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SUMMARY

A number of studies have documented that autism has a neurobiological basis, but the anatomical extent
of these neurobiological abnormalities is largely unknown. In this paper, we apply advanced computational
techniques to extract 3D models of the corpus callosum (CC) and subsequently analyze local shape
variations in a homogeneous group of autistic children. Besides the traditional volumetric analysis, we
explore additional phenotypic traits based on the oriented bounding rectangle of the CC. In shape analysis,
a new conformal parameterization is applied in our shape analysis work, which maps the surface onto a
planar domain. Surface matching among different individual meshes is achieved by aligning the planar
domains of individual meshes. Shape differences of the CC between autistic patients and the controls are
computed using Hotelling T2 two-sample metric followed by a permutation test. The raw and corrected
p-values are shown in the results. Additional visualization of the group difference is provided via mean
difference map. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A number of studies have documented that autism has a neurobiological basis, but the anatomical
extent of these neurobiological abnormalities is largely unknown [1]. Several studies have reported
deficits in the size of the corpus callosum (CC) and its sub-regions, although the results are
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inconsistent with regard to CC sub-regions. For example, Piven et al. [2] reported reductions
in the size of the body and posterior regions of the CC in autistic patients, Hardan et al. [3]
found significant differences in anterior regions, and Vidal et al. [1] found reductions in genu
and splenium as well as the total CC area. A detailed summary of CC abnormalities in autism
can be found in [4]. The inconsistency of the results may be due to factors such as the sample
size, subject age and gender, and specific diagnosis. Particularly, heterogeneity within the autism
diagnosis obscures the genetic basis of the disorder [5]. Recently, Miles et al. proposed a new
definition of autism subgroups, which divided autism into essential autism and complex autism [5].
Limiting studies of brain morphology to individuals with essential autism decrease the background
noise of structural variation and allow the analysis of the more uniform population [5]. He et al.
[6] first adopted this definition and compared the shape difference between subjects with essential
autism and controls, although their sample size was conspicuously small. In this paper, we also
focus on essential autism, which will greatly reduce the heterogeneous factors.

Quantitative morphologic assessment of individual brain structures is often based on volumetric
measurements and shape analysis. Shape analysis has gained an increasing amount of interest
from the neuroimaging community because it can precisely locate morphological changes in the
pathological structures, which cannot be reflected in volume measurements. A significance map
is often computed in shape analysis, which tells how significant the difference is between two
groups of structures at each location. However, shape analysis gives little description with respect
to the phenotype, which is directly linked to the genetic basis of the diseases. A phenotype is the
appearance of visible characteristics of an organism produced by its genes and their interaction
with the environment; a phenotypic trait is a visual category of phenotypic variation [7]. Under
this definition, CC volume is a trait, but agenesis of the CC is a phenotype. Most of the previous
works only focus on the volume measurement. However, there are many other traits that can be
defined based on the characteristics of the CC shape.

Shape morphology of the CC in autism has been studied in [1, 6]. In [1], CC thickness (the
distance from a medial line) at each surface point was compared between patients and controls.
In [6], an average CC model was used as a template and the distance to the template at each point
was compared between two groups. However, the shape analysis in both was still in a 2D manner,
because the comparison was performed on a contour-by-contour basis.

This paper gives a comprehensive pipeline of the analysis of the CC with respect to the shape,
morphology and phenotypic traits in essential autism (Figure 1). The 3D model of the CC is
reconstructed from 2D contours of nine sagittal slices as in [1]. We use a newly developed
semiautomatic method [8] to segment the CC from 2D MR images. Compared with the manual
tracing method in most previous work, our method is faster and more accurate, which will facilitate
the following analysis. In the phenotypic trait analysis, volumes of the CC and five sub-regions are
compared in a way similar to [1]. CC thickness at each region border is also compared. Moreover,
an oriented bounding rectangle of the 2D CC on sagittal magnetic resonance imaging (MRI) is
constructed, and the length, width and ratio (length/width) of the bounding rectangle are the MRI
traits to be compared between autism and control groups. Since the oriented bounding rectangle
of an object is the minimum rectangle that encloses this object, the measurements of the bounding
rectangle can give both size and shape information. In the shape analysis, we directly compare the
3D coordinates at each surface point of the CC model using Hotelling T2 two sample tests [9]. In
order to perform this comparison, point correspondence among different individual models must be
established. We develop a new planar conformal mapping based on the methods in [10, 11] to map
the surface onto a planar domain and thus find a one-to-one point correspondence among different
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Figure 1. Schematic view of the entire procedure.

models. The results of this paper show both the differences in the phenotypic traits measurements
and the visualization of local shape differences between patients and controls.

