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Abstract—Homotopy group plays a role in com-
putational topology with a fundamental importance.
Each homotopy equivalence class contains an infinite
number of loops. Finding a canonical representa-
tive within a homotopy class will simplify many
computational tasks in computational topology, such
as loop homotopy detection, pants decomposition.
Furthermore, the canonical representative can be
used as the shape descriptor.

This work introduces a rigorous and practical
method to compute a unique representative for each
homotopy class. The main strategy is to use hyper-
bolic structure, such that each homotopy class has a
unique closed geodesic, which is the representative.

The following is the algorithm pipeline: for a
given surface with negative Euler number, we apply
hyperbolic Yamabe curvature flow to compute the
unique Riemannian metric, which has constant neg-
ative one curvature everywhere and is conformal to
the original metric. Then we compute the Fuchsian
group generators of the surface on the hyperbolic
space. For a given loop on the surface, we lift it to
the universal covering space, to obtain the Fuchsian
transformation corresponding to the homotopy class
of the loop. The unique closed geodesic inside the
homotopy class is the axis of the Fuchsian transfor-
mation, which is the canonical representative.

Theories and algorithms are explained thoroughly
in details. Experimental results are reported to show
the efficiency and efficacy of the algorithm. The
unique homotopy class representative can be applied
for homotopy detection and shape comparison.

Keywords—homotopy class, hyperbolic structure,
hyperbolic Yamabe flow

1. INTRODUCTION

Computational topological methods have been widely
applied for computer graphics, geometric modeling,
medical imaging and many engineering fields. One of
the most important topological invariant is the funda-
mental group. Comparing to homology groups, funda-
mental group conveys more information, but also is
much more difficult to compute. For examples, verifying
two fundamental groups of 3-manifolds are isomorphic,
finding the shortest representative of a loop in the funda-
mental group, are highly non-trivial. Geometry topology

aims at solving topological problems by equipping the
topological manifold with a geometric structure, which
can greatly simplify the problem. For example, in order
to prove the Poincaré conjecture, a Riemannian metric
is assigned to the 3-manifold, by running Ricci flow, the
metric converges to the canonical spherical metric. This
proves the manifold is homeomorphic to a sphere.
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Fig. 1. Two homotopic closed surfaceγ1 and γ2 are given. The
canonical representative of their homotopy class[γ1] is computed
as the unique closed geodesic in the homotopy class under the
uniformization metric, shown asΓ. (a) and (b) show the front view
and back view ofγ1 and Γ. (c) and (d) illustrate the front view and
back view ofγ2 andΓ. The figure shows the canonical representative
of the homotopy class is unique.

In this work, we propose to assign a special Rieman-
nian metric to a topological surface, which helps the
computation for topological problems, especially those
related to the fundamental group. The basic idea is that,
each homotopy class has an infinite number of loops, if
a unique representative can be selected from the loops,
it can greatly simplifies the problems. A natural choice
for the representative will be a closed geodesic. Un-
fortunately, under induced Euclidean metric, the closed
geodesic is not unique in each homotopy class. Accord-
ing to Riemann uniformization theorem, each metric
surface has a canonical uniformization metric, which has
constant Gaussian curvature everywhere. If the surface
is of negative Euler number, then under the canoni-
cal metric, each homotopy class has a unique closed
geodesic. By deforming the metric to be the canonical
uniformization metric, the unique closed geodesic can
be obtained and used as the canonical representative for
the class.

The major computational challenges are:

1) How to compute the uniformization metric?



2) How to compute the closed geodesic from a given
loop?

The first problem can be solved using surface Ricci flow,
which deforms the metric proportional to the Gaussian
curvature, such that the curvature evolves according to
a heat diffusion process, and becomes constant every-
where. This work introduces a novel discrete curva-
ture flow, discrete hyperbolic Yamabe flow on surfaces,
which is the gradient flow of a convex energy. The
uniformization metric corresponds to the unique global
optimum of the energy. By optimizing the energy, the
optimum can be reached efficiently and stably.

The second problem can be solved using duality
between the fundamental group and the Fuchsian group.
The universal covering space of the surface can be iso-
metrically embedded onto the hyperbolic spaceH

2. All
the deck transformations are Möbius transformations,
and form the Fuchsian group. Each homotopy class
corresponds to a unique Fuchsian transformation. The
unique geodesic corresponds to the axis of the Fuchsian
transformation.

