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Abstract

Recently, various conformal geometric methods have been
presented for non-rigid surface matching and registration.
This work proposes to improve the robustness of conformal
geometric methods to the boundaries by incorporating the
symmetric information of the input surface.

We presented two symmetric conformal mapping methods,
which are based on solving Riemann-Cauchy equation and
curvature flow respectively. Experimental results on geo-
metric data acquired from real life demonstrate that the
symmetric conformal mapping is insensitive to the boundary
occlusions. The method outperforms all the others in terms
of robustness. The method has the potential to be generalized
to high genus surfaces using hyperbolic curvature flow.

1. Introduction

In recent decades, there has been a lot of research into
surface representations for 3D surface analysis, which is
a fundamental issue for many applications in computer
graphics, computer vision and geometric modeling, such
as 3D shape registration, partial scan alignment, 3D object
reconstruction, 3D object recognition, and classification[1],
[2], [3], [4].

In particular, as 3D scanning technologies improve, large
databases of 3D scans require automated methods for match-
ing and registration. However, matching surfaces undergoing
non-rigid deformation is still a challenging problem, espe-
cially when data is noisy and with complicated topology.
Different approaches have been introduced in the literature
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17]. However, many surface representations that
use local geometric invariants can not guarantee a global
convergence and might suffer from local minima in the
presence of non-rigid deformations.

Recently, many global parameterizations methods have
been developed based on conformal geometric maps [18],
[19], [20], [21], [22], [23]. Although the previous methods
have met with a great deal of success in both computer vision
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(a) calm face

(b) smile face

Figure 1. Symmetric Conformal Mapping for human
faces, Sub1.A and Sub1.B, with different expressions.
The property of symmetry preserving is illustrated from
the flat image and the check-board texture mapping
image, where the conformality and the area distortion
are visualized.

and graphics, there is a major shortcoming in conformal
maps when applied to matching of real discrete data such
as the output of 3D scanners:inconsistent boundaries. In
real applications in graphics and CAD, many categories of
surfaces of interests are symmetric, such as human faces,
human bodies, most furniture, buildings, automobiles etc.
To address the above critical issue, we propose to incor-
porate the symmetry of the input surface to the conformal
mapping, such that the conformal mapping preserves the
intrinsic symmetry of the surface and is more robust to the
inconsistency of the boundaries. The conformal mapping
preserves the symmetry in the following ways: first the
image of the mapping is still symmetric; second, the area
distortion factor on the image is symmetric as well. Figure 9
shows the symmetric conformal mappings, which are much
more robust to the boundary occlusions and inconsistency.

1.1. Conformal Geometric Methods
There are four categories of conformal geometric methods

for the application of surface matching and registration,
includingHarmonic Maps[18], [19], [20], Riemann-Cauchy
Equation (such as least square conformal maps (LSCMs)
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Figure 2. Comparison among different conformal mapping methods for faces Sub2.A and Sub2.B. The occluded
face shares the same symmetry plan with the original face. Symmetric conformal map is the most robust to boundary
occlusion.

introduced in [21]) [23], [24],Holomorphic Differentials
[25], and Ricci Flow [26], [27]. Recently, discrete surface
Yamabe flow has been introduced by Luo in [28], which
has been reintroduced in [29]. Hyperbolic Yamabe flow is
presented in [30]. A similar method is applied for conformal
parameterization in [31].

In general, harmonic maps, LSCMs are linear methods,
but can only handle surfaces with simple topologies, such
as topological disks. Holomorphic differentials can handle
multiply connected domains and high genus surfaces, but it
introduces singularities. Ricci flow method is very general
and has no topological limitations, but it is a nonlinear opti-
mization. All of them are very sensitive to the boundaries. As
shown in Figure 2, inconsistent boundary conditions produce
drastically different conformal mappings and lead to the
failure for partial matching and registration. Figure 3 gives
an example to show that the conformal mapping has the
property of intrinsic symmetry preserving.

