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Abstract

All surfaces can be classified by the conformal equiva-

lence relation. Conformal invariants, which are shape in-

dices that can be defined intrinsically on a surface, may

be used to identify which surfaces are conformally equiv-

alent, and they can also be used to measure surface defor-

mation. Here we propose to compute a conformal invari-

ant, or shape index, that is associated with the perimeter

of the inner concentric circle in the hyperbolic parameter

plane. With the surface Ricci flow method, we can confor-

mally map a multiply connected domain to a multi-hole disk

and this conformal map can preserve the values of the con-

formal invariant. Our algorithm provides a stable method

to map the values of this shape index in the 2D (hyperbolic

space) parameter domain. We also applied this new shape

index for analyzing abnormalities in brain morphology in

Alzheimer’s disease (AD) and Williams syndrome (WS). Af-

ter cutting along various landmark curves on surface mod-

els of the cerebral cortex or hippocampus, we obtained mul-

tiple connected domains. We conformally projected the sur-

faces to hyperbolic plane with surface Ricci flow method,

accurately computed the proposed conformal invariant for

each selected landmark curve, and assembled these into a

feature vector.We also detected group differences in brain

structure based on multivariate analysis of the surface de-

formation tensors induced by these Ricci flow mappings.

Experimental results with 3D MRI data from 80 subjects

demonstrate that our method powerfully detects brain sur-

face abnormalities when combined with a constrained har-

monic map based surface registration method.

1. Introduction

Shape analysis is a key research topic in anatomical

modeling, statistical comparisons of anatomy and medi-

cal image registration. In research studies that analyze

brain morphology, many shape analysis methods have been

proposed, such as spherical harmonic analysis (SPHARM)

[9, 6], medial representations (M-reps) [19], and minimum

description length approaches [7], etc.; these methods may

be applied to analyze shape changes or abnormalities in

subcortical brain structures. Even so, a stable method to

compute transformation-invariant shape descriptors would

be highly advantageous in this research field. Here we pro-

pose a novel and intrinsic method to compute conformal

invariants (shape indices) on multiply connected domains

and we apply it to study brain morphology in Alzheimer’s

disease and Williams syndrome. Our conformal invariants

are based on the surface conformal structure and can be ac-

curately computed using the surface Ricci flow method.

All oriented surfaces have conformal structures. If there

exists a conformal map between two surfaces, they are

conformally equivalent. All surfaces may be classified by

the conformal equivalence relation. Any two conformally

equivalent surfaces have the same conformal invariants. By

computing and studying conformal invariants and their sta-

tistical behavior, we can provide a promising approach for

describing local changes or abnormalities in anatomical

morphology due to disease or development.

By solving the Yamabe equation with the discrete sur-

face Ricci flow method, we can conformally parameterize a

multiple boundary surface by a multi-hole disk. The result-

ing parameterizations do not have any singularities and they

are intrinsic and stable. For applications in brain morphol-

ogy research, first, we convert a closed 3D surface model

of the cerebral cortex into a multiple boundary surface by

cutting it along selected anatomical landmark curves. Sec-

ondly, we conformally parameterize each cortical surface

by the Ricci flow method. Next, we accurately compute a

conformal invariant, the perimeter of the inner concentric

circle on the hyperbolic space. This measure is invariant

in the hyperbolic plane under conformal transformations of

the original surface, differing at most by a rigid motion.

We tested our algorithm on cortical and hippocampal

surfaces extracted from 3D anatomical brain MRI scans.

The proposed algorithm can map the profile of differences
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in surface morphology between healthy controls and AD or

WS subjects. When combined with a harmonic map based

surface registration method, the proposed algorithm pro-

vides a systematic way to identify a reasonable canonical

surface to which other surfaces can be registered. In corti-

cal surface data from a group of 40 WS individuals and a

group of 40 matched healthy control subjects, the proposed

algorithm significantly improved the detection of statistical

significant differences in regional cortical surface areas. In

this group study, we created maps of statistically significant

differences in surface morphology in hemispheric cortical

surfaces of patients with William syndrome versus normal

controls.

