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Abstract

Recently, various conformal geometric methods have been
presented for non-rigid surface matching and registration
This work proposes to improve the robustness of conformal
geometric methods to the boundaries by incorporating the
symmetric information of the input surface.

We presented two symmetric conformal mapping methods,
which are based on solving Riemann-Cauchy equation and
curvature flow respectively. Experimental results on geo-
metric data acquired from real life demonstrate that the
symmetric conformal mapping is insensitive to the boundary
occlusions. The method outperforms all the others in terms
of robustness. The method has the potential to be genetalize
to high genus surfaces using hyperbolic curvature flow.

(b) smile face

Figure 1. Symmetric Conformal Mapping for human
1. Introduction faces, Sub1l.A and Subl.B, with different expressions.
The property of symmetry preserving is illustrated from
Be flat image and the check-board texture mapping

In recent decades, there has been a lot of research inf ) . .
age, where the conformality and the area distortion

surface representations for 3D surface analysis, which jgnage lized
a fundamental issue for many applications in computelare visualized.
graphics, computer vision and geometric modeling, such

as 3D shape registration, partial scan alignment, 3D objecinq graphics, there is a major shortcoming in conformal
reconstruction, 3D object recognition, and classificafin maps when applied to matching of real discrete data such
(2], (3], [4]. _ o as the output of 3D scannersiconsistent boundariesn

In particular, as 3D scanning technologies improve, larggeg) applications in graphics and CAD, many categories of
databases of 3D scans require automated methods for matcd\;faces of interests are symmetric, such as human faces,
ing and registration. However, matching surfaces undemoi hyman bodies, most furniture, buildings, automobiles etc.
non-rigid deformation is still a challenging problem, espe 15 address the above critical issue, we propose to incor-
cially when data is noisy and with complicated topology. porate the symmetry of the input surface to the conformal
Different approaches have been introduced in the Iiteeaturmapping' such that the conformal mapping preserves the
[4], [5], [6]. [7], [8], [9], [10], [11], [12], [13], [14].  intrinsic symmetry of the surface and is more robust to the
[15], [16], [17]. However, many surface representatiora th jnconsistency of the boundaries. The conformal mapping
use local geometric invariants can not guarantee a 9|°b'1‘ireserves the symmetry in the following ways: first the
convergence and might suffer from local minima in theimage of the mapping is still symmetric; second, the area
presence of non-rigid deformations. distortion factor on the image is symmetric as well. Figure 9

Recently, many global parameterizations methods havgnows the symmetric conformal mappings, which are much
been developed based on conformal geometric maps [18nore robust to the boundary occlusions and inconsistency.
[19], [20], [21], [22], [23]. Although the previous methods flrl' Conformal Geometric Methods

have met with a great deal of success in both computer visio
There are four categories of conformal geometric methods
e Corresponding author: W. Zeng for the application of surface matching and registration,
E-mail: zeng@wayne.edu, zengwei@cs.sunysb.edu including Harmonic Mapg18], [19], [20], Riemann-Cauchy
Equation (such as least square conformal maps (LSCMSs)
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Figure 2. Comparison among different conformal mapping methods for faces Sub2.A and Sub2.B. The occluded
face shares the same symmetry plan with the original face. Symmetric conformal map is the most robust to boundary
occlusion.

introduced in [21]) [23], [24],Holomorphic Differentials as long as the surface has intrinsic symmetry. The Riemann-
[25], and Ricci Flow [26], [27]. Recently, discrete surface Cauchy equation method can only handle topological disks,
Yamabe flow has been introduced by Luo in [28], whichwhile the curvature flow method can be generalized to han-
has been reintroduced in [29]. Hyperbolic Yamabe flow isdle arbitrary topologies. Similarly, the symmetric coagits
presented in [30]. A similar method is applied for conformalcan also be incorporated in the other two methods.
parameterization in [31].

In general, harmonic maps, LSCMs are linear methods?2. Mathematical Background
but can only handle surfaces with simple topologies, such ) )
as topological disks. Holomorphic differentials can handl Al surfaces embedded iR* have the induced Euclidean
multiply connected domains and high genus surfaces, but petricg. A conforma_l structurés an atlas, such that on each
introduces singularities. Ricci flow method is very generallocal chart, the metric can be representegas e**(dz +
and has no topological limitations, but it is a nonlinearopt 4¥°)- We can use complex parameter to represent it
mization. All of them are very sensitive to the boundaries. A © 1y, which is calledsothermal coordinatesSuppose two
shown in Figure 2, inconsistent boundary conditions preduc charts have overlapping region on the surface, then the char
drastically different conformal mappings and lead to thelransition function is an an.alytlc function. A surface with
failure for partial matching and registration. Figure 3egv @ conforr_nal structu.re is &iemann surfacetherefore, all
an example to show that the conformal mapping has th&urfaces ink* are Riemann surfaces.

