerc ∈ M, G is the Green’s function
with a pole atc. Then for any r∈ R

+, the level set G−1(r) is topologically equivalent
to a sphere.

Let γ1 andγ2 be two integration curves of the gradient field,∇G. If γ1 andγ2 inter-
sect at pointp, i.e.,p ∈ γ1∩ γ2, then∇G(p) must be zero. Namely,p must be a critical
point of G. SinceG has only one critical pointc, γ1 andγ2 only intersect at the cen-
ter c. Furthermore, each integration curve of∇G intersects the boundary surface∂M
perpendicularly.

A map between two star-shaped volumesM andM̃ with centerscandc̃, respectively,
can be constructed in the following manner. First we computea bijective map between
their boundariesφ : ∂M → ∂M̃. Then we compute two Green’s functionsG andG̃ on
M andM̃ with polesc andc̃, respectively. Letr ∈ R

+, then the level setG−1(r) ⊂ M
matches the level set̃G−1(r) ⊂ M̃. Let p ∈ ∂M, the integration curve throughp in M
matches the integration curve throughφ(p) in M̃. The centers ofM andM̃ are mapped
to each other. Each interior point (other than the origin) isthe intersection of a unique
level set and a unique integration curve, therefore, every point in M can be uniquely
mapped to a point iñM.

Therefore, we arrive at the following theorem, which lays down the theoretic foun-
dation of our volumetric parameterization algorithm.

Theorem 1. Suppose M and̃M are star-shaped volumes with centersc andc̃, G andG̃
are Green’s functions with poles atcandc̃, respectively. If the boundary map∂M → ∂M̃
is a diffeomorphism, then the map f: M → M̃ induced by G and̃G is also a diffeomor-
phism.

Theorem 1 laid down the foundation of the proposed volume parameterization frame-
work. We should point out that even thoughc andc̃ are poles of the Green’s functionsG
andG̃, the induced mapf : M → M̃ is smooth everywhere including the polec since we
define f (c) := c̃. This can be elucidated by the physical meaning of Green’s function.
Consider the phenomenon of a grounded conducting surface surrounding a charged
body at the centerc. The electric potential inside the volume bounded by the surface
is the Green’s function. If the volume is a solid ball and the center is the origin, then
parameterization induced by the Green function is equivalent to the polar coordinate.
The center is the pole of the polar parameterization, but themapping between two balls
induced by the polar coordinates has no singularity [19].

Remark. Gergen showed that the gradient of a Green’s function in a star-shaped
three dimensional region never vanish[20]. This implies that there is no interior singu-
larity of the Green function, therefore the level sets are topological spheres, the integra-
tion curves of the gradient field do not intersect either. This gives alternative proof for
our main theoretic result.

4 Volume Parameterization Using Green’s Functions

This section presents the algorithmic detail of parameterizing star-shaped volumes to
simple domains, such as the unit ball and star-shaped polycubes.
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4.1 Parameterizing a star shape to a ball

Input : S, the boundary mesh of a star-shaped volumeM
Output : f : M → B

3 is diffeomorphism
Find the center of M;1.1

Compute the Green’s function on M, GM : M → R;1.2

Map the centerc to the center ofB3, f(c) = 0;1.3

Parameterize the boundary points by constructing a conformal spherical1.4

mappingφ : ∂M → ∂B
3;

for every interior vertexp ∈ M1.5

Trace the integration curveγ fromp to the boundary pointq ∈ ∂M;1.6

Set f(p) = φ(q)
GM(p)+11.7

end for1.8

Algorithm 1 : Ball parameterization of star shapes.

Step 1. Star shape verification and center detection.The input of our algorithm
is a closed genus-0 surfaceSwhich encloses a volumeM, i.e.,S= ∂M. S is represented
by a triangular mesh with vertices{vi}

n
i=1. First, we need to verify whetherM is star-

shaped. If it is true, we determine the center ofM. Note that for a given star shape,
there could be infinite possible choices for the centers and the distribution of Green’s
function. A badly chosen center may introduce severe bias inthe volume parameteriza-
tion. Thus, we prefer a geometry-aware center, where a natural choice is a center that is
close to the center of mass ofM. This leads to the following linear constrained quadratic
programming problem:

min
c

1
n

n

∑
i=1

‖c−vi‖
2

sub ject to(c−vi,ni) ≤ 0 i = 1, · · · ,n .

