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Abstract

Surface Ricci flow is a powerful tool to design Riemanniarricgeby user defined curvatures. Discrete surface
Ricci flow has been broadly applied for surface parameté¢iona shape analysis, and computational topology.
Conventional discrete Ricci flow has limitations. For meshith low quality triangulations, if high conformality

is required, the flow may get stuck at the local optimum of tiseiRRnergy. If convergence to the global optimum
is enforced, the conformality may be sacrificed.

This work introduces a novel method to generalize the tiaut discrete Ricci flow. The generalized Ricci flow
is more flexible, more robust and conformal for meshes withdaality triangulations. Conventional method is
based on circle packing, which requires two circles on aregid¢ersect each other at an acute angle. Generalized
method allows the two circles either intersect or separaimfeach other. This greatly improves the flexibility and
robustness of the method. Furthermore, the generalized fRiev preserves the convexity of the Ricci energy, this
ensures the uniqueness of the global optimum. Therefor@gloeithm won't get stuck at the local optimum.
Generalized discrete Ricci flow algorithms are explainedetails for triangle meshes with both Euclidean and
hyperbolic background geometries. Its advantages are dstrated by theoretic proofs and practical applications
in graphics, especially surface parameterization.

Categories and Subject Descript¢scording to ACM CCS) I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Geometric algorithms, languages,systems

1. Introduction tures on the boundary points, the flat metric will be changed
accordingly. By adjusting the boundary geodesic curvature
an optimal parameterization can be achieved, which mini-
Ricci flow is a powerful tool to design Riemannian metricsS mizes the distortionYKL *08]. In computational topology
Using user deﬁned curvatures. Intuitively, RiCCi ﬂOW deﬁer Ricci flow has been app“ed to Compute the canonical rep_
a Riemannian metric proportional to the curvature. The de- resentative in each homotopy class of loap3l{G0g. Two
formed metric will Change the CUrVatUre, such that the cur- |oops are homotopicy |f one can deform to the Other on the
vature eVOlVeS aCCOI’ding toa heatdiffusion prOCGSS. fEvent surface. If the surface has a Riemannian metric with neg_
ally the curvature becomes constant everywhere. Moreover, ative Gaussian curvature, then each homotopy class has a
Ricci flow is the gradient flow of a special energy form - ynjque closed geodesic. Given a high genus surface, Ricci
entropy the metriC W|th constant curvature iS the global Op' flow is used to Compute the metric withl Gaussian curva-
timum of the entropy. ture (hyperbolic metric). Then the closed geometric loap ca

Surface Ricci flow has broad applications in graphics e computed in each homotopy class, which is the canoni-
field, in the following, we only briefly introduce a few most cal representative of the class. Ricci flow has also been ap-
related exampleSurface parameterizatiaefers to the pro- ~ plied to theshape spacf)ZLG0§. Two surfaces are confor-
cess to map the surface onto a planar domain, which can bemal equivalent, if there is an angle-preserving map between
formulated as designing a Riemannian metric of the surface, them. All surfaces iik® can be classified by the conformal

such that all the interior points are with zero Gaussianaurv ~ equivalence relation. All the conformal equivalence aass
tures, name|y a flat metric. By Changing the geodesic curva- form a finite dimensional Riemannian manifold, where each

1.1. Ricci Flow and Applications
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point represents a class of surfaces, a curve represent a dediscrete conformal metric deformation for surfaces. Chow

formation process. Given a surface]Rﬁ, its coordinates in
this shape space can be computed using Ricci flow.

1.2. Generalization of Discrete Ricci Flow

Ricci flow deforms a Rieman-
nian metric on the surface
in an angle-preservingnanner,
namely, the metric deformation
is conformal Locally, confor-
mal metric deformation trans-
forms an infinitesimal circle to
an infinitesimal circle. Figl il-
lustrates the property of Ricci
flow. The Stanford bunny is em-
bedded inR3, it has an in-
duced Euclidean metric. By us-
ing Ricci flow, the metric is con-
formally deformed to a flat met-
ric (with cone singularities), all
Gaussian curvatures are zeros,
then the bunny surface is flat-
tened onto the plane. The planar circle packing texture
shown in the upper right corner is mapped onto the sur-
face. All the planar circles are mapped to circles, the
tangential relations are preserved. This property inspire
Thurston [Thu8( to invent discrete conformal mapping us-
ing circle packing metri@s shown in Fig2. Given a planar
domain in frame (a), we triangulate the domain. Then we
put a circle at each vertex, and all circles are tangent th eac