The paper is organized in the following way: previous
works are briefly reviewed in the next section; theoretic
background is introduced in Section III; details for the
algorithms are explained thoroughly in Sections IV and
V; experimental results are reported in Section VI; the
paper is concluded in Section VII.

2. PREVIOUS WORKS

The Ricci flow on surfacesThe Ricci flow was firstly
proposed by Hamilton [1] as a tool to conformally de-
form the metric according to the curvature. In [2] Chow
and Luo developed the theories of the combinatorial
surface Ricci flow, which was later implemented and
applied for surface parameterization [3], [4], shape clas-
sification [5], shape mapping [6] and surface matching
[7].

In [10] Luo studied the discrete Yamabe flow on
surfaces. He introduced a notion of discrete conformal
change of polyhedral metric, which plays a key role in
developing the discrete Yamabe flow and the associated
variational principle in the field. Based on the discrete
conformal class and geometric consideration, Luo gave
the discrete Yamabe energy as an integration of a dif-
ferential 1-form and proved that this energy is a locally
convex function. He also deduced from it that the cur-
vature evolution of the Yamabe flow is a heat equation.
In a very nice recent work of Springborn et al. [11] they
were able to identify the Yamabe energy introduced by
Luo with the Milnor-Lobachevsky function and the heat
equation for the curvature evolution with the cotangent
Laplace equation. They constructed an algorithm based
on their explicit formula.

Theories of Yamabe flow on discrete hyperbolic
surface can be found in [25]. This is the first work
to develop the computational algorithm forhyperbolic
Yamabe flow, which is used to compute the uniform hy-
perbolic metric for surfaces with negative Euler number.

The shortest loop The problem of computing ho-
motopy geodesic,homotopy class representative, for
loops or all point pairs has significant connections with
other important problems in computational topology,
such as constructing polygonal schema [12], [13], [14],
contractibility test and transformability test [15].

Erickson and Whittlesey [16] gave a very fast greedy
algorithm to compute the shortest system of loops
relaxing the homotopy condition. The active contour
method [17] is widely used in computer vision. A
planar curve on an image can be shrunk by moving
each point towards its curvature center. The deformation
process does not change the homotopy type of the
curve. Later, in [18], geometric snakes, which are cycles
on a surface, are computed from active contours on
the corresponding parameter chart. By distorting the
curve based on geodesic curvature, the curves will be
deformed to geodesics with the same homotopy type.
Dey et al. [27] proposed the persistence based algorithm
to compute well defined tunnel and handle base loops
that are both topologically correct but also geometrically
relevant.handles and tunnelsare defined via homology.
Thus it can not guarantee the loops detected are the
representatives of homotopy group.

Hershberger and Soneyink lifted closed curves to the
universal covering space in [20], [21]. However, their
results only apply to boundary triangulated 2-manifolds
and cannot be used in our case because it assumes all
vertices are on a boundary. Yin et. al. [19] generalized
the shortest path algorithm to the shortest cycles in each
homotopy class on a surface with arbitrary topology, by
utilizing the UCS in algebraic topology.

Jin et al. [22], [5], [26] introduced the geodesic
spectra from Fuchsian group generators in a closed
form to classify surfaces by their conformal structures.
The key difference is that their method only computes
the lengths of geodesics, which are the traces of the
Fuchsian transformations. In our work, we focus on
finding the geodesics explicitly, instead of just their
lengths.

3. THEORETIC BACKGROUND

This section briefly introduces the theoretic back-
ground necessary for the current work. For details, we
refer readers to [23] for algebraic topology and [24] for
differential geometry.
Fundamental group and representative of homotopy
classLet Sbe a topological surface, and letp be a point
of S. All loops with base pointp are classified by homo-
topy relation. All homotopy equivalence classes form the
homotopy groupor fundamental groupπ1(S, p), where
the product is defined as the concatenation of two loops
through their common base point.

Suppose S is a genus g closed surface. A
canonical set of generatorsof π(S, p) consists of
{a1,b1,a2,b2, · · · ,ag,bg}, such that the pairai and bi

has one intersection point, the pairs{ai,a j}, {bi ,b j} and
{ai,b j}, have no intersections, wherei 6= j. See Figure
1 for an example of canonical basis on a genus two
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surface.
Universal cover and uniformization metric A cover-
ing spaceof S is a spaceS̃ together with a continuous
surjective maph : S̃→ S, such that for everyp ∈ S
there exists an open neighborhoodU of p such that
h−1(U) (the inverse image ofU underh) is a disjoint
union of open sets inS̃ each of which is mapped
homeomorphically ontoU by h. The maph is called
the covering map. A simply connected covering space
is a universal cover.

