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Abstract—This paper presents a novel and efficient surface matching and visualization framework through the geodesic distance-
weighted shape vector image diffusion. Based on conformal geometry, our approach can uniquely map a 3D surface to a canonical
rectangular domain and encode the shape characteristics (e.g., mean curvatures and conformal factors) of the surface in the 2D
domain to construct a geodesic distance-weighted shape vector image, where the distances between sampling pixels are not uniform
but the actual geodesic distances on the manifold. Through the novel geodesic distance-weighted shape vector image diffusion
presented in this paper, we can create a multiscale diffusion space, in which the cross-scale extrema can be detected as the robust
geometric features for the matching and registration of surfaces. Therefore, statistical analysis and visualization of surface properties
across subjects become readily available. The experiments on scanned surface models show that our method is very robust for
feature extraction and surface matching even under noise and resolution change. We have also applied the framework on the real
3D human neocortical surfaces, and demonstrated the excellent performance of our approach in statistical analysis and integrated
visualization of the multimodality volumetric data over the shape vector image.

Index Terms—Surface Matching, Shape Vector Image, Multiscale Diffusion, Visualization.
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1 INTRODUCTION

To date, 3D surface matching and data visualization is still a very chal-In this paper, we present a novel and efficient surface matching
lenging research problem in many visual data processing and analyig visualization framework based on the geodesic distance-weighted
fields. This is partly because surfaces may have highly flexible freghape vector image diffusion. Firstly, our framework conformally
form shape characteristics which are difficult to be captured and ugB@ps a to-be-analyzed surface to a canonical 2D domain. The sur-
for matching and registration purposes, especially under noisy conffice curvatures and conformal factors are then interpolated and en-
tions. One of the fundamental issues in surface matching is the shgpged into the rectangular 2D domain, which we sfibpe vector
representation scheme. In recent years, different shape eepmes imagein this paper. As the surface curvatures and conformal fac-
tions, such as curvature-based representations [25], regionatepin tors can uniquely define the surface, the vector image composed by
resentations [20], shape distributions [18], etc., have been profmse curvature and conformal factors can serve as the shape signature.
3D surface matching. These representations and matching algoritHh&shape vector image, the distances between sampling pixels are the
are directly dependent on surface meshes, and therefore, aobost  actual geodesic distances on the manifold. Since the mapping is in-
and do not perform well for inter-subject surface registration undéependent of the mesh resolution, the resulting shape vector image is
such circumstances as noises, resolution changes, and variances. robust to different samplings of the surface. In order to extract the
Recently, converting the problem of surface analysis to canonid@Pst robust and salient features to abstract the shape vector imeage, w
domains has gained increasing attention [6, 28]. A family of geomditopose to create a multiscale vector-valued diffusion space through
ric maps has recently been adopted to create a shape image that g&d10vel geodesic distance-weighted shape vector image diffusion.
not suffer from aforementioned problems such as noise, etc. This sif¥$ & result, analysis of the shape vector image in its diffusion space
plifies the shape-analysis problem to a 2D image-analysis probleihsimilar to the direct diffusion analysis of the 3D model. A valuable
When constructing shape images, geometric mapping provides am{nt h_ere is thap our compuﬁatlon is executgd in a regular 2D domain,
able solution to map a 3D surface to a 2D domain and encode thBich is much simpler than in the 3D domain.
shape information of the surface in the 2D image. According to the In the diffusion space, we can then extract distinctive features used
conformal geometry theory, each 3D shape can be mapped to a 2D f@gmatching and analysis. Arich set of scale-aware features catbe e
main through a global optimization and the resulting map is a diffe¢-acted from the diffusion space representation. Similar to the feature
morphism [23, 8]. Consequently, the 3D shape analysis problem g¢iraction technique in [10], our approach detects the extrema across
be simplified to a 2D image analysis problem of the conformal gethe scales as keypoints. We then calculate the orientation histograms
metric maps. These maps are stable, insensitive to resolution char@j@sind the keypoints as feature descriptors, which provide distinctive
and robust to occlusion and noises. Therefore, accurate and rfficileases for representing the 3D geometry of the original shape. These
3D shape analysis may be achieved through 2D image analysis. Al@tgle-aware geometric features can directly be used for robust-match
this direction, Wang et al. [26] presented a global correlation-baséw and registration against the noises and distortions. Therefore, sta-
method for matching least-squares conformal maps, which works féstical analysis and visualization of surface properties across subjects
the recognition purpose, but is not effective for exact matching afg@come readily available. This is important for many real-world ap-
registration of different surfaces. In general, there is a lack of asaly plications. For example, it is very useful for processing inter-subject
tools for processing of this type of special shape images, especidligin surfaces from medical scans of different subjects since these
based on local features. surfaces exhibit the inherited physiological variances among subjects.
We have conducted extensive experiments on scanned real-world sur
face models and real 3D human neocortical surfaces, through which
we demonstrate the excellent performance of our approach in surfac
matching and registration, statistical analysis, and integrated visualiza-
tion of the multimodality volumetric data over the shape vector image.
Our contributions in this paper can be summarized as follows:
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age diffusion method. It allows the construction of the multiscale
diffusion space and scale-space processing of the shape vector
image composed of the intrinsic geometric characteristics, e.g.,
mean curvatures and conformal factors.