Confor-

Figure 1:
mal metric deforma-
tion maps infinites-

imal circles to in-
finitesimal circles.

other. Then we change the circle radii, and keep the tangen-

tial relations. This will deform the domain to different pkr

domains as shown in frame (b) and (c). The piecewise linear

mapping is a discrete conformal mapping. If we refine the
triangulation, such that the diameter of each triangle goes
zero, then the discrete conformal mapping will converge to
the real conformal mapping under some normalization con-
ditions. The theoretic proof is given by He et.aHS94.

Figure 2: Thurston’s discrete conformal deformation using
circle packing metric.

Thurston’s circle packing method is too restrictive. Later
it is generalized from planar domains to surface domains.
Furthermore, the circles can intersect each other witheacut
angles. Fig3 shows the circle packing on one triangle. Two

circles at the vertices of an edge intersect each other with

an acute intersection angle. The circle radii can be modlified

and Luo [CLO3] built the intrinsic relation between discrete
conformal metric deformation and surface Ricci flow. They
showed that the discrete Ricci flow is stable and leads to the
unique solution, as long as all the intersection angfgsif

Fig. 3) are acute. If the intersection angles are obtuse, the
solution may not be unique, the discrete curvature flow may
get stuck at the local optimum.

Unfortunately, in reality,
the acute intersection an-
gle condition is too restric-
tive. Triangle meshes ob-
tained from raw scan data or
reconstructed using march-
ing cubes method, such as
[Ju04, always have skinny
triangles. The Kitten mesh in
Fig. 4 is reconstructed us-
ing marching cubes method
[Ju04. Fig. 4(b) shows a lo-
cal region near the nose. It is
clear that there are many triangles nearly being degemkrate

Figure 3: Conventional
discrete Ricci flow.

(@

Figure 4: Kitten model is re-triangulated using Polymender
in [Ju04, which has skinny triangles.

Figure 5: Bad conformality of traditional discrete surface
Ricci flow on meshes with low quality triangulations.

but the intersection angles are preserved. This gives us theltis hardly to find a circle packing on the mesh, such that all

(© 2009 The Author(s)
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the intersection angles are acute. In order to ensure the con
vergence of the curvature flow, the intersection angles are
forced to be acute. Therefore, the circle packing metriois n
longer consistent with the original induced Euclidean met-
ric of the mesh. The conformality of the final mapping is
compromised. Figs shows the low conformality of the sur-
face parameterization using conventional Ricci flow method
on the mesh with low quality of triangulation. Note that
for conventional Ricci flow, there might be an optional pre-
processing step to re-triangulate the input me&kL *0§],
such that the circle packing metric and the Euclidean metric
can be more consistent.

In order to achieve high
conformality even on meshes
with bad triangulations, this
work generalizes the tradi-
tional circle packing met-
ric shown in Fig.3 to in-
versive distance circle pack-
ing in Fig. 6. The conven-
tional Ricci flow requires all

the intersection angles to be  Figure 6: Inversive
acute. The generalized Ricci  distance discrete Ricci
flow relaxes the acute inter-  flow.

section angle condition, such

that two circles on an edge ei-

ther intersect at an acute angle or separate from each tither.
is guaranteed that given arbitrary triangular mesh withan i
tial induced Euclidean metric, a generalized circle pagkin
can be found, such that the circle packing metric is consis-
tent with the induced Euclidean metric. Therefore, the gen-
eralized Ricci flow method guarantees high conformality.
Furthermore, we can show that the generalized Ricci flow is
the gradient flow of a convex energy. There exists a unique
global optimum, the generalized flow leads to the unique so-
lution. In one word, the generalized Ricci flow is flexible; ro
bust and conformal to meshes with bad triangulations. Fig.
shows the parameterization result of the same Kitten mesh
in Fig. 4 with high conformality. Comparing with Fig, it

is obvious that the generalized Ricci flow has enormously
improved the conformality.

1.3. Contributions

Compared to traditional discrete Ricci flod{LGO08], this
work has the following major contributions:

1. Generalizes discrete Euclidean Ricci flow (Fjyto in-
clude inversive distance circle packing (F&), while the
traditional one requires two circles on an edge intersect
each other at an acute angle. This will help to largely im-
prove the conformality of the parameterization result on
meshes with low quality triangulations.

