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Abstract—This paper presents a novel and efficient surface matching and visualization framework through the geodesic distance-
weighted shape vector image diffusion. Based on conformal geometry, our approach can uniquely map a 3D surface to a canonical
rectangular domain and encode the shape characteristics (e.g., mean curvatures and conformal factors) of the surface in the 2D
domain to construct a geodesic distance-weighted shape vector image, where the distances between sampling pixels are not uniform
but the actual geodesic distances on the manifold. Through the novel geodesic distance-weighted shape vector image diffusion
presented in this paper, we can create a multiscale diffusion space, in which the cross-scale extrema can be detected as the robust
geometric features for the matching and registration of surfaces. Therefore, statistical analysis and visualization of surface properties
across subjects become readily available. The experiments on scanned surface models show that our method is very robust for
feature extraction and surface matching even under noise and resolution change. We have also applied the framework on the real
3D human neocortical surfaces, and demonstrated the excellent performance of our approach in statistical analysis and integrated
visualization of the multimodality volumetric data over the shape vector image.

Index Terms—Surface Matching, Shape Vector Image, Multiscale Diffusion, Visualization.

1 INTRODUCTION

To date, 3D surface matching and data visualization is still a very chal-
lenging research problem in many visual data processing and analysis
fields. This is partly because surfaces may have highly flexible free-
form shape characteristics which are difficult to be captured and used
for matching and registration purposes, especially under noisy condi-
tions. One of the fundamental issues in surface matching is the shape
representation scheme. In recent years, different shape representa-
tions, such as curvature-based representations [25], regional point rep-
resentations [20], shape distributions [18], etc., have been proposed for
3D surface matching. These representations and matching algorithms
are directly dependent on surface meshes, and therefore, are notrobust
and do not perform well for inter-subject surface registration under
such circumstances as noises, resolution changes, and variances.

Recently, converting the problem of surface analysis to canonical
domains has gained increasing attention [6, 28]. A family of geomet-
ric maps has recently been adopted to create a shape image that does
not suffer from aforementioned problems such as noise, etc. This sim-
plifies the shape-analysis problem to a 2D image-analysis problem.
When constructing shape images, geometric mapping provides a vi-
able solution to map a 3D surface to a 2D domain and encode the
shape information of the surface in the 2D image. According to the
conformal geometry theory, each 3D shape can be mapped to a 2D do-
main through a global optimization and the resulting map is a diffeo-
morphism [23, 8]. Consequently, the 3D shape analysis problem can
be simplified to a 2D image analysis problem of the conformal geo-
metric maps. These maps are stable, insensitive to resolution changes
and robust to occlusion and noises. Therefore, accurate and efficient
3D shape analysis may be achieved through 2D image analysis. Along
this direction, Wang et al. [26] presented a global correlation-based
method for matching least-squares conformal maps, which works for
the recognition purpose, but is not effective for exact matching and
registration of different surfaces. In general, there is a lack of analysis
tools for processing of this type of special shape images, especially
based on local features.
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In this paper, we present a novel and efficient surface matching
and visualization framework based on the geodesic distance-weighted
shape vector image diffusion. Firstly, our framework conformally
maps a to-be-analyzed surface to a canonical 2D domain. The sur-
face curvatures and conformal factors are then interpolated and en-
coded into the rectangular 2D domain, which we callshape vector
image in this paper. As the surface curvatures and conformal fac-
tors can uniquely define the surface, the vector image composed by
curvature and conformal factors can serve as the shape signature.In
the shape vector image, the distances between sampling pixels are the
actual geodesic distances on the manifold. Since the mapping is in-
dependent of the mesh resolution, the resulting shape vector image is
robust to different samplings of the surface. In order to extract the
most robust and salient features to abstract the shape vector image, we
propose to create a multiscale vector-valued diffusion space through
our novel geodesic distance-weighted shape vector image diffusion.
As a result, analysis of the shape vector image in its diffusion space
is similar to the direct diffusion analysis of the 3D model. A valuable
point here is that our computation is executed in a regular 2D domain,
which is much simpler than in the 3D domain.

In the diffusion space, we can then extract distinctive features used
for matching and analysis. A rich set of scale-aware features can be ex-
tracted from the diffusion space representation. Similar to the feature
extraction technique in [10], our approach detects the extrema across
the scales as keypoints. We then calculate the orientation histograms
around the keypoints as feature descriptors, which provide distinctive
bases for representing the 3D geometry of the original shape. These
scale-aware geometric features can directly be used for robust match-
ing and registration against the noises and distortions. Therefore, sta-
tistical analysis and visualization of surface properties across subjects
become readily available. This is important for many real-world ap-
plications. For example, it is very useful for processing inter-subject
brain surfaces from medical scans of different subjects since these
surfaces exhibit the inherited physiological variances among subjects.
We have conducted extensive experiments on scanned real-world sur-
face models and real 3D human neocortical surfaces, through which
we demonstrate the excellent performance of our approach in surface
matching and registration, statistical analysis, and integrated visualiza-
tion of the multimodality volumetric data over the shape vector image.

Our contributions in this paper can be summarized as follows:

• We present a novel geodesic distance-weighted shape vector im-
age diffusion method. It allows the construction of the multiscale
diffusion space and scale-space processing of the shape vector
image composed of the intrinsic geometric characteristics, e.g.,
mean curvatures and conformal factors.



• By detecting the cross-scale extrema in the diffusion space, we
can create a set of distinctive scale-aware geometric features.
These robust features are well suitable for surface matching and
registration.