e By detecting the cross-scale extrema in the diffusion space, W&aussian filters, generating a sequence of images, and then the dif-
can create a set of distinctive scale-aware geometric featurBssence of successive Gaussian-blurred images are calculatedte cr
These robust features are well suitable for surface matching ah@ Difference of Gaussians (DoG) for further analysis. Since scale-
registration. space theory was mainly developed for gray-scale images, the usage o

the scale-space processing on the special shape images or shape vec

e We apply the framework to the matching of scanned face dataages are under-explored and its performance remains unknown.
and multimodality brain surface data, which demonstrates the ex-
cellent performance of the proposed geodesic distance-weighed CONFORMAL SHAPE VECTOR IMAGE CONSTRUCTION

shape vector image diffusion method. A good shape image should be able to fully represent the geometric

) . . . characteristics of a given surface, and thus serves as a domain for in
e With thin-plate spline deformation of matched features amongyying other heterogenous attributes. Thus, a 3D surface can be con-
different subjects, we develop a framework for comparatigsrte 1o a multidimensional vector image for effective processing. We
analysis and visualization of cross-subject multimodality neysysi6y conformal mapping to accomplish the task. In the theorem of
roimaging data. Itis a powerful tool for analyzing surfaces witljitrerential geometry, a diffeomorphisit M — N is conformal if and
multidimensional textures. only if, for any surface patci, on M, the first fundamental forms of
. Om andoy, = f o oy, are proportional. Mathematically, this means that
1.1 Prior work f ods, = Ads?, whereA is called the conformal factods?, andds?
Geometric maps have been widely applied in the fields of computfe the first fundamental form av andN. If M andN are surfaces,
graphics and computer vision. Zhang and Hebert used harmonic mapgiffeomorphismf : M — N is said to be conformal if , whenever
to construct scalar shape images to match the surfaces [29]. In [27}akes two intersecting curveg and jim on M to curvesy, and
harmonic maps were used to track dynamic 3D surface. However, cai-N, the angle of intersection gf, and i is equal to the angle of
culating harmonic maps needs to identify the surface boundary antersection ol andis. In short,f is conformal if it preserves angles.
create the boundary mapping from 3D surfaces to the 2D domain,In order to match 3D shapes accurately and efficiently, we develop
which becomes unreliable when there are noises and occlusions inah2D representation, shape vector image, using conformal mapping.
3D original data. Since the interior feature points are often more rob@siven a surface patchl, its conformal imagé. can be created using
in the 3D original data, conformal maps, which do not need boundaggnformal mapping. There is one-to-one correspondence betiveen
information, can be a natural choice to overcome the difficulty. Usertices inM and the vertices idc. Based on the shape attributes
ing several feature constraints instead of the boundary condition, ceemputed at each vertex &, attribute values can be interpolated
formal maps have many appealing properties [26]. For example,aifid computed for each pixel of the conformal shape vector image. In
the parameterization is conformal, the surface can be uniquely deteractice, we compute the conformal parameterization by a nonlinear
mined by the mean curvatures with area stretching factors definedaptimization method carried out in the tangential space of a sphere as
the parametric domain. In [7], genus zero surface conformal mgpp proposed in [7].
was discussed and it was adopted for the brain surface mapping [31]Suppose&K denotes the simplical complex and there is a piecewise
The conformal parameterization can be uniquely determined by twRear embedding : |[K| — R3. Then a triangular mesh can be rep-
corresponding points. Conformal parameterization depends on theanied assK,H

) A . [). For the purpose of implementation, surfaces are
geometry itself, not the triangulation of the surfaces. Hence, Conf‘ﬂ'éually approximated by triangular meshes. We psgto denote

mal mapping is a viable solution for 3D shap.e image ponstructiO{h vertices and p, g} to denote the edge spanned betweeandg.
This motivated us to encode a shape vector image using conforfgl syrface and its parametric domain are modeled as piecewise linear

mapping for surface representation. . 2 . . = .
After mapping the 3D surface to the 2D image plane, extractirildﬂsg?unrsefa? \r/]gr?elg ig?siirg%?gg ;\gth[i:E] I;f/spectlvely. The mean

features from the shape image becomes one of the most important
tasks. Generally speaking, the analysis of 2D image is a better under- 1 . ~
stood problem [10, 2, 13]. However, the analysis of the shape image H(qQ) = @” Z (cotap,g+cotBpq)(f(q) — fio)%, @

that integrates geometric and appearance information has its own spe- peN;(q)

cial challenges mainly due to the non-uniform sampling and different

pixel properties (i.e., geometric characteristics instead of grey-scatbereapq and Bp g are the two opposite angles of edggy in the
intensities). Hence, conventional image analysis techniques may heo triangles sharing this edge, aNg(q) is the set of 1-ring neighbor
work well. For example, line segments [5], groupings of edges [9, 15Jertices of vertexg. A is the area of the associated surface patch (so-
and regions [3] have all been proposed as features for image matcaHed finite volume in Mechanics), which is given by

ing. Nevertheless, these feature extraction techniques are not reliable L
for shape images due to the aforementioned special characteristics of o 7 B2
shape images and they only work well under certain circumstances. A(Q) = 8 z (cotap,q+cotBpq)| f(a)— T(p)|*, 2
Recently, there has been a great deal of research work on develop- Pt (@)