Supposeγ ⊂ S is a loop through the base pointp
on S. Let p̃0 ∈ S̃ be a preimage of the base pointp,
p̃0 ∈ h−1(p), then there exists a unique pathγ̃ ⊂ S̃ lying
over γ (i.e. h(γ̃) = γ) and γ̃(0) = p̃0. γ̃ is a lift of γ.

A deck transformationof a cover h : S̃→ S is a
homeomorphismf : S̃→ S̃ such thath ◦ f = h. All
deck transformations form a group, the so-calleddeck
transformation group. A fundamental domainof S is a
simply connected domain, which intersects each orbit of
the deck transformation group only once.

The deck transformation groupDeck(S) is isomorphic
to the fundamental groupπ1(S, p). Let p̃0 ∈ h−1(p),
φ ∈ Deck(S), γ̃ is a path in the universal cover
connecting ˜p0 and φ(p̃0), then the projection of̃γ is a
loop on S, φ corresponds to the homotopy class of the
loop, φ → [h(γ̃)]. This gives the isomorphism between
Deck(S) andπ1(S, p).

Surface Ricci curvature flow Let S be a surface
embedded inR3. S has a Riemannian metric induced
from the Euclidean metric ofR3, denoted byg. Suppose
u : S→ R is a scalar function defined onS. It can be
verified thatḡ = e2ug is also a Riemannian metric onS
conformal to the original one.

The Gaussian curvatures will also be changed accord-
ingly. The Gaussian curvature will become

K̄ = e−2u(−∆gu+K),

where∆g is the Laplacian-Beltrami operator under the
original metric g. The above equation is called the
Yamabe equation. By solving the Yamabe equation, one
can design a conformal metrice2ug by a prescribed
curvatureK̄.

Yamabe equation can be solved usingRicci flow
method. The Ricci flow deforms the metricg(t) accord-
ing to the Gaussian curvatureK(t) (induced by itself),
wheret is the time parameter

dgi j (t)

dt
= 2(K̄−K(t))gi j (t).

Theuniformization theoremfor surfaces says that any
metric surface admits a Riemannian metric of constant
Gaussian curvature, which is conformal to the original
metric. Such metric is called theuniformization metric.
Poincaré disk model In this work, we use Poincaré
disk to model the hyperbolic spaceH

2, which is the unit
disk |z|< 1 on the complex plane with the metricds2 =

4dzd̄z
(1−zz̄)2 . The rigid motion is the Möbius transformation

z→ eiθ z−z0

1− z̄0z
,

whereθ andz0 are parameters. The geodesic of Poincaré
disk is a Euclidean circular arc, which is perpendicular
to the unit circle.

SupposeS is a high genus closed surface with the
hyperbolic uniformization metric̃g. Then its universal
covering space(S̃, g̃) can be isometrically embedded
in H

2. Any deck transformation ofS̃ is a Möbius
transformation, and called aFuchsian transformation.
The deck transformation group is called theFuchsian
group of S.

Let φ be a Fuchsian transformation, letz ∈ H
2,

the attractor and repulser of φ are limn→∞ φn(z) and
limn→∞ φ−n(z) respectively. Theaxis of φ is the unique
geodesic through its attractor and repulser.

4. DISCRETE HYPERBOLIC YAMABE FLOW

In practice, most surfaces are approximated by dis-
crete triangular meshes. LetM be a two dimensional
simplicial complex, we denote the set of vertices, edges
and faces asV,E,F respectively. We usevi as theith
vertex; edge[vi ,v j ] from vi to v j ; face [vi ,v j ,vk] with
the vertices sorted counter-clockwisely. Figure 2 shows
the hyperbolic triangle, and its associated edge lengths
l i ,yi , corner anglesθi and conformal factorsui.

A discrete metricis a functionl : E → R
+, such that

triangle inequality holds on every face, which represents
the edge lengths. In this work, we assume all faces are
hyperbolic triangles. Thediscrete curvature K: V → R

is defined as angle deficit, 2π minus surrounding corner
angles for an interior vertex, andπ minus surrounding
corner angles for a boundary vertex.

l1

l2
l3

u1

u2

u3

y1

y2y3

θ1

θ2

θ3

Fig. 2. Discrete surface Yamabe flow.