The objective function aims to minimize the distance between the centercand the center
of mass, where the linear constraints precisely ensure the detected centerc satisfies the
star shape requirement (see Eqn. 3). IfM is not star-shaped, then no valid solution will
be found. In our implementation, we use the MOSEK optimization software [21] to
solve this quadratic programming problem.

Step 2. Computing Green’s functions onM andB
3. Next, we compute the Green’s

function on the star-shaped volumeM using the method detailed in the fundamental so-
lution [12, 8]. Suppose we have an electric chargeqi at pointpi , the electric potential
caused byqi at pointr is

K(qi ,pi ; r) =
1

4π
qi

|pi − r |
.

We need to putm electric charges{qi} at m points{pi} on an offset surface above the
boundary surface of∂M, such that on the boundary∂M, the total potential equals zero,

GM(r) =
m

∑
i=1

K(qi ,pi ; r)+G(1,c; r) = 0,∀r ∈ ∂M,
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(a) boundary
surface∂M

(b) centerc (c) source points
on offset surface

(d) Green’s
function onM

(e) Green’s
function onB

3 (f) φ : ∂M → ∂B
3 (g) integration

curve inM
(h) integration

curve inB
3

(i) Soccer ball texture onB3 (j) Soccer ball texture onM

Fig. 2. Green’s function induces a diffeomorphism between the starshapeM and the unit ball
B

3. The input model is a triangular mesh (shown in (a)) which encloses a star-shaped volume.
The red point in (b) shows the star shape center. Then we compute the Green’s function onM
using the fundamental solution method. (c) The source pointplaced on the offset surface of∂M.
(d) The Green’s function onM. (e) The Green’s function onB3 which is given by a closed form
formula 1

r − 1. (f) The boundary parameterization by constructing a conformal spherical map
φ : ∂M → ∂B

3. (g) We parameterize the interior pointp by tracing the integration curveγ to the
boundary pointq. Note that the integration curve is perpendicular to the iso-surfaces ofG. (h)

The image ofp is given by φ(p)
GM(p)+1 . (i) and (j) show the volume rendering of a soccer ball texture

onM andB
3, respectively.
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(a) polycube mapφ
induces a map from∂B

3
M to ∂B

3
P

(b) Green’s
function

onM

(c) Green’s
function

on P

Fig. 3. Parameterizing a star shapeM to a polycubeP using the Green’s function. We first con-
struct the conformal polycube mapφ : ∂M → ∂P. Then, we parameterizeM andP to the ball
using Algorithm 1. The conformal polycube mapφ induces an identity map between∂B

3
M and

∂B
3
P. The volume parameterization is then given byf = fM ◦ f−1

P .

whereqi ’s are unknowns. The equation is converted to a dense linear system, which
can be solved using the singular value decomposition methodprovided in Matlab. As
suggested in [8], we placem = 0.6n source points on the offset surface with offset
distance equals 0.05 times the main diagonal ofM.

The Green’s function onB3 (with the origin as the center) has a closed form,
GB(p) = 1

r −1, wherer is the distance fromp to the origin.
Step 3. Parameterizing the boundary points.Furthermore, we compute the bound-

ary mapφ : ∂M →B
3. Since the boundary of the unit ball is the sphereS

2, the conformal
spherical mapping [22] is a diffeomorphism, and thus, can serve as the boundary map.