Our major contributions in this work include: a way to

compute a new conformal invariant, the perimeter of the in-

ner concentric circle in hyperbolic space, on the Poincaré

disk in the parameter domain. Our way to compute confor-

mal parameterization is equivalent to solve an elliptic partial

differential equation on surfaces. Numerically, it is equiva-

lent to optimize a convex energy so that the global optimum

exists and is unique. Thus our method offers a stable way

to calculate conformal invariants in 2D parametric coordi-

nates. To the best of our knowledge, it is the first work to

apply conformal invariants to brain morphology research.

In our experiments, by modeling conformal invariants as

a random vector and calculating the Mahalanobis distance

from any vector to individual members of two groups of

subjects, our method can find a canonical surface that can

be used as a target to which other surfaces can be registered.

We show that this novel and simple method can dramati-

cally improve the statistical detection power of a harmonic

map based surface registration method, for detecting abnor-

malities in brain surface morphology.

1.1. Related Work

In the computational analysis of brain anatomy, volu-

metric measures of structures identified on 3D MRI have

been used to study group differences in brain structure and

also to predict diagnosis [3]. Recent work has also used

shape-based features [17, 15], analyzing surface changes

using pointwise displacements of surface meshes, local de-

formation tensors, or surface expansion factors, such as

the Jacobian determinant of a surface based mapping. For

closed surfaces homotopic to a sphere, spherical harmon-

ics have commonly been used for shape analysis, as have

their generalizations, e.g., eigenfunctions of the Laplace-

Beltrami operator in a system of spherical coordinates.

These shape indices are also rotation invariant, i.e., their

values do not depend on the orientation of the surface in

space. Shape analysis based on spherical harmonic ba-

sis functions (SPHARM) are usually conducted in three

steps, based on a pre-computed spherical parameterization

of the surface: (1) estimating SH coefficients of x, y and

z-components with a least-squares procedure, (2) normal-

izing the orientation of the first-order ellipsoid and (3) re-

constructing the surface at regularly spaced points on the

sphere [22, 9, 21]. Chung et al. [6] proposed a weighted

spherical harmonic representation. For a specific choice of

weights, the weighted SPHARM is shown to be the least

squares approximation to the solution of an anisotropic heat

diffusion on the unit sphere. Davies et al. performed

a study of anatomical shape abnormalities in schizophre-

nia, using the minimal distance length approach to statisti-

cally align hippocampal parameterizations [7]. For classi-

fication, Linear Discriminant Analysis (LDA) or principal

geodesic analysis can be used to find the discriminant vec-

tor in the feature space for distinguishing diseased subjects

from controls. Tosun et al. [28] proposed the use of three

different shape measures to quantify cortical gyrification

and complexity. Gorczowski [10] presented a framework

for discriminant analysis of populations of 3D multi-object

sets. In addition to a sampled medial mesh representation,

m-rep [19], they also considered pose differences as an ad-

ditional statistical feature to improve the shape classifica-

tion results.

For brain surface flattening [8] and brain surface param-

eterization research, Schwartz et al. [20], and Timsari and

Leahy [27] computed quasi-isometric flat maps of the cere-

bral cortex. Hurdal and Stephenson [14] reported a dis-

crete mapping approach that uses circle packings to produce

“flattened”images of cortical surfaces on the sphere, the Eu-

clidean plane, and the hyperbolic plane. The maps obtained

are quasi-conformal approximations of classical conformal

maps. Haker et al. [1] implemented a finite element approx-

imation for parameterizing brain surfaces via conformal

mappings. Gu et al. [11] proposed a method to find a unique

conformal mapping between any two genus zero manifolds

by minimizing the harmonic energy of the map. The holo-

morphic 1-form based conformal parameterization [31] can

conformally parameterize high genus surfaces with bound-

aries but the resulting mappings have singularities. Other

brain surface conformal parametrization methods, the Ricci

flow method [29] and slit map method [30] can handle sur-

faces with complicated topologies (boundaries and land-

marks) without singularities. Wang et al. [32] applied the

Ricci flow method to study statistical group differences in a

group of 21 healthy controls and 21 subjects with Williams

syndrome, showing the potential of these surface-based de-

scriptors for localizing cortical shape abnormalities in ge-

netic disorders of brain development.

