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Abstract— Mesh parameterization is a fundamental technique
in computer graphics. The major goals during mesh param-
eterization are to minimize both the angle distortion and tre
area distortion. Angle distortion can be eliminated by the use of
conformal mapping, in principle. Our paper focuses on solvig
the problem of finding the best discrete conformal mapping tlat
also minimizesarea distortion.

Firstly, we deduce an exact analyticaldifferential formula to
represent area distortion by curvature change in the discree
conformal mapping, giving a dynamic Poisson equation. On a

mesh, the vertex curvature is related to edge lengths by the

curvature map. Our result shows the map is invertible, i.e.
the edge lengths can be computed from the curvature (by
integration). Furthermore, we give the explicit Jacobi matix of
the inverse curvature map.

Secondly, we formulate the task of computing conformal paren-
eterizations with least area distortions as a constrained anlinear
optimization problem in curvature space. We deduce explidi
conditions for the optima.

Thirdly, we give an energy form to measure the area distortios,

and show that it has a unique global minimum. We use this
to design an efficient algorithm, calledfree boundary curvature

diffusion, which is guaranteed to converge to the global minimum;
it has a natural physical interpretation.

This result proves the common belief that optimal parameter
zation with least area distortion has a unique solution and an
be achieved by free boundary conformal mapping.

Major theoretical results and practical algorithms are presented
for optimal parameterization based on the inverse curvatue map.
Comparisons are conducted with existing methods and using
different energies. Novel parameterization applicationsare also
introduced. The theoretical framework of the inverse curvdure
map can be applied to further study discrete conformal mappngs.

Index Terms— Mesh, Conformal Parameterization, Poisson, Met-
ric, Curvature, Inverse map

I. INTRODUCTION

Fig. 1. There are an infinity number of conformal parame&tions for a
given surface. We minimize the area distortion within thefoomal mappings.

How can we find the best conformal mapping that has the least
area distortion?

In this paper, we present a set of theoretical tools as well as
practical algorithms to tackle this problem.

A. Background

Parameterization methods have become a fundamental tool in
graphics, and a significant amount of research has focused on
it. Here, we briefly overview the most related works and refer
readers to [1]-[3] for wider surveys.

A common approach for parameterization is to minimize aabert
energy to control the distortion. Léwst al. [4] defined an energy
to approximate the Cauchy-Riemann equation; Desbtual. [5]
optimize Dirichlet energy. Variations of harmonic eneggiare
also optimized using discrete Laplace-Beltrami operaiof6]—
[11]. More general energy forms can be found in [12]-[17].9¥l0
linear methods apply a convex Dirichlet-type boundarytuér
boundaries are applied in [17] and [18] to absorb distogtion
introduced by the convex boundary conditions. Alterndyivet]
and [5] provide parameterizations which require to fix only a

Surface parameterization is the process of mapping a gurfdew vertices in the parametric domain. Kaeti al. [19] discuss
to a planar region, and it has broad applications in graphidge design of geometrically complex boundary conditionghwi

Parameterizations introduce distortions between thearaligur-
face and its planar image, which can be separated anigie
distortion and area distortion[1]—[3]. In theory, angle distortion

impossible for conformal mappings to further eliminzesa
distortion completely, except for developable surfaces.

constraints. Zayeret al. [20] apply discrete tensorial quasi-
harmonic maps to improve the boundary and reduce the d@stort

can be eliminated completely by conformal mapping, but it i(S)ne of the most prominent characteristics of conformal rivepp

IS that it preserves angles. Angle based flattening meth&FJA
[21] utilizes this property to produce high quality confaimap-
pings. They derive the discrete conformal mapping by mimingj

For a given surface, we can define infinitely many differerthe ABF energy which is defined as differences between the

conformal mappings with different area distortions, aswshn
Fig. 1. The central problem of the optimal parameterizatan
be stated as follows:

corner angles of faces on the original mesh and their images
on the parameter plane. During the process the boundaryesvol
freely to further reduce the distortion. Recently, the rodtfnas
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been improved by several derivative works [22], [23] in teraf We show that the curvature map is bijective in the conformal
speed and robustness. mapping. We give an analytical formula for theverse curvature
map by explicitly computing its Jacobian, which is revealed as
a dynamic Poisson equation (see Section Il). Therefore, ame c
easily compute the radii from the prescribed curvatures.