L’;Eem;és;ﬁggakgeoie?é%i? fcio(ertgg{:)\i’int?f?:rl]lm;ggl& [gg]euosfetgifl 'f_%%ger the condition that the triangles in the 1-ring neighbors are non-
ris corner detgctor to identify featuré Iocatiogns. Hérris corner detec ﬂrtl:ﬁie' Int(;las\;\? Oc]; ofti)rtlustﬁ tri;ngle;s, refﬁfr t:)m[lﬂ fotr sroluti(r)nts.rFollow-
was also used by Schmid and Mohr [22] to identify interest pointEsg s path, we define the discrete conformal factor operator as

for the object recognition problem. Other approaches have been pro- Ag(Q)
posed for appearance-based matching, including eigenspaceisinalys A(g) = , 3)
[14], color histograms [24], and receptive field histograms [21}wHo Ar(a)

ever, itis difficult to extend them to match variant inter-subject images . )
because of their more global features. Ohba and Ikeuchi [17kssec Where theAr (q) andAq(q) are the averaging areas for each homotopic
fully applied the eigenspace approach to cluttered images by usivertexqg on surfacef anddg, respectively.

many small local eigen-windows, but this is very time consuming and As conformal surface representati®u,v) is parameterized by
not practical. Most recently, SIFT, scale-invariant features, has beconformal parameters, v) on a domairD, the conformal factor func-
proposed [10] for 2D regular images and proven to be the most en, A (u,v), and mean curvature functioH,(u,v), defined orD sat-

bust among many other local invariant feature descriptors with respesfy the Gauss and Codazzi equationA (fu,v) andH (u,v) are given

to different geometrical changes [12, 1]. SIFT is based on the scébgether with the boundary conditioru,v) can be uniquely recon-
space theory. Scale-space processing usually convolves an image wsiithcted. Since the mean curvature and the conformal factor are two
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Fig. 1. Shape Vector Image. (a) shows the Igea (5002 vertices) surface and mesh; (b) and (c) show the mean curvature channel and conformal
factor channel of the shape vector image representation of the Igea model; (d) is the composite shape vector image including both channels.

important attributes, we assign these two attributelé(tmv) to con- To solve the problem, we propose to perform geodesic distance-
struct a vector imagk where the pixel attributes are represented by waeighted inhomogeneous linear diffusion of the shape vector image,
vector[H,A]". Other features such as normal and texture can be con-

sidered if necessary. We use barycentric interpolation for sampling dly _ div(g(||Df|k||) D|k>7 ®)

Ie(u,v) tol. Fig. 1 shows the Igea surface model with 5002 vertices ot
(Fig. 1(a)) and its corresponding mean curvature channel (Fig) 1(b
and conformal factor channel (Fig. 1(c)). The composite shap@rve wherely is the actual diffused image, is the original image and

image is shown in Fig. 1(d). is the diffusivity function. For a specific chanrel= Iy, the numeri-
cal solution for Equation 5 can be computed, similar to the 4-nearest-
3 GEODESIC DISTANCE-WEIGHTED DIFFUSION neighbors discretization [19], as follows,

Since a surface can be represented as a unique shape vector image

composed of conformal factors and curvatures, many algorithitis su pt+l — P+ plen - NP+ Cs  VsP+Ce - VEP+aw - vwP], (6)

able for image computing may be used for feature extraction from this ~ ’

type of images. For the purpose of matching and visualization of crogghere 0< p < 1/4,N, S, E, W are the subscripts for the North, South,
subject data, the main task is to find the stable keypoints or regions g@ukt, and West,is the scalej and | are the indices of the image pixel.
their local image features for alignment. Since the shape vector imagigice the shape vector image encodes geodesic distance information,
representation that we propose consists of the mean curvature and e symboky is defined as follows with the consideration of geodesic
distortion, it provides important signature of the local geometry, whichistances:

is transformation invariant and suitable for shape matching. This sec-

tion describes a novel diffusion-based algorithm to extract distinctive P — R_1j—R, P — Pi1j—R,j

features from the shape vector images. Through the geodesic distance VN = GeoON] ’ Vshij = GeoDS ’
weighted shape vector image diffusion, we can identify the robust key- P .. P PP