Step 4. Parameterizing the interior points.The interior of the volume is repre-
sented by a tetrahedral mesh. We use Tetgen [23] to generate atetrahedral mesh for a
given surface meshSto meet the boundary constraints. To improve the meshing quality,
we employ the variational tetrahedral meshing techinque [4] which can significantly re-
duce the slivers and produce well-shaped tetrahedral meshes. The tetrahedral meshM
is represented byM = (V,E,F,T) whereV,E,F, andT are the vertex, edge, face, and
tetrahedra sets, respectively. The Green’s functionGM is represented as a piecewise lin-
ear function,GM : V → R. The gradient ofG can be computed as follows: supposeti jkl

is a tetrahedron with vertices{vi ,v j ,vk,vl}, the face on the tetrahedron against vertexvi

is fi ; similarly v j , vk, andvl are againstf j , fk, and fl , respectively. We definesi to be
the vector along the normal offi with length equal to 2 times the area offi , and so can
sj ,sk,sl be defined. Then, the gradient ofGM in ti jkl is a constant vector field

∇GM = GM(vi)si +GM(v j)sj +GM(vk)sk +GM(vl )sl .
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We then define the vertex gradient as the average of the gradient vectors in the neigh-
boring tetrahedra.

Finally, the parameterization fromM to B
3, f : M → B

3 is constructed as follows.
We map the centerc to the origin, i.e., the center ofB3. Given an interior pointp ∈ M
(other than the centerc), we trace the integration curveγ of the gradient field fromp, γ
intersects the boundary surface∂M atq, thenγ corresponds to the radius ofB

3 through
the pointφ(q). Suppose the Green’s function value atp is GM(p), then the image ofp
is defined by

f (p) =
φ(q)

GM(p)+1
.

Figure 2 illustrates the pipeline of parameterizing the doghead to a solid ball. To vi-
sualize the parameterization, we design a soccer ball texture onB

3 and then map it to
the dog head. Note that the iso-parameter surfaces inM are curved, but the cut view is
obtained by a cutting plane. Thus, the texture on the intersection plane in Fig. 2(l) may
look irregular.

Input : boundary meshes of a star shapeM and a star-shaped polycubeP
Output : f : M → P is diffeomorphism
Parameterize P to the unit ball fP : P→ B

3
P;2.1

Parameterize M to the unit ball fM : M → B
3
M;2.2

Construct the polycube mapφ : ∂M → ∂P;2.3

Construct the map between two ballsψ : B
3
P → B

3
M induced by the2.4

polycube mapφ ;
Compute the composite map f: M → P, f = fM ◦ψ ◦ f−1

P .2.5

Algorithm 2 : Polycube parameterization of star shapes

4.2 Parameterizing a star shape to a polycube

Ball parameterization is useful for the star shapes which resemble the geometry of the
sphere. However, a general star shape may be significantly different from a ball. Thus,
ball parameterization may result in large distortions. Forsuch cases, we propose to use
the star-shaped polycube as the parametric domain since it resembles the input object
better than the ball.

Given a star shapeM and a polycubeP, we want to find a bijective and smooth map
f : M → P. Rather than computing the map directly, we first individually parameterize
M andP to the unit balls using Algorithm 1 (see Sec 4.1). Then we seeka smooth map
between two ballsψ : B

3
M → B

3
P. Finally, the polycube parameterization is given by the

composite mapf = fM ◦ψ ◦ f−1
P .

The polycube parameterization can be illustrated clearly by the following commu-
tative diagram:

M P

B
3
M B

3
P

-
f :M→P

?

fM :M→B
3
M

?

fP:P→B
3
P

-

ψ:B3
M→B

3
P
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Note that there exists infinitely many smooth maps between two unit balls, but different
ψ could result in different volumetric parameterization. Tofind a low-distortion volu-
metric parameterization, i.e., mapping the head of Moai (see Fig. 3(a)) to the top of the
polycube, and so on, the polycube map can serve as a feasible boundary constraint. In
our implementation, we choose the approach of conformal polycube map (for genus-0
surfaces) [15]. Figure 3 illustrates the pipeline of parameterizing the star shapes to the
polycube.

Fig. 4. Parameterizing the pig model to a polycube. Row 1 and 2 show the volume rendering of
the volumetric data and polycube parameterization respectively.