• We apply the framework to the matching of scanned face data
and multimodality brain surface data, which demonstrates the ex-
cellent performance of the proposed geodesic distance-weighted
shape vector image diffusion method.

• With thin-plate spline deformation of matched features among
different subjects, we develop a framework for comparative
analysis and visualization of cross-subject multimodality neu-
roimaging data. It is a powerful tool for analyzing surfaces with
multidimensional textures.

1.1 Prior work

Geometric maps have been widely applied in the fields of computer
graphics and computer vision. Zhang and Hebert used harmonic maps
to construct scalar shape images to match the surfaces [29]. In [27],
harmonic maps were used to track dynamic 3D surface. However, cal-
culating harmonic maps needs to identify the surface boundary and
create the boundary mapping from 3D surfaces to the 2D domain,
which becomes unreliable when there are noises and occlusions in the
3D original data. Since the interior feature points are often more robust
in the 3D original data, conformal maps, which do not need boundary
information, can be a natural choice to overcome the difficulty. Us-
ing several feature constraints instead of the boundary condition, con-
formal maps have many appealing properties [26]. For example, if
the parameterization is conformal, the surface can be uniquely deter-
mined by the mean curvatures with area stretching factors defined on
the parametric domain. In [7], genus zero surface conformal mapping
was discussed and it was adopted for the brain surface mapping [31].
The conformal parameterization can be uniquely determined by two
corresponding points. Conformal parameterization depends on the
geometry itself, not the triangulation of the surfaces. Hence, confor-
mal mapping is a viable solution for 3D shape image construction.
This motivated us to encode a shape vector image using conformal
mapping for surface representation.

After mapping the 3D surface to the 2D image plane, extracting
features from the shape image becomes one of the most important
tasks. Generally speaking, the analysis of 2D image is a better under-
stood problem [10, 2, 13]. However, the analysis of the shape image
that integrates geometric and appearance information has its own spe-
cial challenges mainly due to the non-uniform sampling and different
pixel properties (i.e., geometric characteristics instead of grey-scale
intensities). Hence, conventional image analysis techniques may not
work well. For example, line segments [5], groupings of edges [9, 15],
and regions [3] have all been proposed as features for image match-
ing. Nevertheless, these feature extraction techniques are not reliable
for shape images due to the aforementioned special characteristics of
shape images and they only work well under certain circumstances.
Recently, there has been a great deal of research work on develop-
ing more reliable features for conventional images. One of them is to
take advantage of corner detectors. Zhang et al. [30] used the Har-
ris corner detector to identify feature locations. Harris corner detector
was also used by Schmid and Mohr [22] to identify interest points
for the object recognition problem. Other approaches have been pro-
posed for appearance-based matching, including eigenspace analysis
[14], color histograms [24], and receptive field histograms [21]. How-
ever, it is difficult to extend them to match variant inter-subject images
because of their more global features. Ohba and Ikeuchi [17] success-
fully applied the eigenspace approach to cluttered images by using
many small local eigen-windows, but this is very time consuming and
not practical. Most recently, SIFT, scale-invariant features, has been
proposed [10] for 2D regular images and proven to be the most ro-
bust among many other local invariant feature descriptors with respect
to different geometrical changes [12, 1]. SIFT is based on the scale
space theory. Scale-space processing usually convolves an image with

Gaussian filters, generating a sequence of images, and then the dif-
ference of successive Gaussian-blurred images are calculated to create
the Difference of Gaussians (DoG) for further analysis. Since scale-
space theory was mainly developed for gray-scale images, the usage of
the scale-space processing on the special shape images or shape vector
images are under-explored and its performance remains unknown.

2 CONFORMAL SHAPE VECTOR IMAGE CONSTRUCTION

A good shape image should be able to fully represent the geometric
characteristics of a given surface, and thus serves as a domain for in-
dexing other heterogenous attributes. Thus, a 3D surface can be con-
verted to a multidimensional vector image for effective processing. We
employ conformal mapping to accomplish the task. In the theorem of
differential geometry, a diffeomorphismf : M →N is conformal if and
only if, for any surface patchσm on M, the first fundamental forms of
σm andσn = f ◦σm are proportional. Mathematically, this means that
f ◦ds2m = λds2n, whereλ is called the conformal factor,ds2m andds2n
are the first fundamental form onM andN. If M andN are surfaces,
a diffeomorphismf : M → N is said to be conformal if , whenever
f takes two intersecting curvesγm and γ̃m on M to curvesγn and γ̃n
on N, the angle of intersection ofγm and γ̃m is equal to the angle of
intersection ofγn andγ̃n. In short, f is conformal if it preserves angles.

In order to match 3D shapes accurately and efficiently, we develop
a 2D representation, shape vector image, using conformal mapping.
Given a surface patchM, its conformal imageIc can be created using
conformal mapping. There is one-to-one correspondence betweenthe
vertices inM and the vertices inIc. Based on the shape attributes
computed at each vertex ofM, attribute values can be interpolated
and computed for each pixel of the conformal shape vector image. In
practice, we compute the conformal parameterization by a nonlinear
optimization method carried out in the tangential space of a sphere as
proposed in [7].