1.2. Contributions

We make the following contributions in our paper:

∙ A conformal mapping method based on solving
Riemann-Cauchy equation is introduced, which pre-
serves the symmetry of the input surface.

∙ A conformal mapping method based on discrete curva-
ture flow (Yamabe Flow) is introduced, which preserves
the symmetry of the input surface.

∙ A robust method for non-rigid surface matching and
registration based on symmetric conformal mapping is
introduced, which is very robust to boundary occlusion
and clutter.

Although the work focuses on topological disks, it can be
generalized to surfaces with more complicated topologies,
such as multiply connected domains or high genus surfaces,

as long as the surface has intrinsic symmetry. The Riemann-
Cauchy equation method can only handle topological disks,
while the curvature flow method can be generalized to han-
dle arbitrary topologies. Similarly, the symmetric constraints
can also be incorporated in the other two methods.

2. Mathematical Background

All surfaces embedded inℝ3 have the induced Euclidean
metricg. A conformal structureis an atlas, such that on each
local chart, the metric can be represented asg = e2u(dx2+
dy2). we can use complex parameter to represent itz =
x+ iy, which is calledisothermal coordinates. Suppose two
charts have overlapping region on the surface, then the chart
transition function is an analytic function. A surface with
a conformal structure is aRiemann surface, therefore, all
surfaces inℝ3 are Riemann surfaces.

A complex valued functionf : ℂ → ℂ is holomorphic,
if it satisfies the following Riemann-Cauchy equation,f :
z → w, wherez = x+ iy andw = u+ iv,

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
. (1)

A mapping between two Riemann surfacesf : S1 → S2

between two surfaces isconformal, if it satisfies the follow-
ing condition: Arbitrarily choosing a local isothermal coor-
dinates ofS1, (U�, ��), a local isothermal coordinates of
S2, (V� , ��), then the local presentation off is �� ∘f ∘�

−1
�

is holomorphic. In this work,S1 is a genus zero surface with
a single boundary,S2 is a planar domain.

There are mainly four categories to compute conformal
mappings.

2.1. Harmonic Maps
Let f : S → D be a mapping between two surfaces, then

theharmonic energyof f is defined asE(f) =
∫

S
∣∇f ∣2dA,



where∇f is the gradient off , dA is the area element on
S. The harmonic map is the critical point of the harmonic
energy, which satisfies the Laplace equationΔf = 0.

The harmonic map can be achieved using the heat flow
method df

dt
= −Δf, where Δ is the Laplace-Beltrami

operator onS. In general, if the target domain is convex,
the boundary mappingf : ∂S → ∂D is a homeomorphism,
then the harmonic map is a diffeomorphism. Especially, ifD

is a genus zero closed surface, then the harmonic map is also
a conformal map. Figure 2(b) is computed using harmonic
maps as described in [19].

2.2. Solving Riemann-Cauchy Equation
Conformal maps satisfy the Riemann-Cauchy equation

(1). Therefore by solving Riemann-Cauchy equation with
boundary conditions, a conformal map can be obtained.
in practice, one can solve the equation by minimizing the
following energy,

E(f) =

∫

S

(
∂u

∂x
−

∂v

∂y
)2 + (

∂u

∂y
+

∂v

∂x
)2dxdy. (2)

Figure 2(c) is computed by minimizing the above energy
using the method described in [21].

2.3. Holomorphic 1-Form
Let ! be a complex-valued differential form on the

Riemann surfaceS, such that on each local chart(U�, ��)
with isothermal coordinatesz�, ! has local representation
! = g�(z�)dz�, whereg� is holomorhpic, then! is called
a holomorphic 1-form. On another local chart(U� , ��)
with isothermal coordinatesz�, ! has local representation
! = g�(z�)dz� where g�

dz�
dz�

= g� , where dz�
dz�

is a
holomorphic function. All the holomorphic 1-forms form a
group, which is isomorphic to the first cohomology group
of the surface.