2. Surface Ricci Flow Method

In this section, we introduce the theory of Ricci flow in

the continuous setting, which will be generalized to the dis-

crete setting in Section 3.

Let S be a surface embedded in R
3. S has a Riemannian



metric induced by the Euclidean metric of R
3, denoted by

g. Suppose u : S → R is a scalar function defined on S. It

can be verified that ḡ = e2ug is also a Riemannian metric

on S. Furthermore, angles measured by g are equal to those

measured by ḡ. Therefore, we say ḡ is conformal to g, e2u

is called the conformal factor.

When the Riemannian metric is conformally deformed,

Gaussian curvatures will also be changed accordingly. The

Gaussian curvature will become

K̄ = e−2u(−∆gu + K), (1)

where ∆g is the Laplacian-Beltrami operator under the

original metric g. The above equation is called the Yamabe

equation. By solving the Yamabe equation, one can design

a conformal metric e2ug with a prescribed curvature K̄.

The Yamabe equation can be solved using the Ricci flow

method. The Ricci flow deforms the metric g(t) according

to the Gaussian curvature K(t) (induced by itself), where t

is the time parameter

dgij(t)

dt
= −2K(t)gij(t). (2)

The Ricci flow defined in Eq. 2 is convergent and leads to

a conformal metric with constant curvature; detailed proofs

may be found in [13] for surfaces with non-positive Euler

numbers, and in [4] for surfaces with positive Euler num-

bers.

The Ricci flow can be easily modified to compute a met-

ric with a prescribed curvature K̄ as the following,

du(t)

dt
= 2(K̄ − K). (3)

With this modification, the solution metric g(∞) can be

computed, which induces the curvature K̄.

3. Theoretical Background on Discrete Sur-

faces

In engineering fields, smooth surfaces are often approx-

imated by simplicial complexes (triangulated meshes). We

denote a triangle mesh as Σ, a vertex set as V , an edge set as

E, and a face set as F . eij represents the edge connecting

vertices vi and vj , and fijk denotes the face formed by vi,

vj , and vk.

The edge lengths of a mesh Σ define the Riemannian

metric, l : E → R
+. For each face fijk , the edge lengths

satisfy the triangle inequality: lij + ljk > lki.

The discrete Gaussian curvature Ki on a vertex vi ∈ Σ
can be computed from the angle deficit,

Ki =

{

2π −
∑

fijk∈F θ
jk
i , vi 6∈ ∂Σ

π −
∑

fijk∈F θ
jk
i , vi ∈ ∂Σ

(4)

where θ
jk
i represents the corner angle attached to vertex

vi in the face fijk , and ∂Σ represents the boundary of the

mesh.

The concept of the circle packing metric was introduced

by Thurston in [26] for approximating conformal metric de-

formation. Conformal metric deformations, in the smooth

case, preserve infinitesimal circles and the intersection an-

gles among them. The discrete conformal deformation of

metrics uses circles with finite radii to approximate these

infinitesimal circles. Let Γ be a function defined on the ver-

tices, Γ : V → R
+, which assigns a radius γi to the ver-

tex vi. Similarly, let Φ be a function defined on the edges,

Φ : E → [0, π
2
], which assigns an acute angle Φ(eij) to

each edge eij and is called a weight function on the edges.

The ordered pair consisting of a vertex radius function and

an edge weight function on a mesh Σ, (Γ, Φ), is called a

circle packing metric of Σ.

Two circle packing metrics (Γ1, Φ1) and (Γ2, Φ2) on the

same mesh are conformally equivalent if Φ1 ≡ Φ2. A con-

formal deformation of a circle packing metric only modifies

the vertex radii and preserves the intersection angles on the

edges. The discrete Ricci flow is defined as follows:

dui(t)

dt
= (K̄i − Ki), (5)

where k̄ = (K̄1, K̄2, · · · , K̄n)T is the user defined target

curvature, ui = log γi. The discrete Ricci flow can be for-

mulated in a variational setting, as it can be represented as

the negative gradient flow of a special energy form:

f(u) =

∫ u

u0

n
∑

i=1

(K̄i − Ki)dui, (6)

where u0 is an arbitrary initial metric. Therefore, the above

integral is well-defined. It is the so-called discrete Ricci en-

ergy. The discrete Ricci flow is the negative gradient flow

of the discrete Ricci energy. The discrete metric which in-

duces k̄ is the minimizer of the energy.