. Explicitly gives the geometric meaning of the Hessian
matrix of discrete Euclidean Ricci energy (see Lemma
3.7 and the appendix for the proof). IIKLGOE], the
Hessian matrix has more complicated form because it is

(© 2009 The Author(s)
Journal compilatio© 2009 The Eurographics Association and Blackwell Publigthital.

Gu / Generalized Disdratci Flow

Figure 7: High conformality of generalized discrete surface
Ricci flow on meshes with low quality triangulations.

derived by explicit computation of the discrete Ricci en-
ergy.

. Generalizes discrete hyperbolic Ricci flow (F8)yto in-
clude inversive distance circle packing (F&).

We show that both the discrete Euclidean Ricci energy and
the hyperbolic Ricci energy are convex. Therefore, the gen-
eralized Ricci flow converges to the unique solution, which
is the global optimum of the Ricci energy. The Ricci energy
can be efficiently optimized using Newton’s method.

1.4. Organizations

Section2 briefly reviews the most related works. Section
3 explains the discrete genearlized Ricci flow for both Eu-
clidean case and hyperbolic case. Secdantroduces the
algorithms in details. Experimental results are reported i
Section5. The paper is concluded in Sectién

2. Previous Works
2.1. Mesh Parameterization

Mesh parameterization has been an active research topic in
geometry processing, it is also a fundamental tool widely
used in graphics field. Here we only briefly review the most
related works and refer readers EF3{05 SPROGHLSO07] for

more thorough surveys.

The aim of parameterization is to build a map (ide-
ally one-to-one) from the mesh surface to 2D planar do-
main. Early parameterization methodgOD*95, Flo97]
treat interior mesh vertex as some convex combination of
its neighboring vertices based on Tutte’s embedding theo-
rem [Tut63. Taking mesh geometry into account, the sim-
ple graph Laplacian is extended to the well-known cotangent
weights PP93 and mean value coordinates|p03. These
methods generally require fixing mesh boundary onto a con-
vex planar shape to make the mapping bijective, which usu-
ally provides parameterization results with large aretodis
tion. Boundary free parameterization is then proposed as an
energy minimization problem irLPRM0Z and DMAQ2].
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The former one approximates the Cauchy-Riemann equation
and the latter optimizes Dirichlet energy. These two meshod
can achieve parameterization with much lower angle distor-
tion and were shown to be identical iI€$D03. More re-
cently, Mullen et. al. MYADO8] presented a spectral ap-
proach to reduce common artifacts &@PRM02 DMA02]

due to positional constraints or mesh sampling irregular-
ity and high-quality conformal parameterization can be
achieved. A local/global method was proposed.fX *08]

to build global mapping while preserving local shape prop-
erties by using transformations taken from a restricted set
which can significantly reduce both angle and area distor-
tions.

Mesh parameterization can also be achieved by optimiz-
ing some energy form which measures the mapping distor-
tions. Angle based flatteningfS01 computes the parame-
terization which minimizes the differences between the cor
ner angles of faces on the original mesh and their images
on the parameter plane. The computational efficiency of this
method is largely improved by later works iSILMBO5,
ZLS07). To further reduce distortion, the original mesh may
be cut into small pieces as iIBEGH01SCOGLO02.

Gu / Generalized Disdratci Flow

Circle pattern was proposed by Bowers and Hurdal
[BHO3], and has been proven to be a minimizer of a con-
vex energy by Bobenko and SpringboJ043. An effi-
cient circle pattern algorithm was developed by Kharevych
et. al. KSSO04.

In [Luo04], Luo studied the discrete Yamabe flow on sur-
faces. Springborn et. alSEPO08identified the Yamabe en-
ergy introduced by Luo with the Milnor-Lobachevsky func-
tion and the heat equation for the curvature evolution with
the cotangent Laplace equation.

3. Theoretic Background

The theoretic foundation for Ricci flow on smooth sur-
faces has been laid down by Hamiltddgm88§ and Chow
[Cho91]. In this section, smooth surface Ricci flow is gener-
alized to the discrete setting. We briefly introduce the most
related theories, for details, we refer readersGy (7] for
thorough treatments.