4.1 Discrete conformal deformation

Suppose the mesh is embedded inR
3, therefore it has

the induced Euclidean metric. We usel0i j to denote the
initial induced Euclidean metric on edge[vi ,v j ].

Let u : V → R be thediscrete conformal factor. The
discrete conformal metric deformation is defined as

sinh(
yk

2
) = eui sinh(

lk
2

)eu j . (1)

The discrete Yamabe flowis defined as

dui

dt
= −Ki , (2)
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whereKi is the curvature at the vertexvi .
Let u = (u1,u2, · · · ,un) be the conformal factor vector,

wheren is the number of vertices,u0 = (0,0, · · · ,0), then
the discrete hyperbolic Yamabe energyis defined as

E(u) =

∫ u

u0

n

∑
i=1

Kidui . (3)

The following theorem lays down the foundation of
the discrete hyperbolic flow algorithm.

Lemma IV.1. The differential 1-formω = ∑n
i=1Kidui is

closed.

We useck to denote cosh(yk). By direct computation,
it can be shown that on each triangle,

∂θi

∂u j
= A

ci +c j −ck−1
ck +1

,

where
A =

1
sin(θk)sinh(yi)sinh(y j)

,

which is symmetric ini, j, therefore∂θi
∂u j

=
∂θ j
∂ui

. It is easy

to see that∂Ki
∂u j

=
∂K j
∂ui

, which impliesdω = 0.

Theorem IV.2. The discrete hyperbolic Yamabe energy
is convex. The unique global minimum corresponding to
the hyperbolic metric with zero vertex curvatures.

This requires to compute the Hessian matrix of the
energy. The explicit form is given as follows.

∂θi

∂ui
= −A

2cic jck−c2
j −c2

k +cic j +cick−c j −ck

(c j +1)(ck +1)

The Hessian matrix(hi j ) of the hyperbolic Yamabe
energy can be computed explicitly. Let[vi ,v j ] be an
edge, connecting two faces[vi ,v j ,vk] and[v j ,vi ,vl ], then
the edge weight is defined as

hi j =
∂θ jk

i

∂u j
+

∂θ l j
i

∂u j
.

also for

hii = ∑
j ,k

∂θ jk
i

∂ui
,

where the summation goes through all faces surrounding
vi , [vi ,v j ,vk].

The discrete hyperbolic energy can be optimized us-
ing Newton’s method directly. Because of the convexity
of the energy, the optimization process is stable.

Given the meshM, a conformal factor vectoru
is admissible, if the deformed metric satisfies triangle
inequality on each face. The space of all admissible
conformal factors is not convex. In practice, the step
length in Newton’s method needs to be adjusted. Once
triangle inequality doesn’t hold on a face, edge swap
needs to be performed.

5. COMPUTATIONAL ALGORITHMS

The algorithm pipeline has two stages. The first stage
is to compute the hyperbolic uniformization metric, the

fundamental group generators and the corresponding
Fuchsian group generators. This stage is independent of
the input loop, and needs to be performed only once.

The second stage includes lifting the loop to the
universal covering space (this can be accomplished
symbolically without the real lifting process) to get the
corresponding Fuchsian transformation; computing the
axis of the Fuchsian transformation, and project the axis
to the original surface.

a1

b1

a2

b2

(a) Input genus (b) Canonical homotopy

two mesh group basis

a1

b1

a
−1

1

b
−1

1

a2

b2

a
−1

2

b
−1

2

(c) Fundamental domain (d) Portion of universal

embedded inH2 under covering space using

hyperbolic metric Fuchsian group generators

Fig. 3. Algorithm pipeline: Stage 1. (a) is the input genus two
mesh; (b) Compute a set of canonical fundamental group basis
{a1,b1,a2,b2}; (c) Compute the hyperbolic uniformization metric
using hyperbolic Yamabe flow. The fundamental domain is embedded
ontoH

2 under the hyperbolic metric; (d) Compute the Fuchsian group
generators. Any finite portion of the universal covering space can be
constructed using these generators.

5.1 Stage one

Figure 3 illustrates the pipeline for the first stage.
Suppose we are given a mesh with negative Euler
number, as shown in frame (a).

1) Use hyperbolic Yamabe flow introduced in the last
section to compute the hyperbolic metric, such that
all vertex curvature equals to zero.