SupposeK denotes the simplical complex and there is a piecewise
linear embedding~l : |K| → R3. Then a triangular mesh can be rep-
resented as(K,~l). For the purpose of implementation, surfaces are
usually approximated by triangular meshes. We usep,q to denote
the vertices and{p,q} to denote the edge spanned betweenp andq.
The surface and its parametric domain are modeled as piecewise linear
functions~f and~g in accordance with(K,~l), respectively. The mean
curvature at vertexq is estimated as in [11] by

H(q) =
1

4A
‖ ∑

p∈N1(q)

(cotαp,q +cotβp,q)(~f (q)−~f (p))‖2, (1)

whereαp,q andβp,q are the two opposite angles of edgep,q in the
two triangles sharing this edge, andN1(q) is the set of 1-ring neighbor
vertices of vertexq. A is the area of the associated surface patch (so-
called finite volume in Mechanics), which is given by

A(q) =
1
8 ∑

p∈N1(q)

(cotαp,q +cotβp,q)‖~f (q)−~f (p)‖2, (2)

under the condition that the triangles in the 1-ring neighbors are non-
obtuse. In case of obtuse triangles, refer to [11] for solutions. Follow-
ing this path, we define the discrete conformal factor operator as

λ (q) =
Ag(q)

Af (q)
, (3)

where theAf (q) andAg(q) are the averaging areas for each homotopic

vertexq on surface~f and~g, respectively.
As conformal surface representationS(u,v) is parameterized by

conformal parameters(u,v) on a domainD, the conformal factor func-
tion, λ (u,v), and mean curvature function,H(u,v), defined onD sat-
isfy the Gauss and Codazzi equation. Ifλ (u,v) andH(u,v) are given
together with the boundary conditions,S(u,v) can be uniquely recon-
structed. Since the mean curvature and the conformal factor are two



(a) (b) (c) (d)

Fig. 1. Shape Vector Image. (a) shows the Igea (5002 vertices) surface and mesh; (b) and (c) show the mean curvature channel and conformal
factor channel of the shape vector image representation of the Igea model; (d) is the composite shape vector image including both channels.

important attributes, we assign these two attributes to~Ic(u,v) to con-
struct a vector imageI , where the pixel attributes are represented by a
vector[H,λ ]⊤. Other features such as normal and texture can be con-
sidered if necessary. We use barycentric interpolation for sampling
~Ic(u,v) to I . Fig. 1 shows the Igea surface model with 5002 vertices
(Fig. 1(a)) and its corresponding mean curvature channel (Fig. 1(b))
and conformal factor channel (Fig. 1(c)). The composite shape vector
image is shown in Fig. 1(d).

3 GEODESIC DISTANCE-WEIGHTED DIFFUSION

Since a surface can be represented as a unique shape vector image
composed of conformal factors and curvatures, many algorithms suit-
able for image computing may be used for feature extraction from this
type of images. For the purpose of matching and visualization of cross-
subject data, the main task is to find the stable keypoints or regions and
their local image features for alignment. Since the shape vector image
representation that we propose consists of the mean curvature and area
distortion, it provides important signature of the local geometry, which
is transformation invariant and suitable for shape matching. This sec-
tion describes a novel diffusion-based algorithm to extract distinctive
features from the shape vector images. Through the geodesic distance-
weighted shape vector image diffusion, we can identify the robust key-
points and their scales from the computed diffusion extrema, which are
suitable for the matching purpose.

3.1 Shape vector image diffusion and diffusion space

Our shape vector image is a multichannel image. The simplest way to
perform the diffusion filtering of the shape vector image is to deal with
each channel separately and independently. However, this method
leads to an undesirable effect that edges may be formed at different
locations for each channel since the curvature and conformal factor
channels must take effect simultaneously in order to accurately deter-
mine the local geometry. In our framework, we employs a diffusivity
g which combines information from all channels. For a vector image
I = (I1, I2, ..., Im)⊤, the diffusion is performed by

∂ Ik
∂ t

= div
(

g∇Ik
)

(k = 1, ...,m), (4)

wherediv indicates the divergence operator,∇ is the gradient opera-
tor, andg(x) = 1

√

1+( x
l )

2
(l is a constant). For the case in whichg is a

constant for a specific channelIk, it reduces to the isotropic heat diffu-
sion equation,∂ Ik

∂ t = c△Ik, where△ is the Laplacian operators and the
solution is Gaussian smoothing. However, Gaussian smoothing has a
typical disadvantage, especially for the shape vector image. Gaussian
smoothing does not only reduce noise, but also blurs important geo-
metric features such as sharp edges, hence making them harder to be
identified.

To solve the problem, we propose to perform geodesic distance-
weighted inhomogeneous linear diffusion of the shape vector image,

∂ Ik
∂ t

= div

(

g
(

‖∇ fIk‖
)

∇Ik

)

, (5)

whereIk is the actual diffused image,fIk is the original image andg
is the diffusivity function. For a specific channelP = Ik, the numeri-
cal solution for Equation 5 can be computed, similar to the 4-nearest-
neighbors discretization [19], as follows,

Pt+1
i, j = Pt

i, j +ρ[cN ·▽NP+cS·▽SP+cE ·▽EP+cW ·▽WP], (6)

where 0≤ ρ ≤ 1/4, N, S, E, W are the subscripts for the North, South,
East, and West,t is the scale,i and j are the indices of the image pixel.
Since the shape vector image encodes geodesic distance information,
the symbol▽ is defined as follows with the consideration of geodesic
distances:

▽NPi, j =
Pi−1, j −Pi, j

GeoD[N]
, ▽SPi, j =

Pi+1, j −Pi, j

GeoD[S]
,

▽EPi, j =
Pi, j+1−Pi, j

GeoD[E]
, ▽WPi, j =

Pi, j−1−Pi, j

GeoD[W]
, (7)

where

GeoD[N] = GeoD([i−1, j], [i, j]), GeoD[S] = GeoD([i +1, j], [i, j]),

GeoD[E] = GeoD([i, j +1], [i, j]), GeoD[W] = GeoD([i, j−1], [i, j]),

andGeoD([pixelA], [pixelB]) is the normalized geodesic distance be-
tween thepixelAandpixelBon the manifold, which is normalized by
dividing the averagedGeoDover the image. And thec is defined as:

cNi, j = g(|▽N fIi, j |), cSi, j = g(|▽S fIi, j |),

cEi, j = g(|▽E fIi, j |), cWi, j = g(|▽W fIi, j |),

where▽N fIi, j , ▽SfIi, j , ▽E fIi, j and▽W fIi, j are computed by Equa-
tion 7. Therefore, the final numerical solution is

Pt+1
i, j = Pt

i, j +ρ[
cN ·▽NP+cS·▽SP

GeoDNS
+

cE ·▽EP+cW ·▽WP
GeoDEW

], (8)

where

GeoDNS=
GeoD[N]+GeoD[S]

2
,

GeoDEW =
GeoD[E]+GeoD[W]

2
.

Using this numerical solution, we can construct a discrete geometric
diffusion space which encodes the surface geometric information.



Particularly for our shape vector image scheme, our approach sums
up the diffusivity of each channel to a common diffusivity. This may
be regarded as collecting the contrast information of all channels.
Thus, for a shape vector imageI = (I1, I2, ..., Im)⊤, the vector diffu-
sion is performed by

∂ Ik
∂ t

= div

(

g
( m

∑
n=1

‖∇ fIn‖
)

∇Ik

)

(k = 1, ...,m). (9)

By solving Equations 9, we obtain the diffusion space,

(

It0 It1 . . . Itn
)

=











I1t0 I1t1 . . . I1tn

I2t0 I2t1 . . . I2tn

...
...

. . .
Imt0 Imt1 . . . Imtn











, (10)

which is a sequence of shape vector images witht as the scale in a
matrix format, i.e., each row of the matrix is the sequence images of a
specific channel witht as the scale, and each column of the matrix is
the vector image at a specific scalet. Fig. 2 shows the diffused shape
vector images of the Igea model with increasing diffusion scalet.

Fig. 2. The diffused shape vector images, consisting both curvature
and conformal factor channels, of the Igea model at different diffusion
scales, t, computed by the geodesic distance-weighted diffusion.

3.2 Properties of diffusion space
Suppose a mappingf : M → I and the diffusionD : I →S, whereM is a
3D surface,I is the shape vector image andS is the diffusion space. In
this section, we firstly show thatD satisfies the criteria of the multiple
scale descriptions. Secondly, we show thatf ◦D, together, creates
the diffusion space appropriate for scale-space processing of the 3D
surface geometry.

The diffusion space construction is to create a multiscale “semanti-
cally meaningful” descriptions of images. As we know, a scale-space
representation must have the property that no spurious detail will be
generated passing from finer to coarser scales. This is so-called causal-
ity, which means any feature at a coarse level of resolution is required
to possess a “cause” at a finer level of resolution although the reverse
need not be true. The causality criterion can be established by showing
the used diffusion equation satisfies the maximum principle, that is to
say, all the maxima of the solution of the equation in space and time
belong to the initial condition (i.e., the original image). A proof of the
maximum principle for the diffusion equation can be found in [19, 16].
Therefore, for the diffusionD, the satisfaction of the maximum prin-
ciple leads to the satisfaction of the causality for the diffusion space.
Consequently,D satisfies the criteria of the multiple scale descriptions.

For our shape vector image, we use the geodesic distance-weighted
method, in which the distance can be retrieved by the mapping,f ,
for the computation of the diffusion to construct a geometric diffusion
space. Therefore, constructing and analyzing the geometric diffusion
space is similar to analyzing a direct diffusion space of the 3D sur-
face. As a result,f ◦D is able to construct a multiple scale space and
multiscale descriptions for the 3D surface.

The geodesic distance-weighted anisotropic diffusion has the ad-
vantages of preserving and identifying true features as well as pre-
venting dislocated false features in the diffusion space when tak-
ing the actual geodesic distance as a-priori information. The ad-
jacent figure shows an illustrative one-dimensional example, where

the curve is the actual shape object and the line segment is the
1D shape “image”. The sampling vertices (fromv1 to v6) on
the curve are mapped to the pixels (fromp1 to p6) on the 1D
shape “image” shown at the bottom. As we can see, the sam-
pling vertices of the curve,v2 and v3, have relatively high cur-
vature values while other sampling vertices have low curvatures.
Without considering the geodesic
distance among the pixels,p4’s cur-
vature value will be increased while
moving from finer to coarser scales.
For example, at the immediately
next level, p3 will boost the diffu-
sion of p4 since its distance top4 is
considered the same as the distance
betweenp4 and p5 (a unit length).
The situation will get worse when
diffusing further sincep2 will also
dramatically affect the diffusion of
p4. However,v2 is far away from
the diffusion vertex,v4. In fact, p2
is not suppose to have significant influence onp4. On the other side,
it is also difficult to preserve the high curvature values forp2 andp3.
Therefore, the procedure will dislocate keypoints when moving from
finer to coarser scales. So the keypoints detected at a coarse scale do
not give the correct location in the original image, which will result
in instability and incorrect matching. The situation is much improved
when considering geodesic distances in the diffusion.