The holomorphic 1-form group basis can be computed
as follows: first we compute the homology group basis of
the surface, the the dual cohomology group basis, then use
Hodge theory to get the unique harmonic 1-form for each
cohomologous class; finally, use Hodge star to compute the
conjugate harmonic 1-forms. Each pair of harmonic 1-form
and its conjugate form a holomorphic 1-form. This method
has been introduced in [32]. Figure 2(d) is computed using
holomorphic 1-forms.

2.4. Ricci Curvature Flow
Let S be a surface embedded inℝ3. S has a Riemannian

metric induced from the Euclidean metric ofℝ3, denoted
by g. Supposeu : S → ℝ is a scalar function defined on
S. It can be verified that̄g = e2ug is also a Riemannian
metric onS. We sayḡ is conformalto g, e2u is called the
conformal factor.

When the Riemannian metric is conformally deformed,
Gaussian curvatures will also be changed accordingly to the
Yamabe equation, K̄ = e−2u(−Δgu + K), whereΔg is

the Laplace-Beltrami operator under the original metricg.
Yamabe equation can be solved usingRicci flowmethod by
a prescribed curvaturēK,

dgij(t)

dt
= 2(K̄ −K(t))gij(t).

wheret is the time parameter. If the target curvature is zero
on every interior point, then the surface can be flattened onto
a planar domain with the resulting metric.

Surface Ricci flow has been generalized to the discrete
setting by Luo and Chow in [33]. In surface case, Ricci
flow is equivalent to Yamabe flow. Discrete Yamabe flow
was first introduced by Luo in [28]. Figure 10 is computed
using curvature flow method [30].
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Figure 3. Conformal mapping preserving symmetry. 

is the intersection curve between the surface and the
symmetric plane. p and R� (p) are symmetric points. The
symmetry is preserved on the image of the conformal
mapping �.

3. Symmetric Conformal Mapping Method

All the existing conformal mapping methods are sensi-
tive to boundary conditions. Surface registration algorithms
based on conformal geometric methods are susceptible to
occluded boundaries, clutters and inconsistent boundaries.
We propose to improve the robustness of conformal mapping
methods by utilizing the symmetry of the input surface.

Suppose the input surfaceS has some symmetries. For
example (see Figure 3), suppose� is a plane inℝ3, R�

is the reflection about� . If S is symmetric about� , then
R� (S) = S. Let 
 be the intersection curve of the surface
and the symmetric plane,
 = S ∩ � , � : S → ℂ is a
conformal mapping of the surface to the complex plane. We
say the conformal mapping preserves symmetry, if

�(R� (p)) = −�(p),

where�(p) means the conjugate of�(p). Namely,� maps

 to the imaginary axis, the images of the symmetric points
p andR� (p) are symmetric about the imaginary axis. This
can be accomplished by adding symmetric constraints (com-
plex position, or conformal factor) during the optimization
process.

In practice, surfaces are approximated by triangle meshes,
conformal mappings are approximated by piecewise linear
maps.
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Figure 4. Discrete approximation of Riemann-Cauchy
equation.

3.1. Riemann-Cauchy Equation Method
This method is a direct generalization of LSCM in [21] by

adding symmetric constraints. Let[pi, pj, pk] be a face on
the mesh (see Figure 4). The images of them under the linear
mapf : [pi, pj , pk] → ℝ2 are(ui, vi), (uj , vj), (uk, vk). Let
si = n× (pk − pj), sj = n× (pi − pk), sk = n× (pj − pi),
n is the normal vector of the face, then

−∇u = uisi + ujsj + uksk,

−∇v = visi + vjsj + vksk,

Riemann-Cauchy energy on face[pi, pj , pk] can be approxi-
mated byE([pi, pj, pk]) = ∣∇v−n×∇u∣2. The energy (2)
can be approximated as

∑

[pi,pj ,pk]∈M

E([pi, pj , pk])A([pi, pj, pk]),

whereA([pi, pj , pk]) represents the area of the face.
The symmetric constraints can be inserted naturally during

the optimization of the above energy. Supposepi, pj are
symmetric vertices of the mesh,R� (pi) = pj, then we add
constraintui = −uj, vi = vj .