2) Compute a set of canonical fundamental group
generators through a base vertex, as shown
in frame (b). We use the method from
Ericson [16]. We denote the generators as
{a1,b1,a2,b2, · · · ,ag,bg}.

3) Slice the meshM along the fundamental group
generators to get an open mesh̄M. The boundary
of M̄ is

∂M̄ = a1b1a−1
1 b−1

1 · · ·agbga−1
g b−1

g .

Isometrically embedM̄ onto the Poincaré disk
using the hyperbolic uniformization metric to get a
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fundamental domain, still denoted as̄M. As shown
in frame (c). The embedding method is similar to
that in [4].

4) Compute the Fuchsian group generators corre-
sponding to the fundamental group generators.
Let γ be a fundamental group generator. Because
M̄ has been embedded onto the Poincaré disk,
γ ∈ ∂M̄, we treatγ as a curve segment on the
Poincaré disk. We compute the unique Fuchsian
transformationφ , such thatφ maps γ−1 to γ.
First a Möbius transformation can be calculated
such that the starting vertex ofγ is mapped to the
origin, the ending vertex is mapped to a positive
real number. Similarly we find another Möbius
transformation forγ−1. The composition of the
second map with the inverse of the first map is
the desired Fuchsian transformation. We denote
the Fuchsian transformations asαi corresponding
to ai , β j corresponding tob j .

5.2 Stage two

Suppose a loop is given on the surface, denoted asγ.
The following pipeline explains how to find the closed
geodesicΓ homotopic toγ. Figures 4 and 5 illustrate
two key steps: (1) loop lifting and (2) geodesic tracing.

1) Perturbableγ to make it transverse all the funda-
mental group generators. As shown in frame (a)
and (b).

2) Choose a vertexv ∈ γ, trace γ. Once γ
across a fundamental group generator, record
the Id of the generator. After tracing back
to the starting vertexv, a word is obtained.
w = σ1σ2 · · ·σk, where σi(1 ≤ i ≤ k) is in
{a1,b1,a

−1
1 ,b−1

1 , · · · ,ag,bg,a−1
g ,b−1

g }.
3) Convert the wordw to

φ = φk ◦φk−1 · · ·φ2 ◦φ1,

whereφi(1≤ i ≤ k) is the Fuchsian transformation
corresponding toσi .

4) Lift γ to γ̃ in the universal covering space, called
loop lifting . Start from M̄, trace γ on S and
extend γ̃ on S̃ accordingly. Onceγ crossesσk,
transform the current fundamental domain byφk,
continue the tracing on the new fundamental do-
main. As shown in Figure 4, a loopγ intersects
the fundamental group generators in the order of
w = {a−1

2 ,a−1
2 ,b2,a

−1
1 ,a−1

1 ,b1}. γ is lifted to Γ
in the universal covering space, in frame (c)Γ
crosses the fundamental domain througha−1

2 . In
the followings frames,Γ crosses different funda-
mental domains. The whole liftedΓ is shown in
frame (j). This step can be omitted in practice,
only the word of intersectionw is needed.

5) Compute the axis ofφ . First compute the attractor
and repulser ofφ , then determine the unique
geodesic through them. Denote the axis asΓ̃.

6) Trace Γ̃ from the central fundamental domain
M̄, called geodesic tracing. OnceΓ crosses the

TABLE 1
COMPUTATIONAL T IME .

Figure Model Genus Faces Vertices Time (s)
Fig. 3 2-hole 2 4118 2057 13
Fig. 6 Amaphora 2 20010 10003 107
Fig. 7 Knotty 2 10000 6066 36
Fig. 8 3-hole 3 3514 1754 12
Fig. 9 3-torus 3 16000 8002 87

boundary of the current fundamental domain, find
the Fuchsian transformationφk corresponding the
boundary segment, transform the current funda-
mental domain byφk, and continue the tracing
on the new fundamental domain. At the same
time, during the tracing, project̃Γ to the original
surface, denoted asΓ. If Γ becomes a smooth
closed loop, stop tracing. ThenΓ is the canon-
ical representative for the homotopy class[γ].
As shown in Figure 5, frame (c) to (i) illustrate
the tracing process. Frame (j) shows the tracing
result of the geodesic. Frame (a) and (b) show
the geodesic on the original surface, which is the
canonical representative of the homotopy class[γ].

6. EXPERIMENT RESULTS

We implement our algorithm using generic C++ on a
Windows platform. The experiments are conducted on a
desktop with 2.33 GHz dual CPU and 3.98GB RAM.