SupposeM(V,E,F) is a simplical complex (triangle
mesh) with vertex sé¥, edge seE and face seF respec-
tively. We usev; to denote the vertexXy;,vj] the edge con-

Since planar parameterization can be treated as finding anectingy; andvj, [vi,v;, V] the face formed by;, vj andy.

certain mesh metric such that the curvature is nearly 0 ev-
erywhere except singular vertice8¢GB0g proposed a

method to scale the mesh metric according to curvature spec-

ification. Our generalized Ricci flow method is also based on

metric deformation, we will discuss the most related met-

ric deformation based parameterization methods in the next
sub-section.

2.2. Curvature flow

The theory of intrinsic curvature flows originated from dif-
ferential geometry, and was later introduced into the engi-
neering fields. In this section, we give a brief overview of
the literature that are directly related to discrete swrfaar-
vature flow.

The Ricci flow was introduced by R. Hamilton in a semi-
nal paper Ham83 for Riemannian manifolds of any dimen-
sion for the purpose of proving Poincaré conjecture.

Circle packing metric was introduced by Thurston
in [Thu8Q. Thurston also conjectured imMhu83 that for
a discretization of the Jordan domain in the plane, the se-
guence of circle packings converge to the Riemann mapping.
This was proved by Rodin and Sullivar$87. Collins and
Stephenson@S03 implemented the computational algo-
rithm.

In [CLO3], Chow and Luo introduced the discrete Ricci
flow and discrete Ricci energy on surfaces. The algorithmic
implementation of the discrete Ricci flow was carried out
by Jin et. al. JKLGO0g. Bowers and StephensoB$044
introduced inversive distance circle packing and it wagluse
for disk-like mesh flattening purpose iBIH03]. Guo proved
the local rigidity for Euclidean and Hyperbolic inversivisd
tance circle packing inGuo09.

Definition 3.1 (Background Geometry)We sayM is with a
EuclideariE? (HyperbolicH?) background geometry, if each
face is a Euclidean (Hyperbolic) triangle.

In both cases, the discrete metric is defined as edge length
satisfying triangle inequality.

Definition 3.2 (Discrete Metric) A discrete metric oM is
afunctionl : E — R, such that on each fada, v, v], the
triangle inequality holds

Iij +|jk > i

The corner angles are determined by the discrete metric by
Euclidean (Hyperbolic) cosine law:

15HE—17 2
g _ ) arccosiyt 1
! coshj —coshlij coshiy H2

arcco sinnljj sinnly;

The discrete Gaussian curvature is defined as angle defi-
ciency,

Definition 3.3 (Discrete Curvature) Supposey; is an in-
terior vertex, with surrounding faces;, vj,vi]. The corner
angle in[vj,vj,v] at the vertex; is denoted a@i’k (or 6)).

Then the discrete curvature afis given by

{

wheredM denotes the boundary of the mesh.

m-3,8 vigom

K;
I m— z]keljk Vi € OM

)

Similar to the smooth case, the total curvature is deter-
mined by the topology of the mesh and the background ge-
ometry:

T KA A= 2r(M),

(© 2009 The Author(s)
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wherex (M) = |V|+ |F|— |E| is the Euler number d¥l, A is
0if M is with E? background geometry is —1 if M is with
H? background geometrfy is the area of thé&-th face.

3.1. Inversive Distance Discrete Ricci Flow

A circle packing is to associate each vertex with a circlee Th
circle at verten; is denoted as;. There are two situations.

1. In Fig.3, the two circlessi andc; on an edggyvi, vj] in-
tersect each other, the intersection ang|ds acute, this
is calledAndreev-Thurston circle packing

2. In Fig.6, the two circless; andcj on an edgev;, vj| are
disjoint, this is callednversive distance circle packing

In both cases, the inversive distance is defined as

Definition 3.4 (Inversive Distance)Suppose the length of
[vi,vj] isljj, the radii ofc; andcj arey; andy; respectively,
then the inversive distance betwegrandc; is given by

i

Vi
cosHli i LCOSI’M coshy;
sinhy; sinhy;

]EZ

2 3)

I(ci,cj) =

For Andreev-Thurston circle packing Bf andH?, I (ci, ;)
is exactly cog;.