2. METHODS

This section describes the details of our methods, including CC segmentation, phenotypic trait
measurement and statistical shape analysis. The entire procedure can be summarized in the
following steps:

1. For each subject, CC contours are segmented from mid-sagittal slice and four adjacent slices
on each side, and a 3D model of the CC is constructed by contour stitching.

2. CC volumes and measurements of the oriented bounding box are computed, and differences
of these measurements are compared between patients and controls using t-tests.

3. Each CC model is mapped onto a planar domain and re-triangulated to establish the point
correspondence among different models.

4. Spatial alignment of all CC models is performed using Procrustes analysis.
5. 3D coordinates at each surface point are compared between patients and controls using

Hotelling T2 tests, which results in a significance map of group differences.

The following subsections will describe each step in details.

2.1. CC modeling

We start with slice-by-slice segmentation and stack the 2D curves to make a 3D model. Because,
it is more straightforward to verify the accuracy of 2D results slice-by-slice, this method provides
better results as opposed to direct 3D segmentation and validation. Mid-sagittal slice and four
adjacent slices on each side are used for CC segmentation. The local shape variation of the CC is
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Figure 2. Four parts of the CC boundary: anterior (AC), upper body (CD), posterior (DB), lower body
(BA) (image modified based on original illustration from [12]).

Figure 3. (a) User-initialized polyline; (b) the edge map; (c) the completed seed contour; (d) distinct
points around the fornix; (e) the result without fornix removal; and (f) the result with fornix removal.

dramatic, and parts of the CC may be narrow or have bumps. The most challenging problem is the
existence of the fornix, which is a thin structure that may or may not contact the CC in sagittal MR
images; it is almost the same intensity as the CC. He et al. proposed a part-based semiautomatic
method [8] to segment the CC on sagittal slices, which can effectively overcome most of the
challenges. The novelty of this method is dividing the CC boundary into four parts connected by
four sensor points (Figure 2). The user initializes a polyline inside the CC region by three mouse
clicks (Figure 3(a)), and a seed contour consisting of four parts is automatically generated by point
tracing on the edge map (Figure 3(b) and (c)). The details of the seed construction can be found
in [8]. The seed will then automatically deform according to active contour evolution, but each
part has its own motion law. The contour evolution mechanism can be found in [8].

The fornix tip can also be removed by automatic fornix detection [8]. Since we know the fornix
always appears beneath the body of the CC, we only need to search along the lower boundary to
detect it. There are three distinct points around the fornix (Figure 3(d)). The fornix dip is removed
by connecting points a and b. The final result on one sagittal slice is shown in Figure 3(f), compared
with the intermediate result with the fornix dip in Figure 3(e). The quantitative evaluation of the
segmentation results is performed in [8], which shows high accuracy of this method.

Since the CC shapes on adjacent slices do not differ too much, we apply the segmentation
method on mid-sagittal slice and the result is used as the seed for its two neighbor slices. After
slight deformation, the boundary curves on these two slices can be obtained and each one is again
used as the seed of its next adjacent slice.

Contour stitching is performed to create the 3D CCmodel of each subject. Since the segmentation
method can keep track of the four sensor points on the CC boundary, the point correspondence
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Figure 4. (a) Partition of the CC: r1—anterior third; r2—anterior body; r3—posterior body; r4—isthmus;
r5—splenium and (b) bounding rectangle of the CC.

problem can be simplified by first matching the sensor points among contours [6]. After matching
the sensor points, the four parts are implicitly matched among contours. We only need to match
the individual points within each part. The details of matching the sensor points and the inner
points of the four parts can be found in [6].