points and their scales from the computed diffusion extrema, which are VeRj = M’ Twh,j = M7 (7
suitable for the matching purpose. ’ GeoDE] 7 GeoOW|

where

Our shape vector image is a multichannel image. The simplest way%aoqN] = GeoD([i—1,jJ,[i, 1), GeolS = GeoD([i+1, ], [, i),
perform the diffusion filtering of the shape vector image is to deal witeoE] = GeoD([i, j + 1], i, j]), GeoDW] = GeoD(fi, j — 1], i, j]),
each channel separately and independently. However, this method ) ) ) ) o

leads to an undesirable effect that edges may be formed at differ@Rfl GeoDX[pixelA, [pixelB) is the normalized geodesic distance be-
locations for each channel since the curvature and conformal factd€en thepixelAandpixelBon the manifold, which is normalized by
channels must take effect simultaneously in order to accurately detdi¢iding the averageGeoDover the image. And theis defined as:
mine the local geometry. In our framework, we employs a diffusivity

g which combines information from all channels. For a vector image en =90 wn i), Cs; = 9(l s i D)

| = (|17|2,...,|m)—r,the diffusion is performed by CE . :g(|VE f||) o :g(|VW f||)
1) Ll il Ll

Al ) whereyn fy, vsfi ., vef,, andywfi;;. are computed by Equa-
i dlv(gDIk) (k=1,...,m), (4)  tion 7. Therefore, the final numerical soiution is

3.1 Shape vector image diffusion and diffusion space

wherediv indicates the divergence operatbrjs the gradient opera- BT =P, +p[CN "UNP+Cs-vsP | Ce-VEP+Ow - YwP

I, (®)

tor, andg(x) = 1( 5 (I is a constant). For the case in whiglis a Geolys Geolew
1+(7 h

constant for a specific chanrig] it reduces to the isotropic heat diffu- where GeoON] + Geo[s

sion equation,‘% = cAly, whereA is the Laplacian operators and the Geolns= 2 ’

solution is Gaussian smoothing. However, Gaussian smoothing has a GeoD(E] + GeoDW]

typical disadvantage, especially for the shape vector image. Gaussian GeoD:y = .

smoothing does not only reduce noise, but also blurs important geo- 2

metric features such as sharp edges, hence making them harder tb&ag this numerical solution, we can construct a discrete geometric
identified. diffusion space which encodes the surface geometric information.



Particularly for our shape vector image scheme, our approach suttms curve is the actual shape object and the line segment is the
up the diffusivity of each channel to a common diffusivity. This maylD shape “image”. The sampling vertices (from to vg) on
be regarded as collecting the contrast information of all channetke curve are mapped to the pixels (from to pg) on the 1D
Thus, for a shape vector image= (I3, 1,...,Im) ", the vector diffu- shape “image” shown at the bottom. As we can see, the sam-
sion is performed by pling vertices of the curvey, and v3, have relatively high cur-
vature values while other sampling vertices have low curvatures.
ol . m Without considering the geodesic
Tt d"’<9( > HDf'nH) D|k> (k=1,...m). (9)  distance among the pixelp,’s cur-
n=1 vature value will be increased while
By solving Equations 9, we obtain the diffusion space, moving from finer to coarser scales.
For example, at the immediately
|1:° |1:1 |1t” next level, p; will boost the diffu-
o it . P PP P sion of ps since its distance tpy is :
(to s )= - » (10)  considered the same as the distance '
betweenp, and ps (a unit length).
The situation will get worse when

which is a sequence of shape vector images witls the scale in a diffusing further sincep, will also
matrix format, i.e., each row of the matrix is the sequence images ofgmatically affect the diffusion of
specific channel with as the scale, and each column of the matrix i%‘- However,v; is far away from
the vector image at a specific scaleFig. 2 shows the diffused shapethe diffusion vertexy,. In fact, p, - )
vector images of the Igea model with increasing diffusion scale IS NOt suppose to have significant influencepan On the other side,

it is also difficult to preserve the high curvature valuesggrand ps.

Therefore, the procedure will dislocate keypoints when moving from
finer to coarser scales. So the keypoints detected at a coarse scale do
Fig. 2. The diffused shape vector images, consisting both curvature
and conformal factor channels, of the Igea model at different diffusion

not give the correct location in the original image, which will result
scales, t, computed by the geodesic distance-weighted diffusion.

ImL0 Imt:l ce Imtn

: 1
s ! 1 | A ?
P1 P2 P3 Pa Ps Pe

in instability and incorrect matching. The situation is much improved
when considering geodesic distances in the diffusion.

3.3 Keypoint-based shape descriptors

The maximum principle states that all the maxima of the solution of
the equation in space and time belong to the initial condition (i.e., the
original image). Therefore, we propose to detect the extrema across
the diffusion space as our keypoints since they are most robust points
at the specific scales which are able to represent collectly the original
image. We sample the diffusion space by computing a sequence of
diffused shape vector images at discrete scaleBor each diffusion
3.2 Properties of diffusion space scale, we use Equation 9 to calculate its diffused images which can be
expressed in a matrix form like Equation 10.