Definition 3.5 (Inversive Distance Circle Packing Metric)
An inversive distance circle packing metric on a méklis
to associate each vertexwith a circlec;, whose radius i,
associate each edge, vj] with a non-negative numbey; .

The edge length is given by
cosh™*(coshy; coshy; + Iij sinhy; sinhy;)  H?

lij —{
4

The inversive distance circle packing metric is denoted as
(T,1,M), wherel = {yi}, 1 = {lij }.

,/yiz+y12+2hjwy,- E?

A discrete conformal deformatiois to change radiy;’s
only, and preserve inverse distariges. The discrete Ricci
flow is defined as follows:

Definition 3.6 (Discrete Ricci Flow)Given an inverse dis-
tance circle packing metrid@, 1, M), the discrete Ricci flow
is

d —
T KK ®)
where
~ { logy: E2
W { logtanhf ~ H? ©)

K_i is the user defined target curvature on mesh vestex

Given a trianglgvi, vj, vi] with a inversive distance circle
packing, there exists a unique ciradewhich is orthogonal
to ¢, cj, ¢, shown as the red circles in Fi§.and Fig.6.
The center ot is O. The distance fron® to edge[vi, vj] is
denoted a$y, the edge length d#;, v;] is denoted ak;.

(© 2009 The Author(s)
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Lemma 3.7The following symmetric relation holds for gen-
eralized discrete Ricci flow iR (proof can be found in Ap-
pendix):

6 _ 09 _

au " au T %
and

06  06; 06

ou  duj Ay ®

Lemma 3.8 The following symmetric relation holds for hy-
perbolic Ricci flow

96 _ 098)
6uj_6ui’

albeit with a more complex formula. On one fdeg, vz, v3),

del _1 dul
d6; | = =—————M| du ©)
465 sinB1 sinhly sinhlg dus
1-a®> ab—c ca—b 0 ay—z az—y
M= ab—c 1-b?> bc—a |A| bx—z 0 bz— x
ca—b bc—a 1-¢? CX—Yy Cy—X 0
1
7z 0 0
A= 0 5 0
0 0o 5

where (a,b,c) (cosHq,cosh,, coshg),
(coshyy, coshy,, coshys).

The detailed proof of the above lemma can be found
in [Guo09.

(Xv Y, Z) =

Let u represent the vectdus,up, - --un), K represent the
vector (Kq,Kp, ---,Kn), wheren = |V|. Fixing the inver-
sive distances, all possiblgs that ensure the triangle in-
equality on each face form tredmissible metric spacef
M. The above lemmas prove that the differential 1-form
w= Y;Kjdy in the admissible metric space Mfis a closed
1-form. Thediscrete Ricci energy

U
E(u) = [ 3 (K—Kody (10)
o
is well defined, whereig = (0,0, ---,0). The discrete Ricci
flow (Eq.5) is the negative gradient flow of the Ricci energy.

Theorem 3.9 (Convexity of Ricci Energy)The discrete Eu-
clidean Ricci energy is convex on the hyper plghe; =0

in the admissible metric space. The discrete hyperboliciRic
energy is convex in the admissible metric space.

The basic idea to prove the above theorem is as follows.
Based on Lemma&.7 and 3.8, it can be proved that the
Jacobian matrix of function®, 65, 63 in terms of uy,

Uy, Uz has one zero eigenvalue with associated eigenvector
(1,1,1) and two negative eigenvalues. Then the differential
1-form Zi3:1 6;dy; is closed, the integratiom(uy, Uz, u3) =

jé&éﬂ:ﬁ;&‘g}) 52 ,6idy is a concave function. Then by taking
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sum of all the 1-forms within each mesh triangle and ac-
cording to Eq2, the convexity of discrete Ricci energy can
be proved. The details of the proof can be foundGh03],
[Guo09 and [GY08]. Then we know that the metric produc-
ing the target curvature is the unique global optimum of the
Ricci energy. Therefore, discrete Ricci flow won't get stuck
at the local optimum, and converges to the global optimum.

4. Generalized Discrete Ricci Flow Algorithm

This section introduces the practical algorithms of comput
ing mesh parameterization based generalized Ricci flow.

4.1. Compute the Initial Circle Packing Metric

Given a triangle mesh, the inversive distance circle pagkin
metric which exactly equals to the original Euclidean mesh
metric is computed as follows:

1. For each facév;, vj, ], we compute

ik i+ — ik
Vi =—"%5
2. For each vertey;, the radius of; is given by

— minvi®
\ﬁ_rrj1||(nyi .