By connecting the matched point pairs between adjacent contours, the 3D mesh is created.
A tangential Laplacian smoothing [13] is performed to maintain a good node distribution of the
model. The reconstructed model is shown in Figure 5.

2.2. Phenotypic traits

Volumes of the CC and its sub-regions are computed similar to that in [1]. The CC is divided
into five regions along anterior–posterior line (Figure 4(a)). To find the anterior–posterior line, we
calculate the distance between every two points on the CC boundary, and find the pair of points
with the longest distance (p1 and p2 in Figure 4(a)). The line connecting these two points is the
anterior–posterior line. The five regions are defined the same as in [1]. For simplicity, we label
them from r1 to r5 as shown in Figure 4(a). Areas are computed in pixels for each 2D segmented
CC, and the areas of nine slices are summed to generate the voxel count of the 3D model. The raw
volume is the multiplication of the voxel count and the voxel size in mm3. To take into account
the effect of the brain volume, we normalize the raw CC volume by the total brain volume (TBV)
and the intracranial volume (ICV), respectively. TBV includes gray matter and white matter and
excludes ventricles [14], and ICV is the sum of white matter, gray matter, and inner and outer
cerebrospinal fluid spaces [15]. A choice can be made between using TBV or ICV as an adjustment
factor [14], but our results show that the two choices do not make any difference. The brain
volumes, raw and scaled volumes of the CC and the five regions are compared between patients
and controls using t-tests.
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We explore additional phenotypic traits based on the oriented bounding rectangle of the CC. To
construct the rectangle, we first find points p1 and p2 as mentioned above. On each side of line
p1p2, we find a point on the CC boundary which has the maximum distance to line p1p2 (p3, p4
in Figure 4(b)). The bounding box is a rectangle whose long edges pass p3 and p4, respectively
and are parallel to line p1p2, and whose short edges pass p1 and p2, respectively (Figure 4(b)). We
measure the length, width and aspect ratio (length/width) of the bounding rectangle on each 2D
slice and average them across the nine slices. The shape of the bounding box depends on both the
size and the shape of the CC, so these traits can reflect both size and shape information of the CC.
We also compute the thickness at the border of every two sub-regions, which is the length of each
dividing line (L1–L4 in Figure 4(a)). With a little abuse of notation, we denote the thickness at
each dividing border as L1–L4. The thickness at each border is averaged across the nine slices. The
average measurements of the bounding box and the thickness are compared between patients and
controls using t-tests. To account for the brain volume effect, we scale the above raw measurements
by the cubic root of TBV and ICV, respectively. Since these measurements are in millimeter, this
scaling makes the units consistent. These scaled measurements are also compared between patients
and controls.

2.3. Point correspondence via planar conformal mapping

Conformal parameterization has been explored intensively as a potential approach to the matching
and analysis of brain data. It maps the brain surface into regular and more simple domains and
carries out the analysis on the parameter domain. Gu et al. [11] used spherical conformal map
to match cortical surfaces, where they parameterized the genus zero closed surfaces by spheres.
Unlike their data, the CC surfaces we are studying have two boundaries, which are the 2D CC
contours of the two end slices. Inspired by [10], we design a planar conformal mapping method.
In order to find point correspondence among different CC surfaces, we first parameterize each
CC surface using a planar domain, and then align the parameterization in the planar domain so
that surface points across different objects posses the same parameterization. Finally, the aligned
parameterization in the planar domain is mapped back onto the original surfaces (Figure 5).