Another characteristic of conformal mapping is to map inési
mal circles to infinitesimal circles and preserve their rigéetion
angles. This inspired the circle packing method in [24].cteir
packings and circle patterns replace infinitesimal circlith Discrete conformal parameterization can be treated asnfindi
finite circles. In the limit of refinement the continuous commhal configuration of radii such that all curvatures are zerosepkc
maps are recovered [25]. Collins and Stephenson [26] hatse at the boundaries and cone singularities. All cureatu
implemented circle packing in their softwaf@irclePackwhich configurations corresponding to parameterizations fornaféine
only considers combinatorics. The connection betweenlecirsubspace, which we call thedmissible curvature spacérea
packing and smooth surface Ricci flow [27] was discovered dlistortions can be measured by various energy forms defined o
[28]. The discrete Ricci flow method was introduced in [29] fothe configurations of radii. Optimal conformal parametaian
hyperbolic parameterization. is equivalent to minimizing the specific energy in the adrhiss

Kharevychet al. [30] provided conformal parameterizations forcurvature space, and therefore it is a nonlinear optinuzati

arbitrary genus types by applying circle patterns basedhen # roblem with linear constraints.

variational principle in Bobenko and Springborn [31]. Thethod Energies with good properties, such as differentiabilitgjque

in [30] supports very flexible boundary conditions rangimgnf global minimum, simple forms of gradient and Hessian, are
free boundaries to control of the boundary shape via ptestri highly preferred in practice. We discovered an energy fonat t
curvatures. They can further reduce the distortion by ino@ting meets all the requirements (see Section IlI-E). Furtheemar
manually selected cone singularities. Ben-Cleeral. [32] intro-  simple curvature flow algorithm with free boundary condigds
duced a conformal parameterization which automaticallierde guaranteed to converge to the global minimum.

mines the locations and target curvatures of the cone sirigak. L . L )
The pipeline of optimal parameterization system is as fadlo

Our work differs from the previous work in the following agp& 1. Mesh preparation (Section 1lI-A)

Based on a rigorous theoretic proof, our method can produgeComputing the initial circle packing metric (Section-B)

a discrete conformal parameterization with least aresodish 3. Selecting the singular vertex set (Section 1lI-C)

among all possible parameterizations. Similar to [30], method 4. Computing the optimal circle packing metric (SectionDl|
is applicable for meshes with general topologies. Furtieenthe Section IlI-E)

method can be extended for optimizing more general energ@slisometric embedding (Section llI-F)

with constraints on curvatures and area distortions. @ishows

parameterizations with special curvature constraintsh shat all

boundary curvatures are constant.) The theoretical results of inverse curvature map are axgdain

Section Il. Each step of the algorithm pipeline is elucidaie
In this paper, we will explain our theoretical results angogith- ~ Section I1l. The experimental results are demonstratedeitién
mic implementations with circle packings. Since circle lpag |v. We conclude our work and point out the future direction in
and circle patterns are equivalent in theory [33], [34], msults Section V. Detailed theoretical proofs are presented inefplx.
can also be explained with the setting of circle patterne (se
Appendix B).
II. INVERSEDISCRETECURVATURE MAP

B. Overview In this section, we introduce the inverse curvature mapgchvis
the key ingredient of our optimal parameterization.

Most of the previous works minimize some energy forms which . o . .

measure both angle distortion and area distortion. In thigkw The discussion is based on general triangular meshes vith ar

we take the approach similar to those in [5], [20] to separaféry topologies. We denote a mesh ldy= {V,E,F}. A vertex,

these two criteria. As shown in Fig. 1, we only minimize thén edge, and a face are denoted;ads, vj] (or &), and[vi, vj, W]

area distortion within the conformal mappings, which etiate (Or fij), respectively. A mesM embedded "Rfo’ has a naturally
the angle distortions. induced Euclidean metric, which is determined by each edge

length. The vertex curvatures are defined as follows. For an
We address the angle distortion by using the discrete cowfor interior vertex, the curvature equalstinus the sum of angles
mappings based ocircle packing The given mesh is covered by petween edges at the vertex, whereas for a boundary veriex, i
circles, each of which is centered at a vertex as shown in Fig.minus this sum. The discrete Gauss-Bonnet theorem stages th

3. A circle centered at a vertex is tangent to or intersectd Withe total curvature is (M), wherex(M) is the Euler number
another circle centered at its neighbor vertex. We appratém of the mesh.

the conformal mapping by varying the radii while preservihg
intersection angles among the circles. (see Section II).

With circle packing, we can establish the mapping from th@- Circle Packing Metric
configuration of radii to the configuration of the curvatyrtdee

so calledcurvature map K Given a triangular mesh, we associate to each vertexcircle

with radius y. On edges;j, the two circles with radiiy andy;
K : {configuration of radi} — {configuration of curvaturgs intersect at an angle af;, as shown in Fig. 3.
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Mesh Preparation‘%’Compute the Initial CP Metriq@—>’ Select the Singular Vertex S%gf» Optimizatior Embedding

Fig. 2. Algorithm pipeline.