3.3 Keypoint-based shape descriptors
The maximum principle states that all the maxima of the solution of
the equation in space and time belong to the initial condition (i.e., the
original image). Therefore, we propose to detect the extrema across
the diffusion space as our keypoints since they are most robust points
at the specific scales which are able to represent collectly the original
image. We sample the diffusion space by computing a sequence of
diffused shape vector images at discrete scales,t. For each diffusion
scale, we use Equation 9 to calculate its diffused images which can be
expressed in a matrix form like Equation 10.

In order to extract the cross-scale extrema, we compute the Differ-
ence of Diffusion (DoD) using the following vector-based equation,

DoDti = Iti+1 − Iti (i = 0, ...,n−1). (11)

Consequently, we can obtain,









DoD1
DoD2

...
DoDm









=











DoD1
t0 DoD1

t1 . . . DoD1
tn−1

DoD2
t0 DoD2

t1 . . . DoD2
tn−1

...
...

. . .
...

DoDm
t0 DoDm

t1 . . . DoDm
tn−1











. (12)

Fig. 3(c-e), (g-i), and (k-m) show the computed intermediate curvature
channel images of the DoDs across scales.

Once DoD vector images have been obtained, keypoints are identi-
fied as local minima/maxima of the DoD images across scalest. For
each channelDoDi , it is done by comparing each pixel in theDoD

t j

i
images to its eight neighbors at the same scalet j and nine corre-
sponding neighboring pixels in each of the neighboring scalest j−1
andt j+1. If the pixel value is the maximum or minimum among all
compared pixels, it is selected as a keypoint. This algorithm is carried
out through all the channels of the vector images:DoDi , (i = 1, ...,m).
The maxima and minima found in all the channels will be considered
as the keypoints. Fig. 3(a) and (b) show all the detected keypoints on
the Igea model. Fig. 3(c-e), (g-i) and (k-m) show the detected extrema
(shown with points) on the corresponding DoDs at different scales.
Fig. 3(f), (j) and (n) show the scale sizes, at which the extrema in (e),
(i) and (m), respectively, are detected, with the corresponding sizes of
circles. One valuable point is that the detected keypoints have the as-
sociated scales computed by the algorithm, which are very important
to construct scale-aware feature descriptors.



Fig. 3. Keypoint detection in the diffusion space. (a) The Igea model with all the detected keypoints at different scales indicated by the points of
different colors and sizes. (b) All the detected keypoints shown on the curvature channel of the shape vector image. (c-e), (g-i) and (k-m) show
the intermediate curvature channel images of the DoDs across scales t and the detected extrema (shown by points) on the corresponding DoDs
at different scales. (f), (j) and (n) show again the extrema detected at (e), (i) and (m), respectively, with the different sizes of circles indicating the
sizes of scales at which these extrema are detected.

After localizing the keypoints, feature descriptors are built to char-
acterize these points at the scales where they are identified. These
descriptors should contain the necessary distinct information for their
corresponding keypoints. In our framework, the descriptor is calcu-
lated channel by channel.

For each channel, the local gradient-orientation histograms of the
same-scale neighboring pixels of a keypoint are used as the key en-
tries of the descriptor. In this work, we construct a keypoint descriptor
with 4×4 subdescriptors computed from a 16×16 sample pixel array,
which is shown on the left side of Fig. 4. That is to say, a feature de-
scriptor is computed as a set of orientation histograms on 4×4 pixel
neighborhoods or subregions. The coordinates of the subdescriptors
and the gradient orientations are rotated relative to the keypoint ori-
entation (defined by the gradient vector at the keypoint location) so
that it can achieve orientation invariance. One of the subdescriptors
is shown on the right panel of Fig. 4, which gives eight directions of
the orientation histogram with the length of each arrow corresponding
to the magnitude of that histogram entry. Since the descriptor is com-
puted with a 4×4 array of histograms with 8 orientation bins in each,
this leads to a feature vector with 4×4×8 = 128 elements.

In the case of anmchannel vector image, a keypoint hasmdescrip-
tors which are combined as a vector,des = [des1,des2, . . . ,desm]⊤,
wherem is the dimension of the vector image. Hence, the descriptor
des of a keypoint in the shape vector image is am×128 dimension-
based vector. This descriptor will be used for matching, and all the
descriptors computed for all the keypoints form a feature descriptor
database, which abstracts the original surface with a small number of
robust keypoints and their local descriptors. The robust keypoints and
constructed local shape descriptors together are well suitable for the
matching purpose as demonstrated by our experiments in Section 5.

Fig. 4. A keypoint descriptor is generated by computing the gradient
magnitude and orientation at every pixel around the keypoint (16× 16
sample pixels). These samples are then accumulated into orientation
histograms summarizing the contents over 4×4 subregions, indicated
with thicker framed boxes. The right panel shows one subregion with
the length of each arrow corresponding to the sum of the gradient mag-
nitudes along that direction within the region.

4 SHAPE MATCHING AND REGISTRATION

In our framework, shape matching is to match the keypoints and their
associated scale-aware local shape descriptors among different ob-
jects. Since the keypoints detected from the diffusion space are very
reliable feature points presented in the original surface, matching these
keypoints with thin-plate spline deformation will lead to accurate reg-
istration of the entire surfaces as well.