Among all the CC models an arbitrary model is chosen as the target surface, and the corre-
sponding points on the other models (source surfaces) are to be established to match the points on
the target surface. We conformally flatten the target surface M onto a planar domain M ′, which
is a rectangle with the two boundaries �1 and �2 mapped to the upper and lower long edges.
In order to parameterize the given surface with a planar domain, we need to construct a special

Figure 5. Illustration of establishing point correspondence via planar conformal mapping: two individual
CC models (left) and their planar domains (right).
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holomorphic one-form �+�
√−1, such that its integration around the boundaries has a real part

with a constant period, while the integration along a path from one boundary to the other has a
constant imaginary part. To get the imaginary part �, we need to compute a harmonic function f
by solving a Dirichlet problem:

� f =0

f |�1 =1

f |�2 =0

(1)

� is the gradient of f and the real part � is the conjugate of �. In our implementation, we first
convert � into a piece-wise constant vector field �� sampled at each face; rotate �� by 90◦ around
the face normal, and turn the rotated vector field into the one-form �. Choosing an appropriate
starting point, we can integrate the holomorphic one-form �+�

√−1 on M . Taking the real and
imaginary parts of the integration to be y and x coordinates, respectively, we get a horizontal strip
that is periodic along the X direction. Cutting the strip along the vertical line x=0, we get the
final planar domain M ′, where the upper and lower side corresponds to the two boundaries in the
original mesh M . The map from M to M ′ is conformal; the height–width ratio of the rectangle is
a conformal invariant of the original surface. In our experiments, we always re-scale the rectangle
uniformly along the X and Y directions so that the width equals to 2�. As a consequence, the
intrinsic structure is solely reflected by the height of the rectangle for our cases.

The same method is used to map each source surface onto its planar domain. After that, we
compute the map between the target planar domain and each source planar domain. In our case, a
reasonable map should satisfy two constraints. First, each boundary of the source surface should
be aligned with the corresponding boundary of the target surface. In the rectangle domain, we
need to map the upper (lower) edge of the source rectangle to the upper (lower) side of the target
rectangle. As mentioned before, the width of the rectangle is always equal to 2�, while the height
may be different from model to model. Therefore, we may need to re-scale one rectangle along
the Y direction to align with the other rectangle. In our experiments, all the rectangles have similar
heights, so the re-scaling factor is very close to one and therefore would not hurt the conformality
of the map too much. Even in the case of a bigger re-scaling factor, the map is still affine and
therefore harmonic, which is already strong enough for our purpose. The second constraint is
to align the ‘bending corner’ (i.e. point c in Figure 2(d)) across two surfaces. In order to make
the mapping process easier, we choose the bending corner to be the starting point used in the
integration of the holomorphic one-form. As a consequence, in the planar domain the bending
corner will appear at the vertical cutting side. Aligning the two rectangles along their left and right
sides, the bending corners will be automatically matched. Since all the rectangles have the same
width 2�, we do not need to re-scale any of them along the X direction.

Once the source rectangle is totally aligned with the target one, we get a map F ′ between two
planar domains. For each vertex v on the target rectangle, there is a point F ′(v) in the source
rectangle, which may lie inside a triangle, on an edge or at a vertex. Without loss of generality,
we represent the point as a linear combination F ′(v)=b0v0+b1v1+b2v2, where vi is the vertex
of the resident face and bi the corresponding barycentric coordinate. The map F ′ between two
planar domains induces a map F between the two original surfaces. Namely, each vertex v in the
target surface corresponds to a point F(v)=b0v0+b1v1+b2v2 in the source surface. To facilitate
later processing, we re-sample the source surface using these points as vertices, and re-triangulate
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the source surface with the same connectivity as that of the target surface. Therefore, each point
on the source surface has a correspondence on the target surface, and the two surfaces have the
same triangulation.

The same method is used to align each source planar domain with the target planar domain, and
to re-triangulate the source surface. In this way, the point correspondence among all the surfaces
is established through the target surface.

2.4. Spatial alignment

Before the shape comparison, rigid-body Procrustes Analysis [16] is performed on each 3D mesh
across subjects in order to eliminate the shape differences caused by translation, rotation and
scaling. The algorithm can be summarized as follows:

1. Select one shape to be the approximate mean shape (e.g. the shape of the first subject).
2. Align each shape with the approximate mean shape:

(a) Translate each shape so that its centroid is at the origin.
(b) Normalize each shape X by a scale factor s=‖X‖, where X is the coordinate matrix

consisting of row vectors of the coordinate of each point after translation.
(c) Rotate each shape to align with the newest approximate mean shape. The details of the

rotation algorithm can be found in [16].
3. Calculate the new approximate mean shape from the aligned shapes. If it is different from

the one in step 2, return to step 2.