The derivative maplK : TMy(u) — TQk(k), satisfies the discrete
Poisson equation,
dk = A(u)du, 1)

whereTIMy(u) is the tangent space of, at the pointu, TQy (k)
is the tangent space @l at the pointk, andA(u) is a positive
definite matrix when restricted 61, (u).

Therefore, the curvature map and the inverse curvature @ap c
be represented as

up kq
ki—ko= [ A(u)du, ul—uoz/k AE)E. (2)

Fig. 3. Circle packing metric. /Uo

A detailed proof can be found in Appendix A. Here we give an

Definition 2.1 (Circle Packing Metric)A circle packing metric intuitive picture using alifferential network flow modeis shown
for a meshM is defined asM,T,®), whereM represents the in Fig. 4. We treat the mesh as a network. Curvature flows along
triangulation,” : V — R~ is the circle radius function for vertices the €dges when vertex radii change. Suppgsandv; are two

(i.e.,vi— y), and®: E — [0, Z] is the angle function for edges adjacent vertices, such that the logarithms of the radingbaby

> . L .
(i.e.,ej — @;). The discrete metric on an edeg is determined OUi and du; respectively, and the conductivity (weight) for the

edge isw;; > 0, which depends on the current vertex radii.
bylijz\/yi2+y]2+2y|ijOS(nj. g ij p

) ] _Then the curvature flux frony; to v; along the edge i®kjj =
Now, the edge lengths can be determined by the circle 'ij"wij(éuj —0u;). Each vertex has several edges connected to it, so
and the intersection angleg; with the cosine law, depicted in the net edge curvature flux equals the overall curvature gghan

Fig. 3. Since the edge lengths determine the angles on eaeh g the vertexdk; = 3, dkij. Therefore, the Laplace matrix has an
the circle radii determine the vertex curvatures. We ded@the gypicit form: A = (i)

mapping from the configuration of radii to the configuratioh o

the vertex curvatures as tlervature map —wij i # ] vi,v]€E
dj =9 JkWk =] (3
0 i #J,[vi,vj] ¢E

B. Inverse Curvature Map We now explain the geometric meaning of the edge weight. On

each face, there exists a unique circle perpendicular tthede
circles, as the red circle shown in Fig. 3. The center of thelei

is the radial center (or power centey. Then the weight for a
halfedge equals t(?l'—‘ wherehj; is the distance from the radial
center to the halfe(Jjgd-.j is the current length of the halfedge.
The edge weight is the sum of those of its halfedge weights
and depends on the current curvature (or, equivalently ab&)r
Therefore the Laplace-Beltrami operator is dynamic. Tlaist f
makes the whole theory more complicated.

Two circle packing metrics of the same mddh (M,I"1,®;) and
(M, T2, ®,), areconformalto each other, ifd; equals®,. Each
conformal equivalence class of circle packing metrics foran
space which we call aonformal discrete metric spacdenoted
by U. Upon fixing the edge angleg;, a discrete circle packing
metric can be represented by a vectoe (ug,---,uy), where
U =logy, Ui € (—,40), andn is the number of vertices. Each
conformal discrete metric space is homeomorphiitoBecause
scaling does not affect the curvature, we normalize thecraml
metrics by requiringy;u = 0, which defines a hyper-plane in
the R" that we denotdl,. The discrete curvatur& maps each
u to a curvature functiork = (kg,k,---,kn), and the image of
Qy :=K(My) is a convex polytope [28].

The curvature mapgK from the conformal metric space to the
curvature spac : Ny — Qy is bijective; both the map and the
inverse map have an infinite degree of smoothness. Furthermo o - e _
the curvature map is real analytic (so it can be represersetea Okj = 3 Okij Okij = wij (duj — ouy)

summation of an infinite series.) Fig. 4. Differential network curvature flow model. The cuw flux along

edgedk;j is driven by the gradient abu. The change of curvature at a vertex
Theorem 2.2 (Inverse Curvature Mapyhe curvature mapK 3k equals the divergence of the curvature flow.

from a conformal class of circle packing metri¢s, to the
curvature spac&) is a C* diffeomorphism. Furthermore, it is Algorithm 1 computes thénverse curvature mapwhich can be
real analytic. applied for conformally parameterizing general meshesctly.
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Fig. 5.

Discrete conformal parameterizations usingerse Curvature Mag[#v, #f, execution time (sec)] are [20660, 41118, 6.3],929, 59417, 11.2],

[20224, 40118, 5.8], [20618, 40803, 6.6], and [10219, 20438], respectively with Pentium4 2.8GHz with 2GB memory).