In order to extract the cross-scale extrema, we compute the Differ-
ence of Diffusion (DoD) using the following vector-based equation,

Suppose a mappinfy: M — | and the diffusioD : | — S, whereM is a
3D surface] is the shape vector image aBis the diffusion space. In
this section, we firstly show th& satisfies the criteria of the multiple

scale descriptions. Secondly, we show tlatD, together, creates DoDt — |+t _ |t (i=0,..,n—1). (11)
the diffusion space appropriate for scale-space processing of the 3D T
surface geometry. Consequently, we can obtain,

The diffusion space construction is to create a multiscale “semanti-
cally meaningful” descriptions of images. As we know, a scale-space ; DoD; DoD;* DoD;* ... DoD;t+t
representation must have the property that no spurious detail will be[ DoD, DoDyle  DoDyt ... DoDyl-1
generated passing from finer to coarser scales. This is so-calleal-caus . = . . ) . . (12)
ity, which means any feature at a coarse level of resolution is required : : ) K J
to possess a “cause” at a finer level of resolution although the reverse\ DoDn, DoDm® DoDpm't ... DoDpyint

need not be true. The causality criterion can be established by showing ) ) )
the used diffusion equation satisfies the maximum principle, that isftg- 3(c-€), (9-i), and (k-m) show the computed intermediate curgatur
say, all the maxima of the solution of the equation in space and tiriBannel images of the DoDs across scales. . S
belong to the initial condition (i.e., the original image). A proof of the Once DoD vector images have been obtained, keypoints are identi-
maximum principle for the diffusion equation can be found in [19, 16fi€d as local minima/maxima of the DoD images across s¢alesr
Therefore, for the diffusiol, the satisfaction of the maximum prin- each channeDoD;, it is done by comparing each pixel in ti®D;’
ciple leads to the satisfaction of the causality for the diffusion spadeages to its eight neighbors at the same staland nine corre-
ConsequentlyD satisfies the criteria of the multiple scale descriptionsponding neighboring pixels in each of the neighboring scgles

For our shape vector image, we use the geodesic distance-weighdadt; ;. If the pixel value is the maximum or minimum among all
method, in which the distance can be retrieved by the mapgding, compared pixels, it is selected as a keypoint. This algorithm is carried
for the computation of the diffusion to construct a geometric diffusioaut through all the channels of the vector imadesb;, (i = 1,...,m).
space. Therefore, constructing and analyzing the geometric diffusibhe maxima and minima found in all the channels will be considered
space is similar to analyzing a direct diffusion space of the 3D suas the keypoints. Fig. 3(a) and (b) show all the detected keypoints on
face. As a resultf oD is able to construct a multiple scale space anthe Igea model. Fig. 3(c-e), (g-i) and (k-m) show the detected extrema
multiscale descriptions for the 3D surface. (shown with points) on the corresponding DoDs at different scales.

The geodesic distance-weighted anisotropic diffusion has the d&fg. 3(f), (j) and (n) show the scale sizes, at which the extrema in (e),
vantages of preserving and identifying true features as well as p(g-and (m), respectively, are detected, with the corresponding sfzes o
venting dislocated false features in the diffusion space when tatircles. One valuable point is that the detected keypoints have the as-
ing the actual geodesic distance as a-priori information. The asbciated scales computed by the algorithm, which are very important
jacent figure shows an illustrative one-dimensional example, whereconstruct scale-aware feature descriptors.
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Fig. 3. Keypoint detection in the diffusion space. (a) The Igea model with all the detected keypoints at different scales indicated by the points of
different colors and sizes. (b) All the detected keypoints shown on the curvature channel of the shape vector image. (c-e), (g-i) and (k-m) show
the intermediate curvature channel images of the DoDs across scales t and the detected extrema (shown by points) on the corresponding DoDs
at different scales. (f), (j) and (n) show again the extrema detected at (e), (i) and (m), respectively, with the different sizes of circles indicating the
sizes of scales at which these extrema are detected.

After localizing the keypoints, feature descriptors are built to char- ] _ HHH ™~
acterize these points at the scales where they are identified. These TR
descriptors should contain the necessary distinct information for their ' i H S
corresponding keypoints. In our framework, the descriptor is calcu- ' i HHH ™~
® ~ >k
lated channel by channel. /