property of intrinsic symmetry preserving. _ A complex valued fu_nctior:;f :C—-Cis holomorphic
o if it satisfies the following Riemann-Cauchy equatigh;
1.2. Contributions z — w, wherez = z + iy andw = u + v,
We make the following contributions in our paper: Ou _9dv Odu v 1)
« A conformal mapping method based on solving dx Oy’ Oy Ox
Riemann-Cauchy equation is introduced, which pre- A mapping between two Riemann surfacés S; — S
serves the symmetry of the input surface. between two surfaces nformal if it satisfies the follow-

« A conformal mapping method based on discrete curvaing condition: Arbitrarily choosing a local isothermal ¢eo
ture flow (Yamabe Flow) is introduced, which preservesdinates ofS;, (Ua, ¢o), @ local isothermal coordinates of
the symmetry of the input surface. Sa, (Vs, ¢3), then the local presentation @fis ¢go fog !

« A robust method for non-rigid surface matching andis holomorphic. In this work$; is a genus zero surface with
registration based on symmetric conformal mapping isa single boundary$, is a planar domain.
introduced, which is very robust to boundary occlusion There are mainly four categories to compute conformal
and clutter. mappings.

Although the work focuses on topological disks, it can be2.1. Harmonic Maps
generalized to surfaces with more complicated topologies, Let f: S — D be a mapping between two surfaces, then
such as multiply connected domains or high genus surfacethe harmonic energyf f is defined asZ(f) = [, |V f|?dA,



whereV f is the gradient off, dA is the area element on the Laplace-Beltrami operator under the original megic
S. The harmonic map is the critical point of the harmonic Yamabe equation can be solved usRigci flowmethod by

energy, which satisfies the Laplace equatidfi = 0. a prescribed curvaturg,
The harmonic map can be achieved using the heat flow dg;; (1) -
method £ = —Af, where A is the Laplace-Beltrami # =2(K — K(t))gs;(t).

operator onS. In general, if the target domain is convex,
the boundary mapping : 9S — 9D is a homeomorphism,

then the harmonic map is a diffeomorphism. Especially if B X :
is a genus zero closed surface, then the harmonic map is aloP!anar domain with the resulting metric.

a conformal map. Figure 2(b) is computed using harmonic Surface Ricci flow has been generalized to the discrete
maps as described in [19]. setting by Luo and Chow in [33]. In surface case, Ricci

) ) ) flow is equivalent to Yamabe flow. Discrete Yamabe flow
2.2. Solving Riemann-Cauchy Equation was first introduced by Luo in [28]. Figure 10 is computed
Conformal maps satisfy the Riemann-Cauchy equatiomusing curvature flow method [30].
(1). Therefore by solving Riemann-Cauchy equation with
boundary conditions, a conformal map can be obtained.
in practice, one can solve the equation by minimizing the
following energy,

B ou Ov

wheret is the time parameter. If the target curvature is zero
on every interior point, then the surface can be flattened ont

ou Ov

e V1 = 72
B = [ (Gy— 5,0+ (5, + g dedy @
Figure 2(c) is computed by minimizing the above energy ) ]
using the method described in [21]. _Flgure.3. Confprmal mapping preserving symmetry. -
i is the intersection curve between the surface and the
2.3. Holomorphic 1-Form symmetric plane. p and R (p) are symmetric points. The

Let w be a complex-valued differential form on the symmetry is preserved on the image of the conformal
Riemann surface, such that on each local chdi,, ¢.) mapping ¢.
with isothermal coordinates,, w has local representation
w = ga(za)dza, Whereg, is holomorhpic, thenw is called
a holomorphic 1-form On another local chartUsg, ¢3) 3. Symmetric Conformal Mapping Method
with isothermal coordinatess, w has local representation
w = gp(zs)dzs where g, Z= = gg, where Z%‘; is a All the existing conformal mapping methods are sensi-
holomorphic function. All the holomorphic 1-forms form a tive to boundary conditions. Surface registration aldnis
group, which is isomorphic to the first cohomology groupbased on conformal geometric methods are susceptible to
of the surface. occluded boundaries, clutters and inconsistent bourslarie