Fig. 5 demonstrates some parameterization results usiisg th

algorithm.

Algorithm 1 for computing the discrete conformal metticfor
the prescribed curvature is as follows:

Algorithm 1 Inverse Curvature Map = K—1(k)
Compute the initial circle packing metricv,I", ®)
Compute initial curvaturek
U <= Ug, Whereug is the initial circle packing metric.
while |k—k|> € do

Computew;j (u) to form the Laplace matrif\(u).
du <= A(u)~1(k —k)
u<=u-+du
k < K(u)
end while
u<u

C. Relation with Discrete Ricci Flow

Inverse curvature map can be also deduced from the theory o

discrete Ricci flow [28]. The fact that curvature mEp u — k
is invertible is proven in the following way.

Let ug be the initial metric with the curvaturkg. Supposdz is
the prescribed curvature and its corresponding metrig, ithen
we can define the followingliscrete Ricci energy

Erclt) = [ (K—K)Tdp.

0

(4)

From discrete Ricci flow theoryEgic(u) is convex in the sub-
affine spacey u; =0, andu is the unique global minimal point.

The target metriau can be obtained by minimizing the energy,

using the steepest descent method

du —
i —OEgic(u) = —(k — k),
which is the discrete Ricci flow. Therefore, the curvaturegprida

is invertible.

In order to compute the optimal parameterization, we need
explicit form of the Jacobi matrix of the curvature map, whis
related to the Hessian matrix &kic(u). This is the key step for
a nonlinear optimization algorithm.

[1l. OPTIMAL SURFACE PARAMETERIZATION

This section explains the algorithm pipeline for the optation
system as shown in Fig. 2, each subsection corresponds to one
step respectively.

A. Mesh Preparation (optional)

In practice, the initial circle packing metric requires #ile edge
angles to be acute, so that the Jacobi matrix of the curvature
map is positive definite (equivalently, the Ricci energy &).is
convex) to ensure the unigueness of the solution. If thetingsh

has too many obtuse angles and skinny triangles, we remesh it
using the algorithms described in [35], [36] to improve thesm
quality.

B. Computing the initial Circle Packing Metric

We use a simple method for the initial circle packing metric,
described in Algorithm 2.

Algorithm 2 Compute the initial Circle Packing Metric
for all faces[vi,vj,v] € F do
for all cornersc;, related tov; in each facedo
! i +Hij i
M(G) Mgk
end for
end for
for all vertexv; €V do
¥ — maxy(c)|c is attached tos}
end for
for all edges[vi,vj}ze E do

=¥y
2y Y

@; = min{cos!
edge length
end for

.3}, where lj; is the Euclidean

In experiments, this algorithm guarantees to get acuteecorn
angles, and the initial circle packing metrics are very etbso
the induced Euclidean metric of the mesh.

C. Selecting Singular Vertex Set

in order to reduce the area distortion, it is very helpful to
concentrate curvatures on a subset of vertices, which weacal
singular vertex setFor example, if a mesh has boundaries, all
of the boundary vertices are in the singular vertex set ireggn
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Moreover, we can set several interior vertices as singuias én
order to minimize the area distortions. Several effectivethuads
have been introduced to select singular vertices, inctudianual
selection [30], vector field analysis [37], and spectral lgsia
[32].

We select the singular vertex set in step 3 of algorithm pigel
in Fig. 2. Intuitively, we first let the curvature be unifoynl
distributed on all vertices, then measure the area distgréind
finally pick the critical points of the area distortion fuitet. The

Optimal Parameterization Problem: Compute the minima of
the energyE (k) in the admissible curvature spafl:

mincE(k), s.t. k € M.

Basically, we compute the gradient Bfk) w.r.t k, denoted as
OkE, and project the gradient to the affine subspBige While
the projected gradient is not equal to zekds updated along its
direction. Namely, at a critical point d&(k), OkE is orthogonal
to the admissible curvature space.

algorithm is described in Algorithm 3. Fig. 6 demonstrates t This procedure can find one local minimum but does not guar-

algorithm using the Stanford Bunny model.

Algorithm 3 Compute the Singular Vertex Set
ki — O for vi € M,

E — Z"XT(M) for v; ¢ M, wheren is number of interior vertices
U« K~1(k) using Algorithm 1

S« dMU{local minima ofu}

L.

Fig. 6. Singularity selection process: (a) and (b) depietatea distortion of
the bunny model without any singular vertex. We selectaaitpoints in ear
tips and the point between the roots of the ears. (c) showartee distortion
after computing the inverse curvature map with the selesiegular vertices.
The uniformity of the area distortion is greatly improved.