Computing the desired metric with user-defined curva-

ture k̄ is equivalent to minimizing the discrete Ricci energy.

The discrete Ricci energy (see Eq. 6) has been proven to

be strictly convex (namely, its Hessian is positive definite)

in [5]. The global minimum uniquely exists, corresponding

to the metric ū, which induces k̄. The discrete Ricci flow

converges to this global minimum.

3.1. Conformal Invariant for Multiply Connected
Domains

A genus 0 surface with multiple boundaries is called a

multiply connected domain. Let φ : D → D be a conformal

map from the unit disk D to itself. Here φ is a Möbius

transformation. Let z0 ∈ D be a point inside D, then a



Möbius transformation that maps z0 to the origin is given

by

z → eiθ z − z0

1 − z̄0z
.

Möbius transformations preserve circles. All Möbius trans-

formations form a group.

The hyperbolic metric on the unit disk is defined as

ds2 =
dzdz̄

(1 − z̄z)2
, (7)

which induces a constant Gaussian curvature, with the

value −1 everywhere. Möbius transformations are isomet-

ric transformations for the hyperbolic metric.

The following theorem on the canonical conformal rep-

resentation of multiply connected domains is fundamentally

important for our current work.

Theorem 3.1 (Ahlfors) Let S be a multiply connected do-

main with a Riemannian metric. Then there exists a confor-

mal map, which maps S to the unit disk with circular holes.

All such conformal maps, of this kind, differ by Möbius

transformations.

Let S be a multiply connected domain, and let the bound-

ary of S consist of n connected components, ∂S = c1 ∪
c2 · · · cn. The canonical conformal representation may be

computed using the Ricci flow. The target curvature is set

to be:

K̄i =







0 vi 6∈ ∂S

0 vi ∈ c1 ∪ c2
−2π
|ck|

vi ∈ ck, k > 2

where |ck| represents the number of vertices in ck. After

obtaining the desired metric, the target curvatures for ver-

tices on ck, k > 2 are updated as follows. Assume the

edges on ck are ordered, in a counter-clockwise fashion, as

{e1, e2, · · · , en}, and the two edges adjacent to vi ∈ ck are

ei, ei+1. Then the target curvature for vi is updated as

K̄i =
−π(|ei| + |ei+1|)

∑

j |ej |
, (8)

where |ej | represents the edge length of ej under the new

metric. After updating the target curvature, we use the Ricci

flow to compute the desired metric again. After several it-

erations of using the Ricci flow and updating the target cur-

vature, the process will converge, and this finally leads to a

metric ḡ.

Then we compute the shortest path from c1 to c2, de-

noted by γ. The surface is sliced open along γ to form an-

other surface S̃. Then we isometrically flatten S̃ onto a pla-

nar rectangle with holes using the new metric ḡ. c1 and c2

are mapped to two parallel edges of a rectangle, ck, k > 2
are mapped to circular holes. Using a combination of rota-

tion, scaling and the exponential map z → ez , we can map

the rectangle to an annulus, and therefore we can map the

original surface S to a disk with circular holes, such that c1

and c2 are mapped to two concentric circles.

The perimeters of inner circles of the canonical confor-

mal representation of S under the hyperbolic metric are in-

variant under Möbius transformations. Therefore, they are

conformal invariants of the surface S.

