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Abstract—Homotopy group plays a role in com- aims at solving topological problems by equipping the
putational topology with a fundamental importance. topological manifold with a geometric structure, which
Each homotopy equivalence class contains an infinite can greatly simplify the problem. For example, in order
number of loops. Finding a canonical representa- to prove the Poincaré conjecture, a Riemannian metric
tive within a homotopy class will simplify many is assigned to the 3-manifold, by running Ricci flow, the
computational tasks in computational topology, such metric converges to the canonical spherical metric. This
as loop homotopy detection, pants decomposition. proves the manifold is homeomorphic to a sphere.
Furthermore, the canonical representative can be
used as the shape descriptor.

This work introduces a rigorous and practical
method to compute a unique representative for each
homotopy class. The main strategy is to use hyper-
bolic structure, such that each homotopy class has a
unique closed geodesic, which is the representative.

The following is the algorithm pipeline: for a
given surface with negative Euler number, we apply
hyperbolic Yamabe curvature flow to compute the
unigue Riemannian metric, which has constant neg- (a)
ative one curvature everywhere and is conformal to
the original metric. Then we compute the Fuchsian Fig. 1. Two homotopic closed surface and y» are given. The
group generators of the surface on the hyperbolic canonical representative of their homotopy cldgg is computed

. e as the unique closed geodesic in the homotopy class under the
space. For a given |00p on the surface, we lift it to uniformization metric, shown ak. (a) and (b) show the front view
the universal covering space, to obtain the Fuchsian and back view ofy; andT. (c) and (d) illustrate the front view and
transformation corresponding to the homotopy class back view ofy, andT". The figure shows the canonical representative
of the loop. The unique closed geodesic inside theOf the homotopy class is unique.
homotopy class is the axis of the Fuchsian transfor-  In this work, we propose to assign a special Rieman-
mation, which is the canonical representative. nian metric to a topological surface, which helps the

Theories and algorithms are explained thoroughly computation for topological problems, especially those
in details. Experimental results are reported to show related to the fundamental group. The basic idea is that,
the efficiency and efficacy of the algorithm. The each homotopy class has an infinite number of loops, if
unique homotopy class representative can be applied @ unigue representative can be selected from the loops,

for homotopy detection and shape comparison. it can greatly simplifies the problems. A natural choice
for the representative will be a closed geodesic. Un-

fortunately, under induced Euclidean metric, the closed
geodesic is not unique in each homotopy class. Accord-
1. INTRODUCTION ing to Riemann uniformization theorem, each metric

Computational topological methods have been widefHrface has a ca_nonical uniformization metric, which has
applied for computer graphics, geometric mode"n@onstant Ggussmn curvature everywhere. If the surfape
medical imaging and many engineering fields. One & Of negative Euler number, then under the canoni-
the most important topological invariant is the fundacal metric, each homotopy class has a unique closed
mental group. Comparing to homology groups, fund&eodesic. By deforming the metric to be the canonical
mental group conveys more information, but also igniformization metric, the unique closed geodesic can
much more difficult to compute. For examples, verifyin@€ obtained and used as the canonical representative for
two fundamental groups of 3-manifolds are isomorphi¢he class.
finding the shortest representative of a loop in the funda- The major computational challenges are:
mental group, are highly non-trivial. Geometry topology 1) How to compute the uniformization metric?
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2) How to compute the closed geodesic from a given The shortest loop The problem of computing ho-
loop? motopy geodesichomotopy class representatjvéor