For each channel, the local gradient-orientation histograms of the
same-scale neighboring pixels of a keypoint are used as the key en-
tries of the descriptor. In this work, we construct a keypoint descriptor
with 4 x 4 subdescriptors computed from axX4&6 sample pixel array,
which is shown on the left side of Fig. 4. That is to say, a feature dElg. 4. A keypoint descriptor is generated by computing the gradient
scriptor is computed as a set of orientation histograms e pixel magnltud_e and orientation at every pixel around the ke_ypomt_(lﬁ x 16
neighborhoods or subregions. The coordinates of the subdessripfMPle pixels). These samples are then accumulated into orientation
and the gradient orientations are rotated relative to the keypoint gp|S{09rams summarizing the contents over 4 x 4 subregions, indicated
entation (defined by the gradient vector at the keypoint location) ﬁ?hl th'c'?]erfframﬁd boxes. The flgcij’l_t paﬂe:] shows ofnﬁ subrg_guon with
that it can achieve orientation invariance. One of the subdescript dengtl 0 etict :_rrovz_ corrg;por:hmg to the sum of the gradient mag-
is shown on the right panel of Fig. 4, which gives eight directions gytudes along fhat direction within the region.
the orientation histogram with the length of each arrow corresponding
to the magnitude of that histogram entry. Since the descriptor is com-
puted with a 4x 4 array of histograms with 8 orientation bins in each# SHAPE MATCHING AND REGISTRATION

this leads to a feature vector with44 x 8 = 128 elements. In our framework, shape matching is to match the keypoints and their
In the case of am channel vector image, a keypoint aslescrip- associated scale-aware local shape descriptors among different ob
tors which are combined as a vectdes = [des;,desy,...,desy] T, jects. Since the keypoints detected from the diffusion space are very
wherem is the dimension of the vector image. Hence, the descriptegliable feature points presented in the original surface, matching these
des of a keypoint in the shape vector image isna 128 dimension- keypoints with thin-plate spline deformation will lead to accurate reg-
based vector. This descriptor will be used for matching, and all tfigiration of the entire surfaces as well.
descriptors computed for all the keypoints form a feature descriptor Descriptor matching is performed for a keypoint by comparing the
database, which abstracts the original surface with a small numbedétance from its constructed local descriptor to the descriptor of its
robust keypoints and their local descriptors. The robust keypoints aclosest matched poinb(Scyn) with the distance from the keypoint de-
constructed local shape descriptors together are well suitable for gugiptor to the descriptor of its second-closest matched pBi8g-n)
matching purpose as demonstrated by our experiments in Section Sound on the to-be-matched object. The distance of two descrip-




tors, desl anddes2 which arem dimension vectors, is calculated by, 1
DIS=yM, | desl — des2 || . Once theDIScy and theDISscy are = = 0.9 1 '
found, theDIScN and theDISscy are compared to decide whether M o~ >°'3 | 1
they are matched or not. The judge function for the comparisonis 8 - B = g-z |

: " S0

thresholdx DIScn <= DISsen (13) E 0.6:1 ~#- Geodesic distance-weighted
%0'4 1 shape vector image diffusion
If this inequality holds, the points are matched; Otherwise, they a & 03 1| ——Regular anisotropic diffusion
not matched. This inequality ensures that only distinctive keypoin R
having prominent similarity are matched. Since the 3D data can | 0.1 1| -#=Isotropic (Gaussian) diffusion
coarsely aligned easily through affine transformations during the piiSs===tas g ' ‘ ' '
0.0% 2.0% 4.0% 6.0% 8.0% 10.0%

processing, we can use the uniform subdivision grid to speed up the
matching. The Euclidean distance bound (ED) of two potentially
matched keypoints is calculated and can be used in efficiently findipgy 5 Repeatability of keypoint features when the Igea model is under
the closest and the second-closest matched points within grids.  gifferent Gaussian noise levels. The left panel shows the Igea mod-
After finding all the matched points, registration can be achievegs (with the computed curvature colormaps) with 4% and 10% additive
using thin-plate splines deformation with the matched points as poiB&ussian noise and their corresponding shape vector images. The de-
constraints [32]. In our shape vector image registration, the keypoimsted keypoints are shown in the shape vector images. The right panel
(xi,yi) are taken as landmarks avid= (><§,y§)\i is a set of the matched shows the repeatability of the feature points extracted by our geodesic
keypoints on the other shape vector image. After computing the thifistance-weighted shape vector image diffusion method. The compar-
plate splines with the above point constraints, the deformation functii3" t© the conventional anisotropic and isotropic diffusion methods is
f(x,y) = [f(xY), f,(x,y)] can be obtained to map each pofgty;) demonstrated.
to its homolog(x,yi). The other unconstrained areas will follow the
deformation. At the end, we can register the two shape vector ima
(i.e., the two 3D surfaces).

Noise level

%ysfinding the maxima and minima in each row of the matrix as the
keypoints, the descriptor is computed for each point. Each descrip-
tor is a 2*128=256 dimension vector and all these descriptors form

. the descriptor database. The matching algorithm is performed to find
To evaluate the proposed approach, we have conducted extensiveyeX matched points which satisfies the inequality 13. Fig. 6 shows
periments. We have applied our algorithm on real scanned face megs matching result of two faces with different expressions from the
els and human neocortex surfaces extracted from high-resolution MEme human subject. The average matching accuracy of 10 such ex-

scans. The surface matching is demonstrated first, followed by &riments on 10 different subjects reaches 95% in terms of correct
application of the framework in the multimodality image analysis angbynoint correspondence.

visualization. Our system is implemented with C++ for the compu-
tationally intensive algorithms and VTK/OpenGL for rendering anc
visualization. The experiments are conducted on a Dell Precisic
Workstation T7400, which has a Xeon CPU with Quad Cores and 4G
RAM.