3. For each edgy, vj], the inversive distance is given by
Eq.3.

4.2. Optimize Ricci Energy

After the initial inversive distance circle packing metric
set, the conformal metric which induces user prescribed tar
get curvature; is computed by:

1. For each edgg, vj], using current radiy;,y;j and inver-
sive distancdij, compute the current edge lendthby
Eq.4.

2. For each facév;, vj, ], using the current edge length to
compute the corner anglés 6;,6y by Eq.1.

3. For each vertey, compute the current curvatukg using
Eq.2.

4. For each fachy, vj, i, compute(‘;% andg—g: using Eq7,
8orEq.9.

5. Form the Hessian matriX of the discrete Ricci energy in
Eq. 10. It is easy to verify from Eq2 and Eqg.10that the
Hessian matrix has an explicit fort= (hyjj):

-wij i#]j, V] €E
kWi i=1],[vi,v €E
0 I#L[thj]gE

hij = (11)

where

a6 e/
X 4+
ou; ou;
6. Solve the following linear system

Ap=K; —K;.

Wij = (12)

Figure 8:
model.

Generalized hyperbolic Ricci flow on Amphora

Figure 9: Generalized hyperbolic Ricci flow on 3 holed
Torus model.

7. Updatey; < uj + .
8. Repeat step 1 through 7, until

max|Ki — Ki| < &.
I

4.3. Flattening the Mesh

For generalized Euclidean Ricci flow, after the target eircl
packing metric is computed, we can use Etp get the cor-
responding Euclidean metric. Then the mesh can be flattened
onto the plane by the following simple algorithm.

1. Compute a homology group basBEWO05, cut the sur-
face open along the base curves. Denote the open mesh
asM. _

2. Using Euclidean cosine law, flatten each triangléMin
isometrically on the plane. _

3. Using rigid motion to glue the embedded facedvbfo-
gether.

For generalized hyperbolic Ricci flow, there are several
key differences to flatten the mesh compared with Euclidean
case. First, we embed the mesh onto the Poincaré disk in-
stead of the plane. Second, the embedding of each triangle is
based on hyperbolic cosine law, instead of Euclidean cosine
law. Third, for gluing of different embedded triangles, the
rigid motions are hyperbolic rigid motions, instead of Eu-
clidean ones. We refer readers 8#&K[.G08 for more details.
Fig.8 and Fig.9 show two high genus models parameterized
using hyperbolic inversive distance Ricci flow.

5. Experiments

In this section, we test our generalized Ricci flow algorithm
on variant models with low quality triangulations to show

(© 2009 The Author(s)
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Ricel Flow.

o
s 1 15 2 25 3
Quasi-conformal Distortion Factor

(©

@

(b)

Figure 10: Conformality comparison on Rock-Arm model. a) The origimabel with low quality triangulation. b) Generalized
Ricci flow result and color coded QC distortion. c) The hisémg of QC distortion on mesh vertices using generalizediRicc
flow. d) Conventional Ricci flow result and color coded QCadison. e) The histogram of QC distortion using conventiona

Ricci flow.

the good conformality, flexibility and robustness of the pa-
rameterization results.

5.1. Conformality

Due to the exact equality between the original Euclidean
metric and the inversive distance circle packing metrie, ou
generalized Ricci flow method results in parameterization
with good conformality compared with the conventional
Ricci flow method. To quantitatively measure the conformal-
ity, we adapt the quasi-conformal(QC) distorti@§GHO1.

The distortion factor is computed within mesh triangle face
as the ratio of larger to smaller eigenvalues of the Jacaifian
the map. The ideal conformality is 1, larger value for worse

conformality. The color coded map is rendered based on the
area weighted distortion on each mesh vertex, blue for 1, red

for largest distortion value of generalized Ricci flow metho
The conformality comparison result on Rocker-Arm model
with low quality triangulation is shown in Figl0O. Since
the original model is genus 1 boundary O, we set the tar-
get curvature to O for all vertices. For traditional Riccivilo
method, we force all the intersection angigsto be acute,
this compromises the conformality. From the visual efféct o
the checker board texture mapping, we can easily find that
the generalized Ricci flow can get results with much better
conformality. This is also verified by the color-coded map
of QC distortion. The histogram also shows that the QC dis-
tortion factors highly concentrate to 1 in generalized Ricc
flow case, while the conventional Ricci flow result diverges
much more. More results using generalized Ricci flow with
good conformality will be presented later, and the average
QC factors are listed in Table