The first problem can be solved using surface Ricci flod0Ps or all point pairs has significant connections with
which deforms the metric proportional to the Gaussia®fher important problems in computational topology,
curvature, such that the curvature evolves according $§ch as constructing polygonal schema [12], [13], [14],
a heat diffusion process, and becomes constant evef@ntractibility test and transformability test [15].
where. This work introduces a novel discrete curva- Erickson and Whittlesey [16] gave a very fast greedy
ture flow, discrete hyperbolic Yamabe flow on surface&!gorithm to compute the shortest system of loops
which is the gradient flow of a convex energy. Théelaxing the homotopy condition. The active contour
uniformization metric corresponds to the unique globaethod [17] is widely used in computer vision. A
optimum of the energy. By optimizing the energy, th@lanar curve on an image can be shrunk by moving
optimum can be reached efficiently and stably. each point towards its curvature center. The deformation
The second problem can be solved using duali§focess does not change the homotopy type of the
between the fundamental group and the Fuchsian groGgrVve- Later, in [18], geometric snakes, which are cycles
The universal covering space of the surface can be i @ surface, are computed from active contours on
metrically embedded onto the hyperbolic spate All the corresponding parameter chart. By dlstortlng_ the
the deck transformations are Mobius transformationSurve based on geodesic curvature, the curves will be
and form the Fuchsian group. Each homotopy claSeformed to geodesics with the. same homotopy type.
corresponds to a unique Fuchsian transformation. TR&Y €t al. [27] proposed the persistence based algorithm
unigue geodesic corresponds to the axis of the Fuchsf@ncompute well defined tunnel and handle base loops
transformation. that are both topologically correct but also geometrically
The paper is organized in the following way: previougelevant.handles and tunnelare defined via homology.
works are briefly reviewed in the next section: theoretit"Us it can not guarantee the loops detected are the
background is introduced in Section IIl; details for th&ePresentatives of homotopy group.
algorithms are explained thoroughly in Sections IV and Hershberger and Soneyink lifted closed curves to the
V; experimental results are reported in Section VI; théniversal covering space in [20], [21]. However, their

paper is concluded in Section VII. results only apply to boundary triangulated 2-manifolds
and cannot be used in our case because it assumes all
2. PREVIOUS WORKS vertices are on a boundary. Yin et. al. [19] generalized

The Ricci flow on surfacesThe Ricci flow was firstly the shortest path algorithm to the shor_test cycles in each
proposed by Hamilton [1] as a tool to conformally del’0motopy class on a surface with arbitrary topology, by
form the metric according to the curvature. In [2] Chow!tilizing the UCS in algebraic topology. ,
and Luo developed the theories of the combinatorial 9in €t al. [22], [5], [26] introduced the geodesic
surface Ricci flow, which was later implemented angP€ctra from Fuchsian group generators in a closed
applied for surface parameterization [3], [4], shape claform to cla_\ssﬁy surf_aces by thelr conformal structures.
sification [5], shape mapping [6] and surface matchin%he key difference is t_hat thel_r method only computes
[7]. the Iepgths of geodeglcs, which are the traces of the

In [10] Luo studied the discrete Yamabe flow Orfuc_hsmn transform.atlons. !n_ our work, we _focus on
surfaces. He introduced a notion of discrete conformdiding the geodesics explicitly, instead of just their
change of polyhedral metric, which plays a key role itfN9ths-
developing the discrete Yamabe flow and the associated 3. THEORETIC BACKGROUND
variational principle in the field. Based on the discrete This section briefly introduces the theoretic back-
conformal class and geometric consideration, Luo gageound necessary for the current work. For details, we
the discrete Yamabe energy as an integration of a dikfer readers to [23] for algebraic topology and [24] for
ferential 1-form and proved that this energy is a localldifferential geometry.
convex function. He also deduced from it that the cuFundamental group and representative of homotopy
vature evolution of the Yamabe flow is a heat equationlassLet Sbe a topological surface, and lptbe a point
In a very nice recent work of Springborn et al. [11] theyf S. All loops with base poinp are classified by homo-
were able to identify the Yamabe energy introduced hppy relation. All homotopy equivalence classes form the
Luo with the Milnor-Lobachevsky function and the heahomotopy groupor fundamental groupz (S, p), where
equation for the curvature evolution with the cotangetite product is defined as the concatenation of two loops
Laplace equation. They constructed an algorithm basgttough their common base point.
on their explicit formula. Suppose S is a genusg closed surface. A