The holomorphic 1-form group basis can be computedye propose to improve the robustness of conformal mapping
as follows: first we compute the homology group basis ofmethods by utilizing the symmetry of the input surface.
the surface, the the dual cohomology group basis, then use Suppose the input surfacg has some symmetries. For
Hodge theory to get the unique harmonic 1-form for eachexample (see Figure 3), supposes a plane inR?, R,
cohomologous class; finally, use Hodge star to compute thg the reflection about. If S is symmetric aboutr, then
conjugate harmonic 1-forms. Each pair of harmonic 1-formp_(S) = S. Let v be the intersection curve of the surface
and its conjugate form a holomorphic 1-form. This methodand the symmetric plane; = SN, ¢ : S — Cis a
has been introduced in [32]. Figure 2(d) is computed usingonformal mapping of the surface to the complex plane. We
holomorphic 1-forms. say the conformal mapping preserves symmetry, if
2.4. Ricci Curvature Flow &(R+(p)) = —o(p),

Let S be a surface embeddedR?¥. S has a Riemannian — :
metric induced from the Euclidean metric &°, denoted where<z>(_p) means th? conju_gate o(p). Namely, ¢ maps.
by g. Suppose: : S — R is a scalar function defined on to the imaginary axis, the Images of_the s_ymmetrl_c p0|r_|ts

yg pp
S. It can be verified thag = ¢2'g is also a Riemannian p and R, (p) are symmetric about the imaginary axis. This

metric onS. We sayg is conformalto g, ¢%* is called the can be a_cg:omphshed by adding symmetric constraints (gom—
conformal factor plex position, or conformal factor) during the optimizatio

When the Riemannian metric is conformally deformed,process'

. . . In practice, surfaces are approximated by triangle meshes,
Gaussian curvatures will also be changed accordingly to thgonformal mAbpinas are approximated by piecewise linear
Yamabe equatignk = e 2“(—Agu + K), where Az is PPing PP yp

maps.



During the Yamabe flow, we can enforce the symmetry
in the following way. Assume; andp; are two symmetric
interior vertices,R,(p;) = p;, pi,p; € OM, therefore their
target curvatures are the samd& = Kj, then during the
Yamabe flow, we always ensutg = u;.

4. Computational Algorithm

Sk

The computational algorithm for symmetric conformal
mapping is straight forward. It includes the following step
4.1. Finding Symmetric Plane

Assume the input surface has a reflective symmetric plane
3.1. Riemann-Cauchy Equation Method 7, this step aims at find the plane. Although there are rich

This method is a direct generalization of LSCM in [21] by literature on finding symmetry of images, we focus on find-
adding symmetric constraints. L&i;, p;, px] be a face on ing the symmetry of a 3D surface. The generalized Hough
the mesh (see Figure 4). The images of them under the line&i@nsformation has been introduced in [34] for finding the

map f : [pi, p;, px] — R? are (u;,v;), (uj,v;), (ug, vg). Let ~ Symmetry plane of 3D point clouds. We adapt the method
si=nx (pr —p;),8; =0 X (p; — i), sk =n x (pj —pi), 1O locate the symmetry plane for our dense point clouds of

Figure 4. Discrete approximation of Riemann-Cauchy
equation.

n is the normal vector of the face, then human face surfaces.
—Vu = ws; +u;s; + ugsy 4.2. Finding Feature Points
—Vu = us; +v;8; + vsk, The scanned data sets have both texture information and

geometric information. In current work, we only utilize the
texture information for locating feature points. We apply
conventional SIFT method [35] on the texture image to find
major feature points, such as eye corners, mouth corners
> E(lpipj px)) Allpi» pis pr))s etc. The symmetry of feature points can be computed by

the method in [36]. Then we project back the feature points
from the texture image to the 3D surfaces.

61'3' Cross Registration

Riemann-Cauchy energy on fage, p;, px] can be approxi-
mated byE([p;, p;, pr]) = |Vv—n x Vul?. The energy (2)
can be approximated as

[pi,pj,pr]€EM

where A([p;, p;, px]) represents the area of the face.
The symmetric constraints can be inserted naturally durin

the optimization of the above energy. Suppgsep; are g f g
symmetric vertices of the mesi®, (p;) = p;, then we add 1 2
constraintu; = —u;, v; = vj. , ,
3.2. Yamabe Flow Method ' ’
Symmetry constraints can also be added to the curvature Dy —— Ds

flow method naturally. Here we use Yamabe flow method _.
introduced in [28]. On a triangle mesh, tdéscrete metric ~ C1ven wo 3D face surfaces; and S; of the same person
is the edge length functioh: E — R* satisfying triangle with different expressions and different boundaries, watwa

inequality. Thevertex discrete curvaturis defined as angle t© register them using symmetric conformal mapping. First,