4. Experimental Results

4.1. Conformal Invariant Computation

We applied our shape analysis to various anatomical sur-

faces extracted from 3D MRI scans of the brain. In this

paper, the segmentations are regarded as given, and result

from automated and manual segmentations detailed in other

prior works, e.g. Thompson et al. [23] and Morra et al. [18],

et al. We tested our algorithm on the left hippocampal sur-

face, a key structure in the medial temporal lobe of the

brain, for which parametric shape models are commonly

developed for tracking shape differences or longitudinal at-

rophy in disease. Prior studies [23, 18] have shown that

there is atrophy (volume loss and shape change) as the dis-

ease progresses. Figure 1 illustrates our testing results on

the left hippocampal surfaces of a control subject and an

AD patient. We leave two holes on the front and back of

the hippocampal surface, representing its anterior junction

with the amygdala, and its posterior limit as it turns into

the white matter of the fornix. The surface model can be

logically represented as an open boundary genus-one sur-

face. The conformal maps of these two surfaces to a 1-hole

disk are illustrated in the second column. Each of the two

boundaries are mapped to a circle in the parameter domain.

From the parameter domain, the computed conformal in-

variants are 0.009 (control) and 0.123 (AD), respectively.

Although multi-subject studies are clearly necessary, this

demonstrates our conformal invariants may potentially be

useful as a shape index to classify and compare different

hippocampal surfaces.

We also applied our algorithm to surface models of the

cerebral cortex. The cerebral cortex and landmark data are

the same ones used in [24]. The landmark data set included

10 selected landmark curves per hemisphere: Central Sul-

cus, Superior Temporal Sulcus Main Body, Inferior Frontal

Sulcus, Middle Frontal Sulcus, Inferior Temporal Sulcus,

Secondary Intermediate Sulcus, Transverse Occipital Sul-

cus, Inferior Callosal Outline Segment, Superior Rostral

Sulcus, and Subparietal Sulcus. The definitions of these

anatomical lines are reported in [25]. After we cut the cor-

tical surface along each of these landmark curves, the cor-

tical surface becomes topologically equivalent to an open

boundary genus-9 surface. So the cortical surface can be

conformally mapped to a multi-hole disk with 10 bound-

aries. The center and radius of each circle is determined by



Figure 1. Conformal invariant illustration for hippocampal sur-

faces. There are two left hippocampal surfaces with their con-

formal parameterization results. The surface on the first row is

from a control subject and the second row is from an AD patient.

We leave two holes on the front and back of the hippocampal sur-

face, representing its anterior junction with the amygdala and its

posterior limit as it turns into the white matter of the fornix. Thus

the surface is an open boundary surface with two boundaries. The

computed conformal invariants are 0.009 (for the control subject)

and 0.123 (for the AD patient), respectively.

the conformal structure of the original cortical surface.

Figure 2 illustrates the conformal parameterization of

two left cortical surfaces, one is from a healthy control sub-

ject and one from a WS patient. The selected landmark

curves are labeled in blue on the cortical surfaces. The

second row is their conformal parameterization to a multi-

hole unit disk. The perimeters of the inner circles are the

conformal invariants. In Figure 2, we select a landmark

curve, Precentral Sulcus, and have it as the concentric circle

with the outer boundary. The computed conformal invari-

ants are 0.47 (control) and 1.513 (WS), respectively. This

suggests that the surface geometries surrounding these land-

mark curves have very different structures. This can be ver-

ified by observing the areas surrounding the curved land-

mark features in the first row of the figure.

4.2. Application of Conformal Invariants to Multi­
variate Statistics on Tensor Based Morphom­
etry

A conformal invariant is computed for each landmark

curve. The conformal invariant is associated with the sur-

face conformal structure in the areas surrounding each land-

mark. When the cortical surface being analyzed has 10
landmark features lying in it, we can compute 9 confor-

mal invariants per surface. We can then build a 9-element

Figure 2. Conformal invariant computation for the Precentral Sul-

cus. The first column shows the left hemisphere cortical surface

model and its parameterization for a control subject and the second

column shows the same models for a WS patient. The second row

shows their conformal parameterization results where the origin is

the center of a circle to which the Precentral Sulcus landmark has

been mapped. The computed conformal invariants are 0.472 (for

the control subject) and 1.513 (for the WS patient), respectively.

feature vector as a compact description of the shape infor-

mation in the cortical surface. The obtained feature vector

can then be used to statistically analyze anatomical shapes

and compare 3D anatomical models across subjects. Here

we propose to use these conformal invariants to improve

the detection power of multivariate statistics that are com-

monly applied to the deformation tensor in research studies

of brain morphometry.