3.2. Yamabe Flow Method
Symmetry constraints can also be added to the curvature

flow method naturally. Here we use Yamabe flow method
introduced in [28]. On a triangle mesh, thediscrete metric
is the edge length functionℓ : E → ℝ

+ satisfying triangle
inequality. Thevertex discrete curvatureis defined as angle
deficiency,

Ki =

{

2� −
∑

[pi,pj ,pk]∈F �
jk
i pi ∕∈ ∂M

� −
∑

[pi,pj ,pk]∈F �
jk
i pi ∈ ∂M

where�jki is the corner angle atpi in the face[pi, pj , pk],
∂M is the boundary ofM . Let u : V → ℝ be the discrete
conformal factor. The edge length of[pi, pj] is defined as
ℓij := exp(ui) exp(uj)ℓ

0
ij , where ℓ0ij is the original edge

length inℝ3. The discrete Yamabe flow is defined as

dui

dt
= K̄i −Ki,

with the constraint
∑

i ui = 0. The discrete Yamabe flow
converges, and the final discrete metric induces the pre-
scribed curvature; a detailed proof can be found in [28].

During the Yamabe flow, we can enforce the symmetry
in the following way. Assumepi andpj are two symmetric
interior vertices,R� (pi) = pj, pi, pj ∕∈ ∂M , therefore their
target curvatures are the samēKi = K̄j, then during the
Yamabe flow, we always ensureui = uj.

4. Computational Algorithm

The computational algorithm for symmetric conformal
mapping is straight forward. It includes the following steps.
4.1. Finding Symmetric Plane

Assume the input surface has a reflective symmetric plane
� , this step aims at find the plane. Although there are rich
literature on finding symmetry of images, we focus on find-
ing the symmetry of a 3D surface. The generalized Hough
transformation has been introduced in [34] for finding the
symmetry plane of 3D point clouds. We adapt the method
to locate the symmetry plane for our dense point clouds of
human face surfaces.

4.2. Finding Feature Points
The scanned data sets have both texture information and

geometric information. In current work, we only utilize the
texture information for locating feature points. We apply
conventional SIFT method [35] on the texture image to find
major feature points, such as eye corners, mouth corners
etc. The symmetry of feature points can be computed by
the method in [36]. Then we project back the feature points
from the texture image to the 3D surfaces.
4.3. Cross Registration

S1 S2

D1 D2

-
f

?

�1

?

�2

-
g

Given two 3D face surfacesS1 andS2 of the same person
with different expressions and different boundaries, we want
to register them using symmetric conformal mapping. First,
we compute symmetric conformal maps�1 : S1 → D1,
�2 : S2 → D2, using the symmetric information obtained
in the first step. Then we compute a constrained harmonic
mapg : D1 → D2, such thatg align the major corresponding
features and also preserves symmetry. The correspondence
between the major features are specified by the user. The
matching and registration accuracy is directly influenced
by the detected feature constraints. The mapg = (g1, g2)
minimizes the harmonic energy

E(g) =

∫

D1

(
∂g1

∂x
+

∂g1

∂y
)2 + (

∂g2

∂x
+

∂g2

∂y
)2dxdy,

such thatg1(−x, y) = −g1(x, y), g2(−x, y) = g2(x, y).
Then the registration is given by

f = �−1
2 ∘ g ∘ �1 : S1 → S2.