(a) Ball parameterization using [7] (a) Ball parameterization using our method

Fig. 5.Comparison. We map the dog head to unit ball using volumetricharmonic map [7] and our
approach. As shown in the cut view of iso-parametric curves,our method is more robust and leads
to hexahedral meshes with better quality. Our approach alsoguarantees that the iso-parametric
curve which follow the direction of the gradient is orthogonal to the other two iso-parametric
curves which span the iso-surface of the Green’s function.
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5 Experimental Results and Applications

This section showcases the experimental results and a variety of applications that can
benefit from our star-shape parameterization method, from volumetric morphing to
volume-based computation on the GPU.
Results.Figure 4 shows the parameterization of the pig-shaped coin box to a polycube.
The volume rendering and the cut views reveal the quality of the parameterization.

We compared our method with the volumetric harmonic map method [7]. As men-
tioned above, the volumetric harmonic map is not guaranteedto be homeomorphic even
though the domain is convex. In Figure 5, we parameterized the star model to the unit
ball. As shown in the cut view and iso-parametric curves, ourmethod is robust and leads
to hexahedral meshes with better quality.

Fig. 6. Volumetric morphing between the star and the Venus head.

Volumetric Morphing. To morph from one star-shape to another, we parameterize
them to a common parametric domain, such as a ball and then determine a smooth map
(e.g., identity map in our current implementation) betweenthe balls. Figure 6 shows a
running example from star to Venus head.
Anisotropic Solid Texture. Solid textures [24], or anisotropic solid textures [25], al-
low us to fill the interior of 3D models with spatially-varying and anisotropic texture
patterns. Takayama et al. [25] proposed a lapped texture approach [26] to synthesize
anisotropic solid textures by pasting solid texture examplars [24] repeatedly over the
tetrahedron structure of 3D geometries. This approach can result in high-quality and
large-scale solid textures with low computation cost; to create such a texture, the user,
however, has to mark up volumetric tensor field and edit the texture in a geometry-
dependent fashion.

Our star-shape volume parameterization method can furtherbroaden the applicabil-
ity of the lapped solid texture results to a larger pool of geometric models. As illustrated
in Figure 7, we can first parameterize a given star shape that has been pre-synthesized
with lapped solid texture to a solid ball using the Green’s function; hence, we can trans-
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Fig. 7. Transferring the anisotropic solid texture from kiwi (column 1) to star shapes (column 2:
dog head; column 3: star).

fer the synthesized texture information from the input geometric model to our star-
shape model through the common parametric ground. Our approach allows the reuse
of synthesized anisotropic solid textures without incurring additional texture synthesis.
Furthermore, since our volume parameterization method is adiffeomorphism, we can
guarantee the bijectivity and smoothness in the texture transfer process, as demonstrated
in Figure 7.

GPU-based Volumetric Computation.Another advantage of having a smooth volume
parameterization is the luxury of being able to perform computations throughout the
volume by taking the computation process to the highly-structured parametric domain.
Here we can parameterize the given star-shape model by a cubemodel (or polycube) so
that the data inside the parametric domain can naturally be modeled by a 3D texture;
as a result, we can carry out the computation on the GPU and further accelerate the
computation performance.

In detail, we first parameterize a given star-shape model by acube shape so that
the reaction-diffusion data (concentration values, etc.)can be naturally modeled as
3D textures stored in our GPU implementation. Here, we employ and extend Turing’s
reaction-diffusion model [27, 28] to three-dimensional, and expectedly, 3D sphere-like
spot patterns will be developed when the chemical concentrations reach a dynamic equi-
librium state. Furthermore, we employ Witkin and Kass’s method [29] to account for
the distortion caused by the parameterization (since we compute the reaction-diffusion
on the parameterization grid): Given the parameterizationfrom star-shape to cube, we
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compute the local Jacobian per voxel element over the 3D parameterization grid; then,
we can compute the metric tensor as a three-by-three matrixM = JTJ. Hence, we can
adaptively and locally modify the rate of diffusion by the diagonal values in the metric
matrix; this allows us to temper the reaction-diffusion pattern, thereby compensating
the volumetric distortion in the parameterization. Figure8 shows the reaction-diffusion
results on the Venus head model.