D. Compute the Optimal Circle Packing Metric

antee that neither all minima, nor the global minimum can be
found. In next subsection, we design a special energy with a
unique minimum, in order that this algorithm can reach trobagl
minimum.

Algorithm 4 Optimal Discrete Conformal Parameterization
Randomly select & € Mg
repeat
u — K~1(k) using Algorithm 1
Compute the gradieril,E
OkE < A(u)10,E
for all vi € N do
OkE < OkE— < OkE, e > g

end for
OE — OkE— < OkE,d > #
k —k—ADOKE

until |OkE| <€

whered is a vector withd; = 0 for non-singular vertices and
d; = 1 for singular vertices.

Theorem 3.2:Supposek is an interior point oflMy, also an
optimum for an energy fornk(u), then all the components of

Now, we explain the process to compute the optimal circlékpac-«xE corresponding to the singular vertices are equal.

ing metrics in step 4 of the algorithm pipeline in Fig. 2. Tdere
two methods for the optimization, the projected gradienthoe

Proof The proof is based on the KKT theorem [38].Kfis an
optimum of E(k), then OxE LMg. Supposev; is a non-singular

described in Section Ill-D.1 and the free boundary cunetugertex, the normal to the hyperplafés = 0} is &, the normal

diffusion method described in Section IlI-E.

1) Projected Gradient Method for OptimizationWe can define

various energy forms to measure the area distortion. Theggne
can be defined either in the conformal metric space or in the

curvature space. In terms of computational complexityy thee

to the plane{3y,cskj = 2mx(M)} is d, whered; = 0 for non-
singular vertices;; andd; = 1 for singular verticew;. Therefore

OkE = Aig + ud,

where u is a real numberd

equivalent. We decide to define the energy in curvature space
because this is a convex affine subspace. If the energy i€xpnvrhe common energy forms used in the literature are:
only one optimum exists. Therefore, it is easy to handle both

theoretically and practically.

The possible solutions must be a valid parameterizatiomeha
all curvatures are zeros except at the singularities.

Definition 3.1 (Admissible curvature spacepiven a meshM,
the vertices are divided into two seBsand N. S represents the

1) Angle Based Flattening energy defined in [21]: this energy
measures the differences between the original and thettarge
angles at all the corners, (a corner is determined by a face
and one vertex adjacent to it).

Ensr(K) = §<e<k> —0(ko))?,

singular vertices, whered$ represents non-singular vertices. The
admissible curvature space is an affine subspace defineceas th
intersection of the following hyper-planes: 2)

M= () {k =0} Xskj = 2mx (M)} Q«

VieN Vi€

©®)

Then the optimal parameterization problem is equivalerapi-
mizing some energy forri(K) in the admissible curvature space.

where 8(ko)’s are the original corner angles.
Area distortion energy defined in [5]: this energy measure
the ratio between the original face area and the face area
on the parameter plane,
2
_ 1) ,

-

st (k)
St (ko)

(6)
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where st (ko), st (k) are the areas of the facke under the one-form, and therefore the integration is path independafe
original metric and the target metric. This energy is thean choose an arbitrary path frdtg to k in the curvature space.
most direct measurement for area distortion. .

o o . .. The curvature entropy energy is closely related to trsguare

3) u-square energy: this energy is just the norrmmupfvhich is energy defined in Eq. (7)
a vector with the logarithms of the change of circle radii. 9y q- 0,
. . u

Becaus_e the mean _ufls_zero, this energy can be trt_eated_ as E,(u) = / (1 —uo)TIdp,
the variance ofi, which is a measurement of the uniformity ug

of ;. wherel is the identity matrix. If we replaceé by A(u)~t in the

2
Epe(k) = |u(k) —u(ko)|*, (") above formula, we will get the curvature entropy energy

Een(u) = | (1 o)A ()l = / (U uo)TdE.

Uo

whereu(kp) is the initial circle packing metric.

The gradient of an energy w.r.t. u is OyE, which is related to
OE by Both A‘l(u) and| are positive definite. Therefore;square en-
OkE = A~ (u)O,E. ergy and curvature entropy energy are equivalent for thpqaer

of measuring the uniformity of the area distortian

This energy can be directly optimized using the projectedlignt
method. The gradient of the curvature entropy is very simple

e
X

(PR CERESRLTE
(e ] L Errd R OkEen(u) = U — up.
STy : LSS e
5 A ?,A

It can also be minimized by the followingurvature diffusion
method.