2.5. Statistical testing of group mean differences

The difference in the size of the CC has been eliminated in the spatial alignment, so the shape
analysis only reveals pure shape difference in local CC area between patients and controls. In the
local shape analysis, difference between groups at every surface location is tested (Figure 6). This
can be done in two main ways [9]. One way is to analyze the local difference to a template, which

Figure 6. Schematic view of the test procedure.

Copyright q 2009 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2009)
DOI: 10.1002/cnm



DETECTING CC ABNORMALITIES IN AUTISM SUBTYPE

is usually the mean of the two groups. Student t-test can be used to test the local significance and
He et al. [6] used this method. The main disadvantage of this method is the need to select a
template, which introduces an additional bias. The other method is to directly analyze the spatial
location of each point, and we apply this method in our study. No template is needed in this
approach and multivariate statistics of the (x, y, z) location are used. Hotelling T2 two-sample
metric is used to measure how two groups are locally different from each other. We use a modified
T2 metric instead of the standard one, because it is less sensitive to group differences of the
covariance matrixes and the sample size [9]. This metric is defined as

T 2= (�1−�2)
′
(

(1/n1)
∑
1

+(1/n2)
∑
2

)−1

(�1−�2) (2)

where
∑

1 and
∑

2 are the covariance matrices of the two groups. Since comparisons are made at
thousands of CC surface points, a permutation test is, therefore, used to confirm the significance
of the overall differences in the statistical mapping result adjusting for multiple comparisons [17].
Suppose we have two groups A and B whose sample sizes are nA and nB, the permutation scheme
can be stated as follows:

1. Calculate the test statistic (in our case, T2) between A and B, denoted as S0.
2. The observations of A and B are pooled. From the pooled values, nA observations are sampled

without replacement to form group A, and nB observations are sampled to form group B.
The test statistic between the two new groups is calculated.

3. Repeat the sampling process (permutation) in step 2 for M times. The test statistic in j th
permutation is denoted as S j .

4. The proportion of S j ’s, which are greater than S0 is the p-value.

M is a large number with the maximum value of(
nA+nB

nB

)

The resulting p-values generate a significance map that locates significant shape differences
between the two groups. Both raw and corrected p-values are shown in the experiment.

We also perform a global shape analysis, where the average of the local Hotelling T2 metrics
across the whole surface is calculated for each subject, and the p-value is computed in the same
way as for the local testing. No permutation is needed since there is only one test.

3. RESULTS

3.1. Subjects and data

Thirty patients with essential autism participated in this study. All patients met the DSM-IV
criteria [18] as well as autism diagnostic interview-revised (ADI-R) and ADOS algorithm criteria.
The distinction between essential and complex autism is based on the presence of generalized
dysmorphology, which is indicative of an insult to early embryologic development and has been
previously reported [5]. Children with a known disorder such as Fragile X, Tuberous Sclerosis,
a chromosome abnormality or severe prematurity with brain damage and children with IQs/DQs
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Table I. Volume measures.

CC measure Patients Controls p-value

TBV (cm3) 1421.9±299.4 1313.6±336.0 0.09
ICV (cm3) 1460.4±308.3 1348.3±345.5 0.09
Raw measures (mm3)
Total CC 4229.1±755.3 4727.7.0±971.4 0.01
r1 1754.2±321.3 1939.5±367.9 0.02
r2 474.4±103.9 556.1±142.9 0.008
r3 439.7±123.1 505.1±139.9 0.03
r4 404.6±108.3 458.8±140.8 0.05
r5 1153.3±227.7 1263.5±275.7 0.05
Scaled by TBV (×10−4)
Total CC 31.0±9.3 37.0±8.1 0.004
r1 13.0±3.5 15.1±3.1 0.004
r2 3.4±1.0 4.3±1.0 0.001
r3 3.2±1.2 3.9±1.0 0.009
r4 2.9±1.0 3.6±0.9 0.01
r5 8.6±2.9 10.1±2.4 0.02

less than 40 will be excluded. Five healthy people recruited from the NIH Human Brain Project
participated as controls. Besides, we also obtained MR images of 23 controls from IBSR database
[19]. The age range of all participants is 3–30.