- we compute symmetric conformal mags : S; — Dy,
deficiency, . L . .
" @2 : Sy — Do, using the symmetric information obtained
D I Ypipyplerti. pi & OM in the first step. Then we compute a constrained harmonic
v T — Z[m,pjymep 913.’“ p; € OM mapg : D; — Do, such thaty align the major corresponding
i _ features and also preserves symmetry. The correspondence
where ;" is the corner angle at; in the face[p;,p;,px].  between the major features are specified by the user. The

9M is the boundary of\/. Letu : V — R be the discrete matching and registration accuracy is directly influenced
conformal factor. The edge length @f;, p;] is defined as  py the detected feature constraints. The mag (g1, g2)
lij = exp(u;) exp(u;)€7;, where £y, is the original edge  minimizes the harmonic energy

. 3 H i I
length inR”. The discrete Yamabe flow is defined as B(g) = / (% %)2 n (% n %)Qdmdy
d;Z = I_(i - Ki; D, Ox ay Oz ay 7
t such thatg, (—z,y) = —qi(z,y), g2(—z,9) = g2(z,9).

with the constrainty_; u; = 0. The discrete Yamabe flow than the re
converges, and the final discrete metric induces the pre- .
scribed curvature; a detailed proof can be found in [28]. f=0¢3 0g0¢1:5 = 5.

gistration is given by



5. Experimental Results visualized by the check-board texture mapping. The match-
ing error is measured by computing the relative Hausdorff
We implemented our algorithm using generic C++ onaverage distance (RHAD) under iterative closest point JCP
Windows XP and used conjugate gradient optimization forharmonic map method (HM) [19], and our symmetric con-
acceleration. The human face data sets are acquired usifigemal map method (SCM). We matched the first frame to
high speed 3D scanner based on phase-shifting method #thers within each class and got the average matching error
[19]. The scanning speed is 30 frames per second, thas follows: Sub1(0.054, 0.015, 0.008), Sub2(0.221, 0.035,
resolution for each frame 840 x 480. The experiments 0.020), Sub3(0.090, 0.020, 0.013) and Sub4(0.028, 0.009,
are conducted on a HP xw4600 Workstation with Intel Core0.006) for (ICP, HM, SCM). For all the tested experiments,
2Duo CPU 2.33GHz, 3.98 GB of RAM. The running time our method outperforms both the ICP and HM methods.
is reported Table 1.

Table 1. Computational time of symmetric conformal
mappings.

Name Davidl David2 Lukel Annal Anna2

#Face 148,305 147,038 50,000 156,401 147,430
#\Vertex 74,699 74,063 25,246 78,773 74,281
Time (s) 8 17 16 28 14

frame 001 frame 100 frame 200 frame 399

Figure 7. Registration for a sequence of Sub2'’s face
surfaces with significantly different expressions.

Figure 5. Symmetric LSCM for faces Sub3.A and
Sub3.B with inconsistent boundaries.

frame 001 frame 100 frame 174 frame 360

Figure 8. Registration for a sequence of Sub4’s face
surfaces with eye and mouth motions.

frame 030 frame 110 frame 164 frame 210

Figure 6. Registration for a sequence of Sub3'’s face
surfaces with different expressions and postures.

The symmetric conformal mapping for various human frame 001 frame 140 frame 230 frame 360
face surfaces are illustrated in Figures 1, 2, and 5. The

(partial) registration results for face surfaces with efint ~ Figure 9. Registration for a sequence of Subl's face
expressions and postures are illustrated in Figure 6. Alsurfaces with asymmetrical expression deformations.
though the boundaries are significantly different, and the

registrations are performed on the relatively small over- Figure 10(a) demonstrates the symmetric Yamabe flow
lapping regions, the texture pattern on the overlappingnethod as described in previous section. The target cur-
regions among the four frames are very consistent. Thigatures are set to preserve the symmetry. During the flow,
demonstrates the robustness of our method. Figures 7, tBe conformal factors: are constrained to be symmetric.
and 9 show our method tested on the other facial expressiofhe final conformal mapping image is also symmetric. This
sequences with different non-rigid deformations, wheee th example shows the flexibility of our method, that can handle
boundaries are almost fixed and the registrations are alssurfaces with complicated topologies.



(a) multiply connected domain (b) high genus surface

Figure 10. Symmetric Conformal Mapping using Yam-
abe flow. (a) Euclidean Yamabe flow for multiply con-
nected domain, (b) Hyperbolic Yamabe flow for high
genus surface.
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