Theories of Yamabe flow on discrete hyperbolicanonical set of generator®f m(S,p) consists of
surface can be found in [25]. This is the first work{ay,by,az,b,---,ag,bg}, such that the paig; and by
to develop the computational algorithm foyperbolic has one intersection point, the pafes, a; }, {bi,b;} and
Yamabe flowwhich is used to compute the uniform hy-{a;,b;}, have no intersections, where j. See Figure
perbolic metric for surfaces with negative Euler numbet. for an example of canonical basis on a genus two



surface. %2. The rigid motion is the Mobius transformation
Universal cover and uniformization metric A cover-

ing spaceof Sis a spaces together with a continuous 70 =% ,

surjective maph : S— S, such that for everyp € S 1-2z

there exists an open neighborhoddof p such that wheref andz, are parameters. The geodesic of Poincaré
h=%(U) (the inverse image of) underh) is a disjoint disk is a Euclidean circular arc, which is perpendicular
union of open sets irS each of which is mapped to the unit circle.

homeomorphically ontdJ by h. The maph is called SupposeS is a high genus closed surface with the
the covering map A simply connected covering spacehyperbolic uniformization metri@. Then its universal

is auniversal cover covering space(é@) can be isometrically embedded

Supposey  Sis a loop through the base poimt in H2. Any deck transformation ofS is a Mdbius
on S Let po € S be a preimage of the base poipt {ransformation, and called Buchsian transformation

fo € h~1(p), then there exists a unique patiT S lying The deck transformation group is called tRachsian

overy (i.e. h(y) = y) and §(0) = fio. ¥ is alift of y. group of S _ _ ,
A deck transformationof a coverh:S— S'is a Let @ be a Fuchsian transform_auon, lete H°,

homeomorphismf : $ — § such thatho f = h. Al the attractor and repulser of ¢ are lim,_... ¢"(2) and

. - . . . )
deck transformations form a group, the so-caltitk “r:cr)]ggs(ipc téiﬂ??ﬁ;%ﬁg&;ﬁ?ﬁg cr):; q)u:zet?e unique
transformation groupA fundamental domainf Sis a 9 9 P '

simply connected domain, which intersects each orbit o4, DISCRETE HYPERBOLIC YAMABE FLOW

the deck transformation group only once. In practice, most surfaces are approximated by dis-
The deck transformation groupecKS) is isomorphic crete triangular meshes. L& be a two dimensional
to the fundamental groupa (S p). Let Po € h™X(p), simplicial complex, we denote the set of vertices, edges
@ < DeckS), y is a path in the universal coverand faces a¥,E,F respectively. We use; as theith
connectingpo and ¢(fo), then the projection of is a vertex; edgefvi,vj] from v; to vj; face [vi,vj, V] with
loop onS, @ corresponds to the homotopy class of theéhe vertices sorted counter-clockwisely. Figure 2 shows
loop, ¢ — [h(y)]. This gives the isomorphism betweerthe hyperbolic triangle, and its associated edge lengths
DeckS) and 75 (S, p). li,yi, corner angle® and conformal factors.
A discrete metrids a functionl : E — R™, such that
Surface Ricci curvature flow Let S be a surface triangle inequality holds on every face, which represents
embedded inR3. S has a Riemannian metric inducedhe edge lengths. In this work, we assume all faces are
from the Euclidean metric dk3, denoted byg. Suppose hyperbolic triangles. Theliscrete curvature KV — R
u:S— R is a scalar function defined o0& It can be is defined as angle deficity2minus surrounding corner
verified thatg = e?g is also a Riemannian metric dh angles for an interior vertex, and minus surrounding
conformal to the original one. corner angles for a boundary vertex.

The Gaussian curvatures will also be changed accord- "
ingly. The Gaussian curvature will become

K_:eizu(_Agu'i_K)v I3

where/q is the Laplacian-Beltrami operator under the

original metric g. The above equation is called the us ;
Yamabe equatiorBy solving the Yamabe equation, one

can design a conformal metrie?!g by a prescribed

curvatureK.