MR images of our patients and controls were obtained from our autism aesthesia protocol,
which included intravenous infusion of protocol to insure image quality. Axial, coronal and sagittal
T1-weighted images were acquired using the Siemens Symphony 1.5 T scanner with the following
parameters: TR=35ms, TE=minimumms, NEX=1, flip-angle=30◦, thickness=1.5mm, field
of view=22cm, matrix=512×512. The data obtained from IBSR were T1-weighted MR images
with 3.1mm thickness. Each brain volume was interpolated to 0.9mm isotropic voxels.

3.2. Phenotypic trait measurements

Table I shows the t-test results of the volumes. The mean TBV and ICV of the patients are
greater than those of the controls, but the p-values do not reveal any significance in this difference
(p>0.05). The raw measures of the CC volume and its sub-regions show that the patient’s volume
is significantly smaller than the controls (p<=0.05), especially in the region r2 (anterior body).
The comparison of the scaled measures by TBV and by ICV shows similar results, both of which
augment the significance of the difference. Table I only shows the results of TBV normalization.

Table II gives the t-test results of the traits regarding the bounding rectangle and the thickness.
In the raw measures, the patients have significantly reduced length and aspect ratio of the bounding
rectangle, while other traits do not show any significance in the difference between patients and
controls. When scaled by the cubic root of TBV, the length of the bounding rectangle keeps its
strong significance and the width still shows no significance in the group difference. The p-values
of the difference in thickness are decreased but none of them reach the significance level (0.05).
The difference in L2 between patients and controls is close to significant, which is consistent
with the volume measurements since the anterior body displays most significant difference. The
comparison shows similar results when the measurements are scaled by the cubic root of ICV, and
Table II only shows the results of TBV normalization.
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Table II. Phenotype traits.

CC measure Patients Controls p-value

Length 66.2±4.8 72.1±5.0 <10−4

Width 24.0±3.0 23.6±3.6 0.33
Length/width 2.78±0.3 3.11±0.49 0.002
L1 5.91±1.13 6.09±1.19 0.28
L2 5.40±1.18 5.76±1.35 0.14
L3 5.11±1.35 5.29±1.53 0.31
L4 7.53±1.76 7.77±2.06 0.32
Scaled by TBV
Length 0.59±0.05 0.66±0.06 <10−4

Width 0.21±0.02 0.22±0.03 0.35
L1 0.053±0.011 0.056±0.010 0.14
L2 0.048±0.011 0.053±0.011 0.07
L3 0.045±0.012 0.048±0.013 0.20
L4 0.067±0.016 0.071±0.017 0.22

(a)

(b) +                                                                                 - 

Anterior 

Posterior 

Bottom                    To p

Figure 7. (a) Overlaid average structures (blue: controls, red: patients) and (b) distance
map between the two averages.

3.3. Group mean difference map

Figure 7 gives a descriptive visualization of the group difference. The overlaid average CC structures
are shown in Figure 7(a). Figure 7(b) shows the signed distance map between the two average
structures rendered on an overall average shape, where the negative distances indicate that the
patients’ structure is outside the controls and the reverse is for the positive distances. The anterior
is more projected and the posterior is more inward in the patients’ structure. The posterior body
and isthmus are thinner in the patients’ structure.

3.4. Statistical testing results

The significance maps of the raw and corrected p-values are shown as color coded p-values in
Figure 8. Smaller p-values indicate larger statistical significance. A two-tailed alpha level of 0.05
is chosen as the significance threshold. Figure 8(a) is the significance map of raw p-values, which
reveals significant difference in the anterior most, anterior body, isthmus and posterior bottom.
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(a) (b)

p=0                                                     p>=0.05 

Top

Bottom

Anterior                       Posterior  

Figure 8. Significance map: (a) raw p-values and (b) corrected p-values.

This result is an optimistic estimation. The permutation result is shown in Figure 8(b), which
retains part of the significance in the raw map. The global shape analysis has a p-value of 0.008.