Our data set consists of cortical surface models extracted

from 3D brain MRI scans of a group of 40 WS individuals

and a group of 40 healthy control subjects [24]. We selected

a group of 10 landmark curves (as explained in the previ-

ous section). After we cut a cortical surface open along the

selected landmark curves, a cortical surface becomes topo-

logically equivalent to an open boundary genus-9 surface.

This surface can be conformally mapped to a multi-hole

disk with 10 boundaries.

Because of the shape differences between different cor-

tices, the centers and the radii of the inner circles are differ-

ent. To register these surfaces to each other, we need to ap-

ply a constrained harmonic map from each individual con-

formal map to a canonical multi-hole disk in the parameter

domain. The constrained harmonic map can be computed

as follows [29].

Given two surfaces S1 and S2, their punctured disk pa-

rameterizations are τ1 : S1 → R2 and τ2 : S2 → R2,

we want to compute a map, φ : S1 → S2. Instead of di-



rectly computing φ, we can easily find a harmonic map be-

tween the parameter domains. We look for a harmonic map,

τ : R2 → R2, such that τ ◦τ1(S1) = τ2(S2), τ ◦τ1(∂S1) =
τ2(∂S2), ∆τ = 0. Then the map φ can be obtained by

φ = τ1 ◦ τ ◦ τ−1

2 . Since τ is a harmonic map while τ1 and

τ2 are conformal map, the resulting φ is a harmonic map.

For landmark curve matching, we guarantee the matching

of both ends of the curves and match other parts based on

unit speed parameterization on both curves.

We propose to use a multivariate statistics based on

surface deformation tensors to study the cortical surface

morphometry of the brain. Based on the surface match-

ing results, the surface deformation tensors J were com-

puted [32]. Using multivariate statistics on these deforma-

tion tensors, as in [16], we define the deformation tensors

as S = (JT J)1/2. Instead of analyzing shape change based

on the eigenvalues of the deformation tensor, we consider

a new family of metrics, the “Log-Euclidean metrics” [2]

and compute distances in log-Euclidean space based on

Hotelling’s T 2 test. For each point on the cortical surface,

we ran permutation test with 5000 random assignments of

subjects to groups to estimate the statistical significance of

the areas with group differences in surface morphometry.

Also, given a statistical threshold of p=0.05 at each surface

point, we also applied permutation test to the overall rejec-

tion areas (i.e., using the suprathreshold area statistic) to

evaluate the overall significance of the experimental results

[23].

In prior work [32], the reference canonical multi-hole

disk was arbitrarily chosen and statistics were subsequently

Figure 3. Illustration of selected surface templates for left (first

row) and right (second row) hemispheres, for our multivariate sta-

tistical study of group differences in cortical morphometry. By

computing the Mahalanobis distance from each individual corti-

cal surface to each of the two groups, the ones with smallest sum

of the two distances were selected. Their parameterization results

were used as the template meshes to which all other cortical sur-

faces were registered.

plotted on this surface. For our studies of surface morphol-

ogy, we need to develop more systematic way to select a

parameterized surface as a target to which all other surfaces

are registered. Since a brute force method that tries to use

every surface in a data set would be extremely time consum-

ing, we need some simple feature index to measure how

well a particular disk might serve as the parameterization

template. We propose to use the conformal invariant and

Hotelling’s T 2 test to find the “best”canonical parameteri-

zation.

After we compute the vector of conformal invariants,

v, for each cortical surface, for a given hemisphere, we

have two sets of feature vectors, C = (x1, x2, ..., xm) and

W = (y1, y2, ..., yn), where m and n are the number of

subjects in the control group and WS subject group, respec-

tively (note that each subject has a feature vector). Based

on the Mahalanobis distance, we can define distance as

d(v) =
√

(v − µC)T Σ−1

C (v − µC)

+
√

(v − µW )T Σ−1

W (v − µW )

where µC , µW , ΣC and ΣW are the mean and covariance

of two groups, respectively. The subject whose surface has

the smallest distance to the others is selected as the canoni-

cal mesh for further statistical analysis of surface morphol-

ogy. Figure 3 show the two selected template meshes and

their parameterization results for left hemisphere (top row)

and right hemisphere (bottom row) cortical surfaces with 10
landmark curves.