Algorithm 5 Curvature Diffusion with Free Boundaries
while max; enki| > € do
for all vi e N do

du < —k;
Ui < Ui +Aduy
end for
Jviev Ui
Cm WV
for all vertexv; €V do
. _— . : : . U —Uu—C
Fig. 7. Approximating conformal mappings by circle packirithe circle end for

radii are changed while tangency relations are preservied.s€cond column )
shows a circular boundary condition; the third column shavisee boundary ~ €nd while
condition. For the free boundary condition, all circle faai the boundary

vertices are equal.

Intuitively, Algorithm 5 sets% = —k. According to Eq. (1),

the curvature will evolve like a heat diffusim%—'; = —Ak. The
E. Curvature diffusion with free boundary conditions singular vertices absorb all the curvature flux, and the ehol

surface deforms to be flat in the most natural way. Because the
The energies introduced in the above are not satisfactory @ntropy increases in the heat diffusion process, we nange thi
practice. Firstly, it is unclear whether they have a uniqlebg energy as curvature entropy.
minimum or not. Secondly, their gradient has a complicatechf
leading to an expensive computation using the projectedigma
method.

We show that when the algorithm terminates, the deformation
the singular vertices is uniform.

hi . | | Lemma 3.4:Supposeu is the solution of the free boundary
In t_ is part, we introduce a nove energy, ca lndvature_entropy curvature diffusion algorithm, thes — U° = constwv; € S
which overcomes the shortcomings of other energies. It has a

unique global minimum; its gradient has the simplest farnit  Proof At the beginning, the; —u? terms are zero for all boundary
can efficiently be computed with methods other than the pteje Vertices. At each normalization ste,—u? changes by the same
gradient method. amount. Thereforey, —u’’s are always equall

The third column in Fig. 7 demonstrates this fact that all the

Definition 3.3 (Curvature Entropy Energy)the entropy energy circle radii of the boundary vertices are equal (this is beeathe

= K radii for all vertices in the initial circle packing metriceaequal).
Een(k) = / (u—uo)Td&, This result is consistent with theorem 3.2, i.e. the gratdigrthe
ko curvature entropy isu, and this algorithm leads to a solution
whereug is the initial metric with the curvaturkg defined with where allu;’s are equal on the singular vertices. Therefore, this
the initial mesh. algorithm minimizes the entropy in a different approach.

The integration measures the uniformity of the area distort Theorem 3.5:The curvature entropy energy is well defined
function, (i.e., conformal factor). The one-foraddk is a closed (namely, the value is independent of the choice of the iatégn
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path) and has a unique global minimum point in admissible
curvature space. The free boundary optimization algoriksads
to the global minimum.

Proof In order to show that the energy is well defined, we need to
show that the 1-forng (ui —u®)dk is closed. Namely, the matrix
(g—t}) is symmetricA is symmetric, therefora—1 = (g—fj) is also
symmetric.

We can directly compute the gradient BEn(k), OxEen(k) =

u—Up. The necessary condition of the optimum pointiis- u? =
constfor all singular vertices.

We further compute the Hessian matrixEdy, which is directly

—1 . " . . —1 " . .

A (k) Becaus'ﬂ is positive definite A" is positive definite. Fig. 8. Mesh parameterization with the inverse curvaturep nfiar a

Therefore Egn is a convex energy. On the other hand, thepologically complicated model: The David head model tmas boundaries,

admissible space ok is a convex affine space, implying thatas shown in (a) and (b). Four different configurations areictes in (c)-(f),

the energy has a unique global minimum on it. each of which has one outer boundary and three inner bowsdari the
parametric space. For each case, the parameterizationtémet by using

The free boundary optimization algorithm can reach onécatit the inverse curvature map by specifying the sum of targetatures for an

. . " . outer boundary as72 the sum of target curvatures for each inner boundary
point of Egn andEgn has only one unique critical point. Hence gq _ o andkie Y is constant for boundary vertices.
the free boundary curvature optimization algorithm carchethe

global minimum.

Comparing to the projected gradient algorithm in Sectidn 11 f@ir comparisons, we tested the previous methods with thleso
D.1, the curvature diffusion algorithm doesn’t need to edike which are available on the websites of the original authors.

Poisson equation, it is simple, direct and easy to implem&fth  Tapje | summarizes the statistics of our experiments onrakve
free boundary conditions, we can apply the curvature ddfus models as shown in Fig. 9, Fig. 10, Fig. 11. Angle distortians
algorithm directly. measured with three different energy forms: conformalityy [2
shear [22], and squared sum of angle differences [22]. Aa/sho
in Table I, all of the methods minimize the angle distortiorda
F. Embedding hold the conformality well.