5.2. Flexibility

As the previous curvature flow based methdiI[GOg
[SSPO& our method is capable of computing the conformal
parameterization with arbitrary user prescribed targetazu
tures. Fig.11 shows the results of a frog model of genus 0

(@

(b) ©

Figure 11: Flexible boundary curvature specification of
generalized Ricci flow. a) The original model with low qual-
ity triangulation. b) Circular boundary parameterizatioo)
Rectangular boundary parameterization.

target curvature on mesh vertex i 2After setting all in-

ner mesh vertex target curvature to 0, the boundary vertex
curvature can be assigned proportional to its length within
the whole boundary, then we can get the circular conformal
parameterization as shown in FigL(b). If a rectangular pa-
rameter domain is needed, we can choose four boundary ver-
tices and make the target curvature equatt@ and set all
other mesh vertex curvature to 0. The corresponding result
is shown in Figl11(c).

5.3. Setthe Boundary Free

After setting the initial circle packing metric based onenv

sive distance, we can leave the boundary as it is and only
optimize the metric of the inner part, which means we set
du = 0 on boundary vertices. This leads to the so-called free
boundary Ricci flow which preserves the original metric on
mesh boundaries. Since there is no constraint on the mesh
boundary, the area distortion of the parameterizationlveill
effectively minimized YKL *08] [SSPO& Fig. 12 shows an

and boundary 1. From Gauss-Bonnet theorem, the sum of example on Nicolo da Uzzano model.

(© 2009 The Author(s)
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(@

(b)

Figure 12: Free boundary generalized Ricci flow on Nicolo
da Uzzano model. a) The original model with low quality

triangulation. b) The embedded parameter domain. c) The

parameterization result with texture mapping.

5.4. Preserve Triangle Inequality

During the optimization process of the generalized Ricci
flow, the circle packing metric is updated because the vertex
radius changes. This means the induced Euclidean metric is
also changed. There is a possibility that the Euclidean tri-
angle inequality would be violated (also s&S[P0§). Edge
swap (for inner edge) or splitting (for boundary edge) is-nec
essary to help to achieve the global optimum. The edge swap
is performed on mesh edge whose length is larger than the
sum of the other two edges’ within a mesh face. During edge
swap, we maintain the circle radii on the swapped edge ver-
tices. For the new edge, the corresponding inversive distan

is computed from the original Euclidean distance of the two
edge vertices of the mesh. Edge split is needed if the edge
lies on mesh boundary. In this rare case, the inversive dis-
tance circle packing metric needs to be re-initialized. Eg&)
shows a Buste model with base cut and an inner boundary
sliced on the head. Since it is genus 0 and boundary 2, we
set target curvature to 0 everywhere. Five mesh edges are
swapped to maintain the triangle inequality and the general
ized Ricci flow can be optimized. For other test cases in our
paper, only Nicolo da Uzzano model needs 6 edge swaps an
no boundary edge split is observed during the experiments.

d

5.5. Performance and Discussions

Our generalized Ricci flow algorithm is implemented in C++
on a PC with Intel Q9400 CPU of 2.66 GHz and 2GB RAM.
And we use Matlab C++ library to solve the sparse system
in Section4.2 The computational time and average QC dis-
tortion is summarized in Table

For traditional Ricci flow of Fig.5 and Fig.10(d), the
average QC distortions are3570 and 17405 respectively,
which are much worse than the corresponding generalized
Ricci flow results. Because generalized Ricci flow based on
inversive distance is also a convex energy optimization, it
can be efficiently computed using Newton’s method as in
Sectiord.2 As a result, the computational efficiency is com-
parable to those of traditional Ricci flow.

Gu / Generalized Disdratci Flow

Figure 13: Generalized Ricci flow on Buste model. a) The
original model with low quality triangulation. b) The embed
ded parameter domain. ¢) The parameterization result with
texture mapping. d ~h) Five swapped edges during flow.