4. CONCLUSION AND DISCUSSION

Based on the new definition of autism subgroups, we investigate the CC abnormalities in essential
autism, and exclude the complex autism group in order to find more homogeneous results. We
use a semiautomatic method to segment 2D CC boundaries, and 3D surfaces are reconstructed
by contour stitching. Regional volumes and additional phenotypic traits based on the oriented
bounding rectangle of the CC are compared between patients and controls. A newly developed
planar conformal mapping is used to parameterize the 3D surfaces. Shape comparison is conducted
at each surface location using Hotelling T2 test followed by a permutation test.

In the volume comparison, no significance is found in TBV or ICV between patients and
controls, but the non-significant trend for an increase in the brain volumes in patients is consistent
with the most previous literatures [2, 3, 20]. The significant reduction in the total CC volume in
the patients is consistent with [1]. We find significant reduction in each sub-region of the CC in
the patients, but in [1] only a significant reduction in the anterior third was found. Besides the
traditional volume test, we also conduct some tests based on the oriented bounding rectangle,
which has not been done in the previous work. The length, width, and aspect ratio of the bounding
rectangle are measured for comparison. We find significant reduction in the CC length and ratio
in the patients, but the difference in the width is far from significant. This gives us some insight
that the decrease in the CC volume is caused by the decrease in the anterior–posterior length more
than the top–bottom length.

In the shape analysis, the distance map reveals more projected anterior most and inward posterior
bottom, as well as the thinner body of the CC in the patients. The raw significance map suggests
significant differences in the anterior most, anterior body, isthmus and posterior bottom, while the
corrected significance map retains part of the significance in each region shown in the raw map.
Table III gives a summary of the findings in [1, 6] and our study regarding the shape differences
between autism and control groups. First, our results are similar to [1] in the posterior part, but
the result in [6] is opposite. This may be accidental because there is no significance in their result.
Second, our result on the anterior part is consistent with [6] but contrary with [1]. This may be
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Table III. Comparison of the CC shape analysis in different studies.

Body Anterior Posterior

CC regions Shape Significant Shape Significant Shape Significant

[1] Less arching No More inward Yes More inward Yes
[6] Less arching Yes More projected No More projected No
Our study Posterior thin Yes More projected Yes More inward Yes

explained by the population because [6] and our study exclude both the complex autism while [1]
does not. Both [1, 6] have found less arching in the body of the CC in autistic patients, but we
have found the body thinner in the posterior half. He et al. [6] and our study both find significance
in the shape changes of the body, although the changes are different.

The results of this study need to be interpreted cautiously because of several limitations. First
of all, the age range of our sample is very wide, which may have some effect on the CC measure-
ments. Second, we exclude the complex autism group as it was done in [6]. However, with the
improvements in the surface matching and statistical testing methods compared with [6], our results
are more convincing than [6].

In conclusion, patients have a trend for a reduction in the volumes of the total CC and each sub-
region. Further experiment with larger sample size needs to be done to confirm the significance of
these size differences. New phenotypic traits based on the oriented bounding box are studied. The
decrease in the anterior–posterior length is found to be the main reason for the CC size reduction.
A new surface matching technique is used for shape comparison. The permutation results show
significant difference in the anterior most, anterior body, isthmus and posterior bottom. Further
studies on different subgroups within autistic patients need to be done, such as male vs female
and complex vs essential. These findings will better explain the inconsistent results caused by the
population.

ACKNOWLEDGEMENTS

Some of the authors of this paper are supported in part by a research scholarship funded by the Thompson
Center for Autism and Neurodevelopmental Disorders. We are very grateful for Dr Evan Boote and Chris
Jones for helping us in obtaining the MRI data used in this study.

REFERENCES

1. Vidal CN, Nicolson R, DeVito TJ, Hayashi KM, Geaga JA, Drost DJ, Williamson PC, Rajakumar N, Sui Y,
Dutton RA, Toga AW, Thompson PM. Mapping corpus callosum deficits in autism: an index of aberrant cortical
connectivity. Biological Psychiatry 2006; 60(3):218–225.