Yamabe equation can be solved usiRicci flow
method. The Ricci flow deforms the meti¢t) accord-
ing to the Gaussian curvatuke(t) (induced by itself), 4.1 Discrete conformal deformation
wheret is the time parameter Suppose the mesh is embeddedkit therefore it has

dgij(t) 2K the induced Euclidean metric. We ulﬂeto denote the

Fig. 2. Discrete surface Yamabe flow.

dt (K—K(1)gij (t)- initial induced Euclidean metric on edge, v;].
Let u:V — R be thediscrete conformal factorThe

Theuniformization theorerfor surfaces says that anyd'&screte conformal metric deformation is defined as

metric surface admits a Riemannian metric of constan
Gaussian curvature, which is conformal to the original sinh(&) — g Sinr‘(l_k)euj_ (1)
metric. Such metric is called theniformization metric 2 2

Poincaré disk model In this work, we use Poincaré The discrete Yamabe flove defined as

disk to model the hyperbolic spaé#, which is the unit du

disk |z < 1 on the complex plane with the metde® = gt —Ki, (@)



wherek; is the curvature at the vertax.

fundamental group generators and the corresponding

Letu=(ug,up,---,Un) be the conformal factor vector, Fuchsian group generators. This stage is independent of

wheren is the number of verticesip = (0,0, -- - ,0), then
the discrete hyperbolic Yamabe enengydefined as

E(u)_/u:iiKidu.

3)

the input loop, and needs to be performed only once.
The second stage includes lifting the loop to the
universal covering space (this can be accomplished
symbolically without the real lifting process) to get the
corresponding Fuchsian transformation; computing the

The following theorem lays down the foundation ofixis of the Fuchsian transformation, and project the axis

the discrete hyperbolic flow algorithm.

Lemma IV.1. The differential 1-formw =S ; Kiduy is
closed.

We usecy to denote cosfyk). By direct computation,

it can be shown that on each triangle,
06 cGi+cj—c—1
— St = =
ou; Ck+1

3

here
W 1

A:gm@mmmmmmmwy
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which is symmetric iri, j, therefore2®

IS
to see thal‘;—:f; |

= 35 which impliesdw = 0.

Theorem IV.2. The discrete hyperbolic Yamabe energy
is convex. The unique global minimum corresponding to

the hyperbolic metric with zero vertex curvatures.

This requires to compute the Hessian matrix of the

energy. The explicit form is given as follows.

2¢iCjck — € — Cg + GiCj + CiGk — Cj — Ci
(cj+1)(+1)

a6 _
0Ui o

The Hessian matrixhjj) of the hyperbolic Yamabe Fig. 3.
be an mesh; (b) Compute a set of canonical fundamental group basis

energy can be computed explicitly. Lég, V]
edge, connecting two facég, vj,vi] and[vj,vi,v], then
the edge weight is defined as

N deijk deilj
e ou; ou; '
also for .
a6*
hII — 0—ui7

Is

au = ou - Itis easy

to the original surface.

(a) Input genus
two mesh

(b) Canonical homotopy
group basis

(c) Fundamental domain
embedded irfi2 under
hyperbolic metric

(d) Portion of universal
covering space using
Fuchsian group generators

Algorithm pipeline: Stage 1. (a) is the input genu tw

{a1,b1,a2,b2}; (c) Compute the hyperbolic uniformization metric
using hyperbolic Yamabe flow. The fundamental domain is eldbe
onto H? under the hyperbolic metric; (d) Compute the Fuchsian group
generators. Any finite portion of the universal coveringcgpaan be
constructed using these generators.

5.1 Stage one

Figure 3 illustrates the pipeline for the first stage.
Suppose we are given a mesh with negative Euler
number, as shown in frame (a).

where the summation goes through all faces surroundingl) Use hyperbolic Yamabe flow introduced in the last

Vi, [Vi, Vi, Vid.

section to compute the hyperbolic metric, such that

The discrete hyperbolic energy can be optimized us-
ing Newton’s method directly. Because of the convexity 2)
of the energy, the optimization process is stable.