The final step in our algorithm pipeline in Fig. 2 is to isoniwly ~ Area distortions are measured with two different energynfarl.2
embed the mesh on the plane using the circle packing metgigetch in [13] and Log area distortion Eq. (8). Our optirtiza
obtained from the optimization. approaches provide the best results for the complicatecelsod

. o such as the horse and the camel. ABF++ produces small area
We first compute a cut on the mesh to slice it to an Op&fisiortions in many cases, but it may fall into a local minimu

topological disk. Several algorithms [39], [40] can be @l (see Fig. 11). The circle patterns provide comparable gesdliis
directly. Then we embed the open mesh isometrically onto thgi, a1l the tested models.

plane using the optimal circle packing metric. For meshet wi
less than 3K faces, we select a face near to the center of the
mesh as the root face and directly embed it, then flatten tesfa
adjacent to it.

st(k) \ 2
Wy e

Log area distortion= lo
9 Z < s (ko)

We propagate the embedding face by face until the whole mesh
is flattened. The efficiency of both Algorithm 1 and Algorithm 4 greatly

depends on solving the Poisson equatin= A(u)du. Since the
For large scale meshes, the propagated errors accumutate| gplace matrixA is positive definite when restricted Gi 1, (u),
instead, we use a method similar to [22]. According to lemmge yse the conjugate gradient method to solve the lineaermyst
5.4, the planar embedding : M — R? is a harmonic map hich is efficient in terms of time and storage. As shown in Big
Af =0, where the Laplace-Beltrami operator is determined by thgyr parameterization with inverse curvature map is conipart
final circle packing metric. We first fix the parametric pasi$ those of ABF++ and circle pattern methods. The error deducti

of two vertices, then form a linear system to approximate thg very fast as in the convergence chart. Most models can be
parameter positions for other vertices in the least squenses parameterized within 4 steps in Algorithm 1.

The result was always found to be a valid embedding for all of

our experiments. For optimal parameterization, the free boundary curvatlife
fusion method (Algorithm 5) is much more efficient than the
projected gradient method (Algorithm 4). This is because th

IV. IMPLEMENTATIONS AND EXPERIMENTAL RESULTS latter needs to compute inverse curvature map for eachidrra

step, which is very time consuming when the energy is close

In this section, we give the experimental results of our @gms to the minimum. In the experiment for the horse model (Fiy.11

and compare our methods with the state-of-the-art tecksiquvith 30k vertices, the ICM entropy method takes several minutes,

including LSCM [4], ABF++ [22], and circle patterns [30]. Fo whereas the curvature diffusion method only takes 21s to get
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the similar result. For other energy forms (ABF, Area Dititor APPENDIXA: PROOF OFINVERSE CURVATURE MAP

U2), their gradients are more complicated than one of cureat THEOREM

entropy energy, thus they are computationally more expensi

Experiments show that the optimizations of curvature gutroIn this appendix, we give a detailed proof of the main theorem
energy and ABF energy lead to parameterizations with highé this paper. The proof is based on analytic geometry. We hav

qualities than other energies. The area distortion enemgy( used Maple to derive various formulae. In order to save space
has the local minima. we omit the calculation results returned by Maple.

For a Euclidean trianglévy,vo,vs] with a circle packing metric
with radii y1, 5, y3, and intersection angleg 2, @3, @31, the three
V. CONCLUSION AND FUTURE WORK common chords intersect in one poidt(see Fig. 3), called the
radial centerof three circles.
In this work, we introduce a set of rigorous theoretical $oahd
practical algorithms to solve the optimal conformal parteria
zation problem.

For a triangle with the circle packing metric, the following
equations hold (the proof can be found in [24]):

. 26 hg

Inverse curvature map represents the exact analyticatioela EI 9)
between area distortion and curvature as a dynamic Poisson ! K

system. This enables us to find the conformal parametasizativhereu; =logy;, andhy is the distance from the radial center
with the least area distortion using nonlinear optimizattech- t0 the edges.

niql_Jes with linear constraints. The_ e_xplicit gon_ditionsr the _Also we have (the proof can be found in [26], [28]):

optima are deduced from the variational principle. A specia

energy form to measure the area distortion, called the tunea 96 _ % (10)
entropy, is investigated. It has a unique global minimum and ouj  dy;

can be optimized using curvature diffusion algorithm witbef

boundanes. .Our e>.(per|ments on complex meshes support PBhma 5.1:For a triangle with the circle packing metric, the
theoretical discoveries. derivative of6 satisfies:

The inverse curvature map theorem is deduced for meshes with
Euclidean geometry, i.e. the mesh is formed by gluing Eeealid de hg d d hj