5 EXPERIMENTS AND APPLICATIONS

5.1 Repeatability under noise

We have tested the repeatability of keypoints detection with noise
The Igea surface model is added up to 10% Gaussian noise direcuy
on the mesh. The perturbed surfaces with different noise levels are
converted to the shape vector images and then the keypoints arefd@- 6. Matching of face models with different expressions from the
tected with our geodesic distance-weighted diffusion method. \§&me subject. The left panel shows all the matched keypoints between
compare the repeatability of the detected keypoints with the ones §& tWo surfaces. The right panel shows the scales of the matched key-

tected without additive noise. The repeatability result is shown fP™MS:

Fig. 5. Compared to the repeatability results by regular anisotropic

diffusion method and isotropic diffusion method, our method is much For the neocortex surface, a genus zero surface, conformaingap
more robust under noise. The main reason is that those two mehperformed to transfer it to a sphere. The sphere can be mapped to a
ods have instabilities when moving from finer to coarser scales as @& domain through a reparameterization as follows,

scribed in Section 3.2. They are easier to be affected by noise during . .

the diffusion procedure. Therefore, more keypoints originally dedecte 0(6,¢) = (cosf cosp,cosfsing,sing),

without noises cannot be repeatedly detected across scales unger nois . -
circumstances. where8 and ¢ are the rows and columns in the 2D domain image.

Then, we follow the same procedure as we use for face models to find
5.2 Surface matching the matching keypoints. Fig. 7(a) shows the matching result of two
. djfferent subjects. In order to allow readers clearly see the matched
For scanned face models, we create the shape vector images Ugiigis hetween the two shape images, only 10% of the matched points
conformal mapping. Based on this planar parameter domain, we Cafla shown in the figure. After matching, we use the matched points
struct the Shap? vector image by assigning-hendA valu_es to each as landmarks to register the shape vector images using the thin-plate
corresponding image pixel. H$nce, the shape vector image is @ Wfine technique. We have conducted the evaluation on intersubject
dimensional vector imagf,lz] , wherel; =H andl> =A. The matching of 20 brain surfaces. The results are evaluated quantitatively
geodesic distance is computed and encoded as well. After the shap@rms of major landmark (e.g., the central sulcus, the sylvian fissure
image is generated, we use the vector diffusion to creatBollema-  the posterior sulcus) overlaps. Fig. 7(b) shows one region that we
trix, of which each row is a sequence of images in different scales iged to test the registration accuracy, where the green color indicates

each channel. completely correct overlap while the red color indicates mismatched
¢ t t areas among all the subjects. The average mismatch distance error
( Bogl ) - ( gogltz Boglti Bogltnj ) (14) for total 20 different subjects is only 3.98m which outperforms the
ob2 0L 0L 0D latest reported results on inter-subject brain surface registration [4].



effective analysis of medical imaging data, especially related to the
human neocortical surface, a combination of noninvasive anatomical
and functional imaging, such as Magnetic Resonance Imaging (MRI),
Diffusion Tensor Imaging (DTI) and Positron Emission Tomography
(PET), is frequently used. These modalities provide important, com-
plemental information over the cortex regions. During the preprocess-
ing, a brain surface can be extracted from the MRI volume data. The
registration of PET and DTI volumes to the same subject's MRI vol-
ume can be done with the mutual information registration algorithm
provided in Insight Segmentation and Registration Toolkits (ITK). The
Fig. 7. Matching of two different subjects’ brain surfaces. (a) 10% of  registration is easy since the data is for the same subject. In order to in-
matched points are shown using the linked lines. (b) The overlap test tegrate PET and MRI data, a normal fusion approach is applied in the
on one registered brain region. native space of the registered MRI and PET volumes of each subject.
In this analysis, we choose one normal brain as the template in our
framework. All other normal or abnormal individuals are registeced