Given the meshM, a conformal factor vectowu
is admissible if the deformed metric satisfies triangle
inequality on each face. The space of all admissible
conformal factors is not convex. In practice, the step 3)
length in Newton’s method needs to be adjusted. Once
triangle inequality doesn’t hold on a face, edge swap
needs to be performed.

5. COMPUTATIONAL ALGORITHMS

The algorithm pipeline has two stages. The first stage

is to compute the hyperbolic uniformization metric, the

4

all vertex curvature equals to zero.

Compute a set of canonical fundamental group
generators through a base vertex, as shown
in frame (b). We use the method from
Ericson [16]. We denote the generators as
{al,bl,az,bz, s ,ag,bg}.

Slice the mestM along the fundamental group
generators to get an open megh The boundary

of M is

OM = ayba; 'b; *- - agbgag toy .

Isometrically embedV onto the Poincaré disk
using the hyperbolic uniformization metric to get a



TABLE 1

fundamental domain, still denoted s As shown COMPUTATIONAL TIME.
in frame (c). The embedding method is similar to
that in [4] Figure Model Genus Faces Vertices Time (S)
) , Fig. 3 Z-hole 2 4118 2057 13
4) Compute the Fuchsian group generators corre-fig. 6 Amaphora| 2 20010 10003 107
sponding to the fundamental group generators.Fl9- 7 Knotty g 13%0&0 ?ggﬁ fg
Let y be a fundamental group generator. Becauserig. 9 3-torus 3 16000 8002 87
M has been embedded onto the Poincaré disk,
€ dM, we treaty as a curve segment on the L
goincaré disk Wg compute the ugique Fuchsian boundary of the current fundamental domain, find
transformatior;(p such thatg mapsy* to y the Fuchsian transformatiogx corresponding the
First a Mobius transformation can be calculated bourldlaré/ seg_m%nt, transéform tt_he CltJ[:I‘ertlt fu_nda-
such that the starting vertex gfis mapped to the mer:ha oma]in dy(lk, a? | gon inue Atethracmg
origin, the ending vertex is mapped to a positive on the new fundamental domain. '€ same
real number. Similarly we find another Mdbius time, during the tracing, projedt to the original
transformation fory~1. The composition of the slurfa((:je,l denotted ?E .lf F_Pr?ecl_ometsha smooth
second map with the inverse of the first map is po;se 0op, stop r?cmgh. h n1s the clanon-
the desired Fuchsian transformation. We denote f\a Lepres_en?tlve gr ft € omottopy ﬁlaﬁf}'t
the Fuchsian transformations eag corresponding S Shown In Figure 5, frame (€) o (i) illus rate
to &, B; corresponding td; the tracing process. Frame (j) shows the tracing
$ I result of the geodesic. Frame (a) and (b) show
5.2 Stage two the geodesic on the original surface, which is the

Suppose a loop is given on the surface, denoteg as

canonical representative of the homotopy clgbs

The following pipeline explains how to find the closed 6. EXPERIMENT RESULTS

geodesicl’ homotopic toy. Figures 4 and 5 illustrate

We implement our algorithm using generic C++ on a

two key steps: (1) loop lifting and (2) geodesic tra‘Cim‘:\Nindows platform. The experiments are conducted on a

1)

2)

3)

4)

5)

6)

Perturbabley to make it transverse all the funda‘desktop with 233 GHz dual CPU and.98GB RAM.
mental group generators. As shown in frame (a) The surfaces are represented as triangle meshes using
and (b). half-edge data structure. We apply Newton’s method
Choose a vertexv € y, trace y. Once y for optimizing the discrete hyperbolic Yamabe energy,
across a fundamental group generator, recofghich involves solving large sparse linear system. We
the Id of the generator. After tracing back;se matlab C++ library for the numerical computation.
to the starting vertexv, a word is obtained. The computational time on test data is reported in Table
W = 0102---0k, where oi(1 < i < k) is in 3 Figures 3, 6, 7, 8 and 9 show the hyperbolic metric

~1pt -1 p-1
f2ubuay by 39008057 using the hyperbolic Yamabe flow method. Table 2
Convert the wordv to illustrates the exact values for corresponding Fuchsian
P=@o W1 Lo, group generators.