6 Conclusion and Future Work

This paper presented a volume parameterization technique for star shapes. On the theo-
retical side, we showed that the Green’s function in a star-shaped volume has a unique
critical point and then give a constructive proof of the existence of a diffeomorphism
between two star shapes. On the application side, we developed algorithms to parame-
terize star shapes to simple domains such as solid balls and star-shaped polycubes. We
also applied the star shape parameterization to several applications, such as volumetric
morphing, anisotropic solid texture transfer and GPU-based volumetric computing.

The proposed technique has several limitations that can lead to further investiga-
tions. First, the current framework only applies to star-shaped volumes. However, most
real-world shapes are not star-shaped. One possible solution to parameterize volumes
of arbitrary topology and geometry is to segment the shape into a set of disjoint star
shapes, then parameterize each shape individually, and finally glue patches together
with a certain order of continuity. As a future direction, wewill develop automatic
techniques to facilitate the segmentation and gluing procedures. Second, from the im-
plementation point of view, we solve the Green’s function using fundamental solution
method, which requires solving a dense linear system. Thus,it is not efficient when the
number of source points is too large.
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Appendix

We prove the main theoretical results in this appendix.

Lemma 1A volume M is a star shape if and only if there exists a pointc∈ M such that
for any boundary pointp ∈ ∂M,

(c−p,n(p)) ≤ 0, (3)

wheren(p) is the normal vector at the pointp.
Proof Assume the boundary surface∂M is represented by the zero level set of an im-
plicit function f : R

3 → R, i.e., ∂M = f−1(0) and the interior pointsr ∈ M satisfy
f (r) < 0.

(=⇒ necessary condition) IfM is a star shape, for any boundary pointp ∈ M, the
rayp−c intersects∂M only once and the intersection point isp. Thus, for anyε ∈ [0,1],
the pointq = p+ εc−p∈ M is insideM. Then, for a smallε > 0,

f (q) = f (p)+ ε ▽ f (p) · (c−p)+O(ε2‖c−p‖2).

Note thatf (p) = 0 andf (qε )≤ 0, thus,▽ f (p) ·(qε −p)≤ 0. Since▽ f (p) points to the
normal directionn(p), andc−p has the same direction asqε −p, then(c−p,n(p))≤ 0.

(⇐= sufficient condition) Given a pointc ∈ M, for every boundary pointp, (c−
p,n(p)) ≤ 0 holds. AssumeM is not a star shape, then there exists a ray fromc which
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intersects∂M at least twice. Without loss of generality, sayp1 andp2 are the first two
intersection points andp1 is closer toc. Consider a pointq = ε(p1 − p2) + p2 with
ε > 0. Clearly,q is on the segmentp1p2 and out ofM. Thus, f (q) > 0. Using Taylor
expansion,

f (q) = f (p2)+ ε ▽ f (p2) · (p1−p2)+O(ε2‖p1−p2‖
2).

Note thatf (p2) = 0 and▽ f (p2) points to the same direction as normaln(p2), p1−p2

points to the same direction asc−p2, thus,▽ f (p2) · (p1−p2) ≤ 0 and f (q) ≤ 0, con-
tradiction! Q.E.D.

Lemma 2 [Green’s function on a star shape]Suppose M is a star shape with a center
c∈ M, G is the Green’s function with a pole at c, then c is the only critical point of G.
Proof Without loss of generality, we assumec is at the origin inR

3. Let B(c,ε) be a
small ball centered atc with radiusε. Consider the following function, the inner product
of the pointp = (x1,x2,x3) and the gradient ofG at p,

f (p) = (p,∇G) = x1
∂G
∂x1

+x2
∂G
∂x2

+x3
∂G
∂x3

.

By direct computation, it is easy to verify that

∆ f = (∑
k

∂ 2

∂x2
k

)(∑
i

xi
∂G
∂xi

) = 0.