To further show the efficacy of our approach, we have compargge template shape vector image (SVI) using the methods described
our approach with the closely-related methods, anisotropic diffusiogm Section 3 and 4. Fig. 9 shows the idea and flow of our frame-
method and SIFT. Since SIFT can only work on scalar image, Wgork. The last two columns in the figure show the maps of the brain
only input the curvature channel to the SIFT processing. The regarface PET texture and DTI texture, computed from PET and DTI
ular anisotropic diffusion method is applied on both the curvatusglumes, which are also registered across subjects because their align-
and conformal factor channels. We randomly select a pair of braiflents are already registered to their corresponding MRI volumes dur-
surfaces among 20 subjects. Then, our geodesic distance-weighigdthe aforementioned preprocessing. Based on the registered SVis,
shape vector image diffusion method, the regular SIFT method, apgT and DTI maps, statistical analysis of PET and DTI across subjects
the anisotropic diffusion method are performed for matching and regan be achieved.
istration. The comparison results are shown in Fig. 8. The main ad-
vantage of our method is to introduce geodesic distance into diffusi
space. Therefore, it increases the stability of extrema detection as
scribed in Section 3.2 and the robustness of shape descriptors. R
experimental results confirm that the keypoints and constructed lo & }'\:.\_-.‘f‘\ s
shape descriptors together are very robust features well suitathefor ff,"::.d D )
matching purpose. The computational time of the geodesic distan \b;,a TU 5
weighted shape vector image diffusion-based feature extraction ¢ =~ * ="
matching is recorded for the tested models in Table 1. Note that, 1
geodesic distance information is pre-computed offline and is not i
cluded in the recorded time.
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Fig. 9. The multimodality image analysis pipeline. The referenced brain
is used as the template SVI (TSVI), and then all other brain SVIs are
registered based on this TSVI. Based on the registered shape vector
images, multimodality data such as the PET and DTI, can be integrated
over the SVI images to perform the multimodality analysis.
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0 By comparing a patient’s PET texture with a group of normal sub-

123456739 1011213141516 17 181920 jects based upon matched SVIs, we can identify abnormal PET re-
Abitrary group of two subjects’ brain surfaces gions which significantly vary from the normal distribution. Fig. 10(a)
shows two detected abnormal regions on the PET shape image. Be-
Fig. 8. The experimental results on matching arbitrary two differentbrain - cause we know the mapping and parameterization, we can easily find
surfaces randomly selected from 20 subjects. The comparison shows  out the abnormal regions in the actual brain surface. Fig. 10(b)show
that our method constantly outperforms the regular anisotropic diffusion  the corresponding abnormal regions on the brain PET data. The same
method and the SIFT method. scheme can be applied to the population-based DTI analysis. Dur-
ing the preprocessing, the cortico-cortical fiber tracts can be extracted
using the brute-force fiber tracking method as shown in Fig. 10(c).
Then, these fiber connectivity can be converted to the fiber connectiv-
ity strength ratio and plotted in the shape vector image domain to form

Generate SVI Diffusion
Model | # vertices| SVI(s) SVI Size | & Matching (s)

lgea 5,002 12 256x 256 43 a DTl texture image. The analysis framework can be used to detect the
Brain | 15,102 40 512x 512 172 abnormal regions based on statistical comparison of DTI information
Face | 20,376 35 256x 256 45 between a patient and a group of normal subjects. Fig. 10(d) shows a

DTI fiber connectivity strength image of an abnormal subject and the
detected abnormal region as highlighted with a red contour.

Table 1. Runtime of the shape vector image (SVI) construction, feature

extraction and matching. 6 CONCLUSION

In this paper, we have presented a novel and accurate surfacamgatch
. . . method based on the geodesic distance-weighted diffusion of shape
5.3 Multimodality Analysis vector images. Through the detected stable keypoints and their local
The developed framework is ideal for cross-subject analysis and vishape descriptors in the diffusion space, our method converts a 3D sur
alization of multimodal brain surface properties. In order to facilitattace matching problem to a 2D shape vector image matching problem.



Fig. 10. Population-based PET and DTI image analysis. (a) The regions
within the black contours are the detected abnormal regions in the PET
texture image; (b) The regions in black are the corresponding abnormal-
ities on the individual’s brain cortical surface. (c) shows a 3D rendering
of a normal DTI fiber connectivity. (d) shows the abnormal DTl map
where the abnormality is contoured in red.

. . : oo
The robust features facilitate the reliable matching and registration as
demonstrated by our experiments. The 2D representation allows easier

(8]

El
(10]

(11]

(12]

(13]

14]

statistical analysis of other modality features directly computed in tiies]
matched 2D domain. The applications to medical image analysis and
visualization are demonstrated through multimodality data integration

in the 2D domain to support more accurate localization of brain disdi6]

der regions using population study.

There are some remaining research issues in our current fratewdt’]
In some situation, when a patch of a surface model containing rich,
complex features is squeezed into a very small patch of the domain

during the conformal mapping, there may not have enough sam

through the entire domain. This issue may be addressed through

P
to capture the geometric characteristics with the uniform sampli

i
LY

trolling the distortion during the mapping or adaptive sampling of the
domain according to the distortions and feature richness. Our future
work will be focused on this development. Another direction for fupo]
ture work is to apply our framework to very high-genus shapes. In this
case, a robust, consistent topological cut algorithm needs to be used Conference on Computer Visigpages 1126-1133, 2003.

to cut and map the high-genus shape to a planar domain. Then, fi§ B. Schiele and L. James. Object recognition using multetisional re-
boundaries of the cuts need to be glued together. Interesting research ceptive field histogram. IProceedings of the 4th European Conference
issues may arise from these boundaries and singular points where dif-
fusion behaviors need to be specially handled. Our future reseafghl

work will look into these issues.
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