5. Experimental Results

We implemented our algorithm using generic C++ on
Windows XP and used conjugate gradient optimization for
acceleration. The human face data sets are acquired using
high speed 3D scanner based on phase-shifting method in
[19]. The scanning speed is 30 frames per second, the
resolution for each frame is640 × 480. The experiments
are conducted on a HP xw4600 Workstation with Intel Core
2Duo CPU 2.33GHz, 3.98 GB of RAM. The running time
is reported Table 1.

Table 1. Computational time of symmetric conformal
mappings.

Name David1 David2 Luke1 Anna1 Anna2
#Face 148,305 147,038 50,000 156,401 147,430
#Vertex 74,699 74,063 25,246 78,773 74,281
Time (s) 8 17 16 28 14

Figure 5. Symmetric LSCM for faces Sub3.A and
Sub3.B with inconsistent boundaries.

frame 030 frame 110 frame 164 frame 210

Figure 6. Registration for a sequence of Sub3’s face
surfaces with different expressions and postures.

The symmetric conformal mapping for various human
face surfaces are illustrated in Figures 1, 2, and 5. The
(partial) registration results for face surfaces with different
expressions and postures are illustrated in Figure 6. Al-
though the boundaries are significantly different, and the
registrations are performed on the relatively small over-
lapping regions, the texture pattern on the overlapping
regions among the four frames are very consistent. This
demonstrates the robustness of our method. Figures 7, 8
and 9 show our method tested on the other facial expression
sequences with different non-rigid deformations, where the
boundaries are almost fixed and the registrations are also

visualized by the check-board texture mapping. The match-
ing error is measured by computing the relative Hausdorff
average distance (RHAD) under iterative closest point (ICP),
harmonic map method (HM) [19], and our symmetric con-
formal map method (SCM). We matched the first frame to
others within each class and got the average matching error
as follows: Sub1(0.054, 0.015, 0.008), Sub2(0.221, 0.035,
0.020), Sub3(0.090, 0.020, 0.013) and Sub4(0.028, 0.009,
0.006) for (ICP, HM, SCM). For all the tested experiments,
our method outperforms both the ICP and HM methods.

frame 001 frame 100 frame 200 frame 399

Figure 7. Registration for a sequence of Sub2’s face
surfaces with significantly different expressions.

frame 001 frame 100 frame 174 frame 360

Figure 8. Registration for a sequence of Sub4’s face
surfaces with eye and mouth motions.

frame 001 frame 140 frame 230 frame 360

Figure 9. Registration for a sequence of Sub1’s face
surfaces with asymmetrical expression deformations.

Figure 10(a) demonstrates the symmetric Yamabe flow
method as described in previous section. The target cur-
vatures are set to preserve the symmetry. During the flow,
the conformal factorsu are constrained to be symmetric.
The final conformal mapping image is also symmetric. This
example shows the flexibility of our method, that can handle
surfaces with complicated topologies.



(a) multiply connected domain (b) high genus surface

Figure 10. Symmetric Conformal Mapping using Yam-
abe flow. (a) Euclidean Yamabe flow for multiply con-
nected domain, (b) Hyperbolic Yamabe flow for high
genus surface.

6. Conclusion and Future Works

Conventional conformal mapping methods are suscep-
tible to inconsistent boundaries. This work proposes to
improve the robustness of conformal geometric methods
by incorporating the symmetric information into the map-
ping process. Novel conformal mapping algorithms based
on solving Riemann-Cauchy equation and curvature flow
are developed, which preserve the symmetry of the input
surface. Experimental results demonstrate the symmetric
conformal mapping is insensitive to the boundary occlusions.

Although current work focuses on genus zero surfaces,
it can be directly generalized to high genus surfaces as
well. Figure 10(b) demonstrates such an example, a genus
two surface is conformally mapped to the hyperbolic space
periodically using hyperbolic Yamabe flow method. In the
future, we will continue the exploration for high genus
surfaces. Furthermore, we will investigate to generalize the
method for surfaces with symmetries other than mirror
reflection and incorporate more geometric structural char-
acteristics to conformal mappings to improve the robustness
and accuracy.
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