In details,
∂ 2

∂x2
k

(∑
i

xi
∂G
∂xi

) = 2
∂ 2G

∂x2
k

+∑
i

xi
∂ 3G

∂x2
k∂xi

,

therefore

(∑
k

∂ 2

∂x2
k

)(∑
i

xi
∂G
∂xi

) = 2∆G+∑
i

xi∆
∂G
∂xi

.

BecauseG is harmonic, therefore,∂G
∂xi

is also harmonic, and the above equation equals
zero.

Thereforef (p) is a harmonic function onM/B(c,ε). According to the maximum
principle of harmonic maps,f reaches its max and min values on the boundary surfaces
∂M and∂B(c,ε). Here by definition, andc is the pole off , f is negative on∂B(c,ε).
BecauseM is a star shape, on∂M, (n, p) > 0, wheren is the normal onp to ∂M. ∇G is
orthogonal to∂M and is on the opposite direction ofn. Therefore,f is always negative
in the whole volumeM/B(c,ε), ∇G is non-zero inM/B(c,ε). Sinceε is arbitrary,∇G
is non-zero for all points inM/{c}. We conclude thatG has no critical points inM
exceptc. Q.E.D.

Lemma 3 Suppose M is a star shape with a center c∈ M, G is the Green’s function
with a pole at c. Then for any r∈ R

+, the level set G−1(r) is a topological sphere.
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Proof Let r ∈R
+, G−1(r) is the level set ofG. G−1(0) is the boundary ofM, ∂M, which

is a topological sphere. By lemma 2, there is no critical points inG−1([0, r]). According
to Morse theory,G−1(r) andG−1(0) share the same topology. In fact, we can start from
a pointp∈ G−1(r) and trace along the integration curve of the gradient ofG and reach
a unique pointq on G−1(0), this gives us a diffeomorphism fromG−1(r) to G−1(0).
Q.E.D.

Theorem 1 Suppose M and̃M are star-shaped volumes with centers c andc̃, G and
G̃ are Green’s functions with the poles at c andc̃ respectively. The Green’s functions
induce foliations. If the boundary map∂M → ∂M̃ is a diffeomorphism, the map M→ M̃
constructed using the foliations is a diffeomorphism.
Proof We first introduce the concepts offoliation andleaf.

A dimensionm foliation of an n-dimensional manifoldM is a covering by charts
Ui together with mapsφi : Ui → R

n, such that on the overlapsUi ∩U j , the transition
functionsφi j = φ j ◦φ−1

i take the form

φi j (x,y) = (φ1
i j (x),φ

2
i j (x,y))

wherex denotes the firstn−m coordinates,y denotes the lastm coordinates. In each
chartUi the x = conststripes match up with the stripes onU j . The stripes piece to-
gether from chart to chart to form maximal connected injectively immersed submani-
folds called theleaves.

The we show the proof. LetF1 be the foliation ofM by topological spheres induced
by the level sets ofG, F2 be the foliation ofM induced by the gradient lines ofG.
We choose an open cover ofM/{c}, {(Uα ,φα)}, Uα is the union for leaves inF2,
Uα = ∪ f , f ∈ F2, such thatφα : Uα → R

3, leaves inF1 are mapped to the planesz=
const, leaves inF2 are mapped to lines(x,y) = const. {(Uα ,φα)} is a differential atlas.
Similarly, we can construct a differential atlas ofM̃/{c̃}, {Ũ , φ̃β}, the level sets and
the integration lines are mapped to canonical planes orthogonal to thez-axis and lines
parallel to thez-axis.

The restriction of the mapf : M → M̃ on the local coordinate system

fαβ = φ̃β ◦ f ◦φ−1
α : φα(Uα) → φ̃β (Ũβ )

has the following form
fαβ (x,y,z) = (g(x,y),z),

whereg(x,y) is determined by the restriction off on the boundary,f |∂M : ∂M → ∂M̃.
The restriction is a diffeomorphism, thereforeg(x,y) is a diffeomorphism, andfαβ is a
diffeomorphism. BecauseUα andŨβ is arbitrarily chosen,f itself is a diffeomorphism.
Q.E.D.