The surfaces are represented as triangle meshes using
half-edge data structure. We apply Newton’s method
for optimizing the discrete hyperbolic Yamabe energy,
which involves solving large sparse linear system. We
use Matlab C++ library for the numerical computation.
The computational time on test data is reported in Table
1. Figures 3, 6, 7, 8 and 9 show the hyperbolic metric
using the hyperbolic Yamabe flow method. Table 2
illustrates the exact values for corresponding Fuchsian
group generators.

Figures 1, 4 and 5 show the results on a two-hole
model, which has 16,472 triangles and 8,234 vertices.
The algorithm takes 13 seconds to compute the hyper-
bolic metric with error boundε = 1e−10, and takes 1
second for the rest. The timing is reported in the table.

We apply our algorithm for detecting whether two
loops are homotopic as shown in Figure 1 and Figure 5.
The initial loops and their unique homotopy representa-
tives are illustrated in front and back views respectively.
We can see that the representatives are not identical,
therefore, the loops are not homotopic.

Figures 10, 11 and 12 give the results on a three-hole
model, which has 3,514 triangles and 1,754 vertices.
The algorithm takes 12seconds to compute the hyper-
bolic metric with error boundε = 1e−10, and takes 1
second for the rest.

7. CONCLUSION

This paper introduces a method to compute the canon-
ical representative for each homotopy class based on hy-
perbolic structure of the surface. A novel curvature flow
is introduced, discrete hyperbolic Yamabe flow, which
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(a) Input loop front view (b) Input loop back view
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2

Fig. 4. Algorithm pipeline: Stage 2. Loop lifting. A loopγ
intersects the fundamental group generators in the order ofw =
{a−1

2 ,a−1
2 ,b2,a

−1
1 ,a−1

1 ,b1}. γ is lifted to Γ in the universal covering
space. (c) to (i) illustrate thatΓ crosses the fundamental domain
through a−1

2 ,a−1
2 ,b2,a−1

1 ,a−1
1 and b1 orderly. (j) the lifting result of

loop Γ.

is the gradient flow of Yamabe energy. The convexity of

Γ

γ

γ

Γ

(a) Closed geodesic front view (b) Closed geodesic back view

a
−1

2

a
−1

2

(c) 1.pass througha−1
2 (d) 2. pass througha−1

2

b2
a
−1

1

(e) 3.pass throughb2 (f) 4. pass througha−1
1

a
−1

1

b1

(g) 5.pass througha−1
1 (h) 6. pass throughb1

(i) Final ending (j) Whole lift inH
2

Fig. 5. Algorithm pipeline: Stage 2. Geodesic tracing. (a) and (b) the
geodesic on the original surface, which is the canonical representative
of the homotopy class[γ ]. (c) to (i) illustrate the tracing process. (j)
the tracing result of the geodesic.

Yamabe energy grantees the convergence of the flow and
the uniqueness of the solution. The geodesic is computed
as the axis of the Fuchsian transformation corresponding
to the given homotopy class.

The algorithm is explained in details by illustrations.
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(a) Fundamental group (b) Universal covering

generators space

Fig. 6. Hyperbolic metric and the Fuchsian group generatorsfor the
Amphora model.

(a) Fundamental group (b) Universal covering

generators space

Fig. 7. Hyperbolic metric and the Fuchsian group generatorsfor the
Knotty model.

(a) Fundamental group (b) Universal covering

generators space

Fig. 8. Hyperbolic metric and the Fuchsian group generatorsfor the
3-hole model.

(a) Fundamental group (b) Universal covering

generators space

Fig. 9. Hyperbolic metric and the Fuchsian group generatorsfor the
3-torus model.

The efficiency and efficacy of the algorithm is demon-
strated by various experiments on high genus surfaces.

There are many potential applications, such as finding
the shortest word for a homotopy class in the fun-
damental group; shape comparison; canonical surface

(a) Front view (b) Back view

(c) Left view (d) Right view

Fig. 10. Homotopy geodesic on 3-hole torus 1.

(a) Front view (b) Back view

Fig. 11. Homotopy geodesic on 3-hole torus 2.

segmentation etc. The whole method can be generalized
to discrete 3-manifolds directly. In the future, we will
explore along these directions.
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(a) Front view (b) Back view

Fig. 12. Homotopy geodesic on 3-hole torus 3.

TABLE 2
FUCHSIAN GENERATORS.

Model Generator z0.real z0.imag θ
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