After fixing the template parameterization, we used Log-

Euclidean metrics to establish a metric on the surface defor-

mation tensors at each point, and conducted a permutation

test on the suprathreshold area of the resulting Hotelling’s

T 2 statistics. The statistical maps are shown in Figure 4.

The threshold for significance at each surface point was

chosen to be p=0.05. The permutation-based overall sig-

nificance p values, corrected for multiple comparisons, are

p = 0.001 for the right hemisphere and 0.0006, for the left

hemisphere, respectively.

To evaluate if our proposed conformal invariant vec-

tor really helped to improve the detection power, we also

computed maps of statistically significant group differences

based on using each of the other cortical surfaces as the tem-

plate parameter mesh. For each statistically significant map,

we measured the ratio of the statistically significant area

over the whole surface area, and the overall corrected sig-

nificance value, p. We found that the detected statistically

significant areas were highly consistent, regardless of which

surface was used as a registration target. We also found that

for the two selected template meshes (i.e. with a confor-

mal invariant vector that has least Mahalanobis distance to

all the others), the significance area ratio was in the top of

5 of the whole data set and was 5% more than the median



of the whole data set. The overall statistical significance

level p was also 60% less than the median p value of the

whole data set. Although this deserves more validation on

other data sets, these experimental results suggest that (1)

our constrained harmonic surface registration method pro-

vides a reliable way to detect statistically significant areas

of group differences for brain morphometry research; and

(2) our proposed conformal invariance based feature vector

can be used for template selection, dramatically improving

the overall detection power.

Figure 4. Map of statistically significant differents in cortical mor-

phometry between 40 controls and 40 WS subjects. In the color-

coded scale, non-blue colors denote the area where there is a sig-

nificant statistical difference, at the p = 0.05 level. The first col-

umn shows the results for the right hemisphere and the second

column shows the left hemisphere. The overall permutation sig-

nificance p values are 0.001 and 0.0006, respectively, which cor-

respond to highly significant group differences after controlling for

the multiple comparisons involved in computing statistics at each

point.

5. Conclusion and Future Work

In this paper, we propose a stable way to compute a con-

formal invariant (a vector-valued shape index) for a multiply

connected domain. With the surface Ricci flow method, we

can conformally map a 3D surface with open boundaries

onto a punctured disk with multiple circular holes. The

perimeters of inner circles under hyperbolic metric are the

shape index. The computed shape index is invariant under

rigid-body transformation and conformal transformations

of the original surface. It can also be used to measure the

conformal deformation between two given surfaces with the

same boundary conditions. We also applied the proposed

method to detect systematic morphometric abnormalities

in brain mapping research. We illustrated our method on

hippocampal surfaces and cortical surfaces. The proposed

method can reliably detect shape differences, at the group

level, between control subjects and patients. For a group

study of surface morphology, the proposed method can also

determine which surface should be used as the target sur-

face for registration, with provably better power for detect-

ing abnormalities. As a result, we created a map of sta-

tistically significant differences in morphology in the cor-

tical surface for patients with Williams syndrome, versus

matched healthy controls.

Conformal invariants are robust to rigid-body transfor-

mations and conformal transformations of the surfaces from

which they are derived. Local geometry is well preserved

under conformal mapping so conformal invariants are good

candidate features for brain research on cortical and sub-

cortical surface morphology. In future, we will study more

conformal invariants, such as the period matrix for high-

genus surfaces [12], etc. Conformal maps clearly provide

several reliable and intrinsic shape features. By applying

some popular statistical classifiers, such as the decision tree

and support vector machine, we plan to carefully study and

validate numerous applications of these conformal invari-

ants for shape analysis in neuroimaging research.
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