Model |F| Avg QC | Time(s)
Kitten 66952 [ 1.0306 12.8
Rocker-Arm || 20088 | 1.0461 3.8
Frog(cir.) 22856 | 1.0531 6.5
Frog(rect.) 22856 | 1.0443 5.2
Nicolo 50053 | 1.0220 9.4
Buste 107259 | 1.0294 30.6

Table 1: Statistics of generalized Ricci flow

Note that in the previous workKSS0€ based on circle
pattern, the conformal parameterization can also be com-
puted by a convex energy optimization. The difference is
that circle pattern defined curvatures on both vertices and
faces, while our generalized discrete Ricci flow method has
only vertex curvatures. Furthermor&$S0§ only focused
on Euclidean case, our work also handles hyperbolic case.
Compared to the metric scaling approachBC[GB0g, our
parameterization result is achieved by minimizing a convex
energy. In contrast, the metric scaling parameterizatson i
based on an approximation of conformal factor estimation.
There is no guarantee that a total exact flat metric can be
carried out. Their work also studied Euclidean case only.

6. Conclusion

This work generalizes discrete surface Ricci flow from
Andreev-Thurston circle packing to inversive distanceleir
packing. Conventional discrete Ricci flow method can not
achieve both high stability and high conformality for meshe
with low quality triangulations. The generalized Ricci flow
algorithm greatly improves the robustness and the confor-
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mality. It preserves the convexity of the Ricci energy ad wel
Therefore, the generalized Ricci flow is much more flexible,
robust, and conformal. Furthermore, this work gives the ge-
ometric interpretation of the Hessian matrix of discretedri
energy based on inversive distance circle packing metric.

In the future, we will find the geometric interpretation of
the Hessian of the hyperbolic Ricci energy. We will develop
parallel generalized Ricci flow algorithm and apply it for
more applications in graphics.
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Appendix: Geometry Interpretation of the Hessian
Matrix of Discrete Euclidean Ricci Energy

We now prove Eq7 in Lemmag3.7. We use the same nota-

tions of inversive distance circle packing metric as in Sec-

tion 3. For simplicity, we usdy instead oflj; to denote the
length of mesh edgp;, vj].

Lemma 6.1 Given a Euclidean triangle with Inversive dis-
tance circle packing metric, we have

L e (13)
Yoy = 20
Proof: It can be easily proved by simply taki@% to both

sides of Eq.4 in Euclidean case. This is also true for
Andreev-Thurston circle packirg.

Lemma 6.2Given a Euclidean triangle as in Fity, then

e

Ri"j - 2l

Proof: Obviously, we havg? — R?j = v — (I — R j)* =t2.
Then it can be proved by simple computatiah.

(14)

Note that by applying Lemm@.1, for Andreev-Thurston
circle packing, we have

aly

Wafw:Ri,j- (15)

For Inversive distance circle packing as in Fig(a) al-

though the circles may not intersect with each other, we can

considerAv;vjOinstead. TheR, ; = 7};0& 3¢ — xlz). Let
Y be the radius of the circle perpendicular to all 3 ciradgs
Cj, Gk then we have? = y? + Y?, 3% = y¥ + Y. This means
Eq.15is also true for Inversive distance case.

Figure 15: Inversive distance circle packing.

To prove Lemma3.7, we don't
treat two types of circle packing
metric separately because the situ-
ations are the same. Suppo&ds
the area of triangle facp, vj, v/,
it is well known that the following
equation holds:

Figure 14: Eu-
08 i clidean Triangle.
aly — 2A (16)
Then we have:
00; 0850l 09;aly
ayi  alj oy; Ol oy
By applying derivative cosine law to the above equation,
09; 08j .0l aly
— = (=—)[z= — = cosH;].
a0l [aw ayi l
Then from Eql5and Eq.16, we have:
9 a9; ., Al
Vigg = (G-)hgy — Vg cosdi
lj
= 2alRik—Rjcosh
~ gl R
= 25 Uk

From Fig.15(b), we can easily find thzﬁ‘f =sing;. Thus,

095  08; | oo ljsing; _ hy
au ~ alny) — 2a M SIN@) =1 gng =g

The above proof is also true f@%

It is easy to prove Eq8 in Lemma3.7. For a mesh face
[Vi,Vj, V], we havegj + 6; + 8 = 1. Then we haveld +

oy
‘3%;’ + g%‘ = 0. By applying the symmetry relation in E@,

Eq.8 can be proved]
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