Descriptor matching is performed for a keypoint by comparing the
distance from its constructed local descriptor to the descriptor of its
closest matched point (DISCN) with the distance from the keypoint de-
scriptor to the descriptor of its second-closest matched point (DISSCN)
found on the to-be-matched object. The distance of two descrip-



tors,des1 anddes2 which arem dimension vectors, is calculated by,
DIS = ∑m

i=1 ‖ des1i −des2i ‖ . Once theDISCN and theDISSCN are
found, theDISCN and theDISSCN are compared to decide whether
they are matched or not. The judge function for the comparison is

threshold×DISCN <= DISSCN. (13)

If this inequality holds, the points are matched; Otherwise, they are
not matched. This inequality ensures that only distinctive keypoints
having prominent similarity are matched. Since the 3D data can be
coarsely aligned easily through affine transformations during the pre-
processing, we can use the uniform subdivision grid to speed up the
matching. The Euclidean distance bound (ED) of two potentially
matched keypoints is calculated and can be used in efficiently finding
the closest and the second-closest matched points within grids.

After finding all the matched points, registration can be achieved
using thin-plate splines deformation with the matched points as point
constraints [32]. In our shape vector image registration, the keypoints
(xi ,yi) are taken as landmarks andV = (x

′

i ,y
′

i)|i is a set of the matched
keypoints on the other shape vector image. After computing the thin-
plate splines with the above point constraints, the deformation function
f (x,y) = [ fx(x,y), fy(x,y)] can be obtained to map each point(xi ,yi)
to its homolog(x′i ,y

′
i). The other unconstrained areas will follow the

deformation. At the end, we can register the two shape vector images
(i.e., the two 3D surfaces).

5 EXPERIMENTS AND APPLICATIONS

To evaluate the proposed approach, we have conducted extensive ex-
periments. We have applied our algorithm on real scanned face mod-
els and human neocortex surfaces extracted from high-resolution MR
scans. The surface matching is demonstrated first, followed by the
application of the framework in the multimodality image analysis and
visualization. Our system is implemented with C++ for the compu-
tationally intensive algorithms and VTK/OpenGL for rendering and
visualization. The experiments are conducted on a Dell Precision
Workstation T7400, which has a Xeon CPU with Quad Cores and 4GB
RAM.

5.1 Repeatability under noise

We have tested the repeatability of keypoints detection with noises.
The Igea surface model is added up to 10% Gaussian noise directly
on the mesh. The perturbed surfaces with different noise levels are
converted to the shape vector images and then the keypoints are de-
tected with our geodesic distance-weighted diffusion method. We
compare the repeatability of the detected keypoints with the ones de-
tected without additive noise. The repeatability result is shown in
Fig. 5. Compared to the repeatability results by regular anisotropic
diffusion method and isotropic diffusion method, our method is much
more robust under noise. The main reason is that those two meth-
ods have instabilities when moving from finer to coarser scales as de-
scribed in Section 3.2. They are easier to be affected by noise during
the diffusion procedure. Therefore, more keypoints originally detected
without noises cannot be repeatedly detected across scales under noisy
circumstances.

5.2 Surface matching

For scanned face models, we create the shape vector images using
conformal mapping. Based on this planar parameter domain, we con-
struct the shape vector image by assigning theH andλ values to each
corresponding image pixel. Hence, the shape vector image is a two
dimensional vector image[I1, I2]⊤, whereI1 = H and I2 = λ . The
geodesic distance is computed and encoded as well. After the shape
image is generated, we use the vector diffusion to create theDoD ma-
trix, of which each row is a sequence of images in different scales in
each channel.

(

DoD1
DoD2

)

=

(

DoD1
t0 DoD1

t1 . . . DoD1
tn−1

DoD2
t0 DoD2

t1 . . . DoD2
tn−1

)

(14)

Fig. 5. Repeatability of keypoint features when the Igea model is under
different Gaussian noise levels. The left panel shows the Igea mod-
els (with the computed curvature colormaps) with 4% and 10% additive
Gaussian noise and their corresponding shape vector images. The de-
tected keypoints are shown in the shape vector images. The right panel
shows the repeatability of the feature points extracted by our geodesic
distance-weighted shape vector image diffusion method. The compar-
ison to the conventional anisotropic and isotropic diffusion methods is
demonstrated.

By finding the maxima and minima in each row of the matrix as the
keypoints, the descriptor is computed for each point. Each descrip-
tor is a 2*128=256 dimension vector and all these descriptors form
the descriptor database. The matching algorithm is performed to find
the matched points which satisfies the inequality 13. Fig. 6 shows
the matching result of two faces with different expressions from the
same human subject. The average matching accuracy of 10 such ex-
periments on 10 different subjects reaches 95% in terms of correct
keypoint correspondence.

Fig. 6. Matching of face models with different expressions from the
same subject. The left panel shows all the matched keypoints between
the two surfaces. The right panel shows the scales of the matched key-
points.

For the neocortex surface, a genus zero surface, conformal mapping
is performed to transfer it to a sphere. The sphere can be mapped to a
2D domain through a reparameterization as follows,

σ(θ ,ϕ) = (cosθ cosϕ ,cosθ sinϕ ,sinϕ),

whereθ andϕ are the rows and columns in the 2D domain image.
Then, we follow the same procedure as we use for face models to find
the matching keypoints. Fig. 7(a) shows the matching result of two
different subjects. In order to allow readers clearly see the matched
points between the two shape images, only 10% of the matched points
are shown in the figure. After matching, we use the matched points
as landmarks to register the shape vector images using the thin-plate
spline technique. We have conducted the evaluation on intersubject
matching of 20 brain surfaces. The results are evaluated quantitatively
in terms of major landmark (e.g., the central sulcus, the sylvian fissure,
the posterior sulcus) overlaps. Fig. 7(b) shows one region that we
used to test the registration accuracy, where the green color indicates
completely correct overlap while the red color indicates mismatched
areas among all the subjects. The average mismatch distance error
for total 20 different subjects is only 3.98mm, which outperforms the
latest reported results on inter-subject brain surface registration [4].