2. Piven J, Bailey J, Ranson BJ, Arndt S. An MRI study of the corpus callosum in autism. American Journal of
Psychiatry 1997; 154:1051–1056.

3. Hardan AY, Minshew NJ, Keshavan MS. Corpus callosum size in autism. Neurology 2000; 55:1033–1036.
4. Brambilla P, Hardan A, di Nemi SU, Perez J, Soares JC, Barale F. Brain anatomy and development in autism:

review of MRI studies. Brain Research Bulletin 2003; 61:557–569.
5. Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang CH, Hillman RE, Farmer JE. Essential vs

complex autism: definition of fundamental prognostic subtypes. American Journal of Medical Genetics 2005;
135A:171–180.

Copyright q 2009 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2009)
DOI: 10.1002/cnm



Y. DUAN ET AL.

6. He Q, Duan Y, Miles JH, Takahashi TN. Statistical shape analysis of the corpus callosum in subtypes of autism.
IEEE 7th International Symposium on Bioinformatics and Bioengineering, Boston, MA, U.S.A., 14–17 October
2007.

7. Shyu C, Green JM, Lun DPK, Kazic T, Schaeffer M, Coe E. Image analysis for mapping immeasurable phenotypes
in maize. IEEE Signal Processing Magazine 2007; 115–118.

8. He Q, Duan Y, Miles JH, Takahashi N. A context-sensitive active contour for image segmentation. International
Journal of Biomedical Imaging 2007; 2007:8. Article ID 24826, DOI: 10.1155/2007/24826.

9. Styner M, Oguz L, Xu S, Brechbuehler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G. Framework for the
statistical shape analysis of brain structures using SPHARM-PDM. Insight Journal—2006 MICCAI Open Science
Workshop, 2006.

10. Gu X, Yau S. Global conformal surface parameterization. Proceedings of the 2003 Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing, 2003; 127–137.

11. Gu X, Wang Y, Chan TF, Thompson PM, Yau S-T. Genus zero surface conformal mapping and its application
to brain surface mapping. IEEE Transactions on Medical Imaging 2004; 23(8):949–958.

12. McInerney T, Hamarneh G, Shenton M, Terzopoulos D. Deformable organisms for automatic medical image
analysis. Medical Image Analysis 2002; 6:251–266.

13. Wood Z, Desbrun M, Schroder P, Breen D. Semi-regular mesh extraction from volume. Proceedings of the
Conference on Visualization ’00, 2000; 275–282.

14. O’Brien LM, Ziegler DA, Deutsch CK, Kennedy DN, Goldstein JM, Seidman LJ, Hodge S, Makris N, Caviness V,
Frazier JA, Herbert MR. Adjustment for whole brain and cranial size in volumetric brain studies: a review of
common adjustment factors and statistical methods. Harvard Review of Psychiatry 2006; 14(3):141–151.

15. Wolf H, Kruggel F, Hensel A, Wahlund L-O, Arendt T, Gertz H-J. The relationship between head size and
intracranial volume in elderly subjects. Brain Research 2003; 973(1):74–80.

16. Ross A. Procrustes analysis. Technical Report, Department of Computer Science and Engineering, University of
South Carolina, SC, 2004. Available from: www.cse.sc.edu/∼songwang/CourseProj/proj2004/ross/ross.pdf.

17. Nicolson R, Devito TJ, Vidal CN, Sui Y, Hayashi KM, Drost DJ, Williamson PC, Rajakumar N, Toga AW,
Thompson PM. Detection and mapping of hippocampal abnormalities in autism. Psychiatry Research:
Neuroimaging 2006; 148:11–21.

18. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (4th edn). Text revision,
American Psychiatric Association: Washington DC, 2000.

19. http://www.cma.mgh.harvard.edu/ibsr/.
20. Palmer SL, Reddick WE, Glass JO, Gajjar A, Goloubeva O, Mulhern RK. Decline in corpus callosum

volume among pediatric patients with medulloblastoma: longitudinal MR imaging study. American Journal of
Neuroradiology 2002; 23:1088–1094.

Copyright q 2009 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2009)
DOI: 10.1002/cnm