Figures 1, 4 and 5 show the results on a two-hole
whereq@ (1 <i <k is the Fuchsian transformationmodel, which has 16172 triangles and 234 vertices.
corresponding tag;. The algorithm takes 13 seconds to compute the hyper-
Lift y to ¥ in the universal covering space, callegholic metric with error bound = 1le— 10, and takes 1
loop lifting. Start from M, trace y on S and second for the rest. The timing is reported in the table.
extendy on S accordingly. Oncey crossesdk,  \We apply our algorithm for detecting whether two
transform the current fundamental domain @)y |oops are homotopic as shown in Figure 1 and Figure 5.
continue the tracing on the new fundamental dorhe initial loops and their unique homotopy representa-
main. As shown in Figure 4, a loop intersects tjyes are illustrated in front and back views respectively.
the fundamental group generators in the order §fe can see that the representatives are not identical,
w={a;%,a," by, a; Ha; bi}. v is lifted to T therefore, the loops are not homotopic.
in the universal covering space, in frame (€)  Figures 10, 11 and 12 give the results on a three-hole
crosses the fundamental domain througtt. In - model, which has 14 triangles and ,754 vertices.
the followings frames[™ crosses different funda- The algorithm takes 12seconds to compute the hyper-

mental domains. The whole liftel is shown in polic metric with error boundt = 1e— 10, and takes 1
frame (j). This step can be omitted in practicegecond for the rest.

only the word of intersectiom is heeded.

Compute the axis of. First compute the attractor 7. CONCLUSION
and repulser ofg, then determine the unique This paper introduces a method to compute the canon-
geodesic through them. Denote the axid as ical representative for each homotopy class based on hy-

Trace [ from the central fundamental domainperbolic structure of the surface. A novel curvature flow
M, called geodesic tracing Oncel” crosses the is introduced, discrete hyperbolic Yamabe flow, which



5
i
s

S

N
&
5
)

o
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(a) Input loop front view (b) Input loop back view
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(i) Final ending () Whole lift inH?

Fig. 5. Algorithm pipeline: Stage 2. Geodesic tracing. (& &) the
geodesic on the original surface, which is the canonicalesemtative
of the homotopy clas$y]. (c) to (i) illustrate the tracing process. (j)

Fig. 4. Algorithm pipeline: Stage 2. Loop lifting. A 100l  the tracing result of the geodesic.
intersects the fundamental group generators in the ordew ef

{a;1,a;%,bp, a7, a7, by ). v is lifted to T in the universal covering
space. (c) to (i) illustrate thal crosses the fundamental domainYamabe energy grantees the convergence of the flow and

fg{f”ﬁ’h 3@ baaytay " andby orderly. () the lifting result of o \yniqueness of the solution. The geodesic is computed
oL as the axis of the Fuchsian transformation corresponding
to the given homotopy class.
is the gradient flow of Yamabe energy. The convexity of The algorithm is explained in details by illustrations.

(i) Final ending () Whole lift inH?
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(a) Fundamental group (b) Universal covering
generators space

Fig. 6. Hyperbolic metric and the Fuchsian group generdtmrshe
Amphora model.

(c) Left view (d) Right view

Fig. 10. Homotopy geodesic on 3-hole torus 1.

(a) Fundamental group (b) Universal covering
generators space

Fig. 7. Hyperbolic metric and the Fuchsian group generdtarshe
Knotty model.
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(a) Fundamental group (b) Universal covering

generators space
(a) Front view (b) Back view
Fig. 8. Hyperbolic metric and the Fuchsian group generdtarshe
3-hole model. Fig. 11. Homotopy geodesic on 3-hole torus 2.

segmentation etc. The whole method can be generalized
to discrete 3-manifolds directly. In the future, we will
explore along these directions.
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