(a) (b)

Fig. 7. Matching of two different subjects’ brain surfaces. (a) 10% of
matched points are shown using the linked lines. (b) The overlap test
on one registered brain region.

To further show the efficacy of our approach, we have compared
our approach with the closely-related methods, anisotropic diffusion
method and SIFT. Since SIFT can only work on scalar image, we
only input the curvature channel to the SIFT processing. The reg-
ular anisotropic diffusion method is applied on both the curvature
and conformal factor channels. We randomly select a pair of brain
surfaces among 20 subjects. Then, our geodesic distance-weighted
shape vector image diffusion method, the regular SIFT method, and
the anisotropic diffusion method are performed for matching and reg-
istration. The comparison results are shown in Fig. 8. The main ad-
vantage of our method is to introduce geodesic distance into diffusion
space. Therefore, it increases the stability of extrema detection as de-
scribed in Section 3.2 and the robustness of shape descriptors. The
experimental results confirm that the keypoints and constructed local
shape descriptors together are very robust features well suitable forthe
matching purpose. The computational time of the geodesic distance-
weighted shape vector image diffusion-based feature extraction and
matching is recorded for the tested models in Table 1. Note that, the
geodesic distance information is pre-computed offline and is not in-
cluded in the recorded time.

Fig. 8. The experimental results on matching arbitrary two different brain
surfaces randomly selected from 20 subjects. The comparison shows
that our method constantly outperforms the regular anisotropic diffusion
method and the SIFT method.

Generate SVI Diffusion
Model # vertices SVI (s) SVI Size & Matching (s)
Igea 5,002 12 256×256 43
Brain 15,102 40 512×512 172
Face 20,376 35 256×256 45

Table 1. Runtime of the shape vector image (SVI) construction, feature
extraction and matching.

5.3 Multimodality Analysis
The developed framework is ideal for cross-subject analysis and visu-
alization of multimodal brain surface properties. In order to facilitate

effective analysis of medical imaging data, especially related to the
human neocortical surface, a combination of noninvasive anatomical
and functional imaging, such as Magnetic Resonance Imaging (MRI),
Diffusion Tensor Imaging (DTI) and Positron Emission Tomography
(PET), is frequently used. These modalities provide important, com-
plemental information over the cortex regions. During the preprocess-
ing, a brain surface can be extracted from the MRI volume data. The
registration of PET and DTI volumes to the same subject’s MRI vol-
ume can be done with the mutual information registration algorithm
provided in Insight Segmentation and Registration Toolkits (ITK). The
registration is easy since the data is for the same subject. In order to in-
tegrate PET and MRI data, a normal fusion approach is applied in the
native space of the registered MRI and PET volumes of each subject.

In this analysis, we choose one normal brain as the template in our
framework. All other normal or abnormal individuals are registeredto
the template shape vector image (SVI) using the methods described
in Section 3 and 4. Fig. 9 shows the idea and flow of our frame-
work. The last two columns in the figure show the maps of the brain
surface PET texture and DTI texture, computed from PET and DTI
volumes, which are also registered across subjects because their align-
ments are already registered to their corresponding MRI volumes dur-
ing the aforementioned preprocessing. Based on the registered SVIs,
PET and DTI maps, statistical analysis of PET and DTI across subjects
can be achieved.

Fig. 9. The multimodality image analysis pipeline. The referenced brain
is used as the template SVI (TSVI), and then all other brain SVIs are
registered based on this TSVI. Based on the registered shape vector
images, multimodality data such as the PET and DTI, can be integrated
over the SVI images to perform the multimodality analysis.

By comparing a patient’s PET texture with a group of normal sub-
jects based upon matched SVIs, we can identify abnormal PET re-
gions which significantly vary from the normal distribution. Fig. 10(a)
shows two detected abnormal regions on the PET shape image. Be-
cause we know the mapping and parameterization, we can easily find
out the abnormal regions in the actual brain surface. Fig. 10(b) shows
the corresponding abnormal regions on the brain PET data. The same
scheme can be applied to the population-based DTI analysis. Dur-
ing the preprocessing, the cortico-cortical fiber tracts can be extracted
using the brute-force fiber tracking method as shown in Fig. 10(c).
Then, these fiber connectivity can be converted to the fiber connectiv-
ity strength ratio and plotted in the shape vector image domain to form
a DTI texture image. The analysis framework can be used to detect the
abnormal regions based on statistical comparison of DTI information
between a patient and a group of normal subjects. Fig. 10(d) shows a
DTI fiber connectivity strength image of an abnormal subject and the
detected abnormal region as highlighted with a red contour.

6 CONCLUSION

In this paper, we have presented a novel and accurate surface matching
method based on the geodesic distance-weighted diffusion of shape
vector images. Through the detected stable keypoints and their local
shape descriptors in the diffusion space, our method converts a 3D sur-
face matching problem to a 2D shape vector image matching problem.
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Fig. 10. Population-based PET and DTI image analysis. (a) The regions
within the black contours are the detected abnormal regions in the PET
texture image; (b) The regions in black are the corresponding abnormal-
ities on the individual’s brain cortical surface. (c) shows a 3D rendering
of a normal DTI fiber connectivity. (d) shows the abnormal DTI map
where the abnormality is contoured in red.

The robust features facilitate the reliable matching and registration as
demonstrated by our experiments. The 2D representation allows easier
statistical analysis of other modality features directly computed in the
matched 2D domain. The applications to medical image analysis and
visualization are demonstrated through multimodality data integration
in the 2D domain to support more accurate localization of brain disor-
der regions using population study.

There are some remaining research issues in our current framework.
In some situation, when a patch of a surface model containing rich,
complex features is squeezed into a very small patch of the domain
during the conformal mapping, there may not have enough samples
to capture the geometric characteristics with the uniform sampling
through the entire domain. This issue may be addressed through con-
trolling the distortion during the mapping or adaptive sampling of the
domain according to the distortions and feature richness. Our future
work will be focused on this development. Another direction for fu-
ture work is to apply our framework to very high-genus shapes. In this
case, a robust, consistent topological cut algorithm needs to be used
to cut and map the high-genus shape to a planar domain. Then, the
boundaries of the cuts need to be glued together. Interesting research
issues may arise from these boundaries and singular points where dif-
fusion behaviors need to be specially handled. Our future research
work will look into these issues.
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[5] E. Grimson and T. Lozano-Ṕerez. Localizing overlapping parts by search-
ing the interpretation tree.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(4):469–482, 1987.

[6] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images.ACM Transactions
on Graphics, 21(3):355–361, 2002.

[7] X. Gu, Y. Wang, T. Chan, P. Thompson, and S. T. Yau. Genus zero surface
conformal mapping and its application to brain surface mappings. IEEE
Transactions on Medical Imaging, 23(8):949–958, 2004.

[8] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares confor-
mal maps for automatic texture atlas generation.ACM Transactions on
Graphics, 21(3):362–371, 2002.

[9] D. G. Lowe. Three-dimensional object recognition from single two-
dimensional images.Artificial Intelligence, 31(3):355–395, 1987.

[10] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[11] M. Meyer, M. Desbrun, P. Schroder, and A. Barr. Discretedifferential
geometry operators for triangulated 2-manifolds.Proceedings of Interna-
tional Conference on Visualization and Mathematics, pages 35–57, 2002.

[12] K. Mikolajczyk and C. Schmid. A performance evaluation oflocal de-
scriptors. InProceedings of IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 257–263, 2002.

[13] G. Mori, S. Belongie, and J.Malik. Efficient shape matching using shape
contexts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(11):1832–1837, 2005.

[14] H. Murase and S. K.Nayar. Visual learning and recognition of 3-D objects
from appearance.International Journal of Computer Vision, 14(1):5–24,
1995.

[15] R. C. Nelson and A. Selinger. Large-scale tests of a keyed, appearance-
based 3-D object recognition system.Vision Research, 38(15):2469–88,
2004.

[16] L. Nirenbarg. A strong maximum principle for parabolic equations.Com-
munications on Pure and Applied Mathematics, 6(2):167–177, 1953.

[17] K. Ohba and K. Ikeuchi. Detectability, uniqueness, andreliability of
eigen windows for stable verification of partially occludedobjects.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(9):1043–
48, 1997.

[18] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distribu-
tions. ACM Transactions on Graphics, 21(4):807–832, 2002.

[19] P. Perona and J. Malik. Scale space and edge detection using anisotropic
diffusion. IEEE Transactions on pattern analysis and machine intelli-
gence, 12(7):628–639, 1990.

[20] S. Ruiz-Correa, L. Shapiro, and M. Meila. A new paradigmfor recogniz-
ing 3-D object shapes from range data. InProceedings of International
Conference on Computer Vision, pages 1126–1133, 2003.

[21] B. Schiele and L. James. Object recognition using multidimensional re-
ceptive field histogram. InProceedings of the 4th European Conference
on Computer Vision, pages 610–619, 1996.

[22] C. Schmid and R. Mohr. Local grayvalue invriants for imagere-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):530–534, 1997.

[23] E. Sharon and D. Mumford. 2D-shape analysis using conformal map-
ping. In Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 350–357, 2004.

[24] M. Swain and D. Ballard. Color indexing.International Journal of Com-
puter Vision, 7(1):11–32, 1991.

[25] B. Vemuri, A. Mitiche, and J. Aggarwal. Curvature-basedrepresentation
of objects from range data.Image and Vision Computing, 4(2):107–114,
1986.

[26] S. Wang, Y. Wang, M. Jin, X. Gu, and D. Samaras. Conformal geom-
etry and its applications on 3D shape matching, recognition and stitch-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(7):1209–1220, 2007.

[27] Y. Wang, M. Gupta, S. Zhang, X. Gu, D. Samaras, and P. Huang. High
resolution tracking of non-rigid 3D motion of densely sampleddata using
harmonic maps. InProceedings of International Conference on Computer
Vision, pages 388–395, 2005.

[28] C.-Y. Yao and T.-Y. Lee. Adaptive geometry image.IEEE Transactions
on Visualization and Computer Graphics, 14(4):948–960, 2008.

[29] D. Zhang and M. Hebert. Harmonic maps and their applications in surface
matching. InProceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 524–530, 1999.

[30] Z. Zhang, R. Deriche, O. Faugeras, and Q. T. Luong. A robust technique
for matching two uncalibrated images through the recovery of the un-
known epipolar geometry.Artificial Intelligence, 78(1-2):87–119, 1995.

[31] G. Zou, J. Hua, X. Gu, and O. Muzik. An approach for intersubject analy-
sis of 3d brain images based on conformal geometry. InProceedings of
International Conference on Image Processing, pages 1193–1196, 2006.

[32] G. Zou, J. Hua, and O. Muzik. Non-rigid surface registration using spher-
ical thin-plate splines. InProceedings of International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages
367–374, 2007.