=—— —duy)) — = (dy —dw). 11
triangles. We believe that the inverse curvature map hobds f ! Ik( u i) j (dy —dug (11)
meshes with hyperbolic and spherical geometry, and leads to
novel hyperbolic and spherical parameterization algorihBoth Proof Because the face is a Euclidean trianges 6; + 6 —

c;:otglzmgplay important roles for shape analysis and geometrllT, and therefor@?8,/du; + 96, /du + 36 /du; — 0. Because of

symmetry in Eqn. 1096, /du; = —06 /du; — 96 /duy. Therefore,
Although we solved the optimal parametrization problem dor
given singular vertex set, it remains a challenging problem K
determine the optimal vertex set. The common belief for elvap = Jl‘—kk(du —duj) - ﬁ(du —dw).
singular vertices is to pick the critical points of the aréstattion 0

function, as our algorithm in Section I1I-C does. In the fetuwe

will apply our theoretic tools to continue the exploratiolor®y Now, we are ready to prove the main theorem,
this direction.

26 36 36
dg = a—u:du + a—u;de + 5—u'kduk

Theorem 5.2 (Inverse Curvature MapJyhe curvature mapK
from a conformal class of circle packing metri€s, to the
curvature spac€) is a C” diffeomorphism. Furthermore, it is
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Model Methods  |conformality Angle | L2 L2 log area
distortion shear stretch |distortion
camel |LSCM 0.00002 0.002030.0511185.809(11.84310
#v: 20773ABF++ 0.0001% 0.0013%0.0453 5.1039 0.74653
#f: 40384|CirclePatterns 0.00008 0.0014%0.0472 8.5819 0.70627
Free Boundary 0.00032 0.003970.0699 5.1496 0.68069
Optimize U2 0.0012% 0.003740.0691 5.4908 1.92130
Optimize entropy  0.00019 0.002910.0613 5.4141 0.74996
Optimize ABF 0.00020 0.002780.0596 5.4812 0.73377
horse [LSCM 0.00017 0.000810.0310 16.8601 7.45106
#v: 3140qABF++ 0.0000% 0.000470.0256 1.5570 0.86409
#f: 61588CirclePatterns 0.0000% 0.000460.0262 1.6924 0.40167
Free Boundary 0.00034 0.0019%0.0502 1.6968 0.40979
Optimize U2 0.00051 0.001670.0465 1.3928 0.36636
Optimize entropy  0.00028 0.001610.0458 1.7169 0.42591
Optimize ABF 0.00027 0.001560.0454 1.6462 0.40199
oliverhandLSCM 0.00024 0.000340.0216 3.2283 3.97385
#v: 5660|ABF++ 0.00007 0.000180.0162 1.0274 0.05258
#f: 10782CirclePatterns 0.00012 0.000380.0228 1.0278 0.05314
Free Boundary 0.00117 0.003530.0641 1.0383 0.06702
Optimize U2 0.0007T 0.002630.0569 1.0766 0.13460
Optimize entropy  0.0009% 0.002640.0584 1.2530 0.39787
Optimize ABF 0.00081 0.002490.0543 1.0363 0.06675
Optimize AD 0.00104 0.002940.0587 57.0863 6.40391
woodfish|LSCM 0.00022 0.0003¢0.0209 3.2104 3.33530
#v: 4457|ABF++ 0.00008 0.000210.0152 1.0126 0.02515
#f: 8449 |CirclePatterns 0.00008 0.0002%0.0192 1.0135 0.02689
Free Boundary 0.00162 0.0033(00.0664 1.0171 0.02832
Optimize U2 0.00108 0.002270.0571 1.0217 0.03755
Optimize entropy  0.00158 0.0031%0.0649 1.0167 0.02803
Optimize ABF 0.00128 0.0021%0.055% 1.0167 0.03056
Optimize AD 0.00066 0.002670.0620 3.8291 2.09491

TABLE |

COMPARISON OF DIFFERENT CONFORMAL PARAMETERIZATION METHOB.

Fig. 9. Comparison of different parameterization with theddfish model: (a) initial, (b)-(e) optimizing ABF, AD, eofy, and U2, respectively, (f)-(h)
LSCM, circle patterns, and ABF++, repectively

ik il . .. . L.
is equal tow;; = %+ % In [24], Thurston gave a geometricThe Jacobi matrix in Eqn. 1 has the following characterstic

summation of each row is zero, and only the diagonal elements
are positive. Using linear algebra, it can be shown thags a
one dimensional null space, spannedtby (1,---,1), andJ is
positive definite constrained on the complement space.

proof to show thal‘% is positive if the radial center is inside the
triangle, which is duaranteed if all edge angl@s are acute.

Therefore all edge weightss; are positive. In our work, we

require all of the edge angles to be acute.
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Fig. 10. Comparison of different parameterization with @lezer's hand model: (a) initial, (b)-(e) optimizing ABF,[} entropy, and U2, respectively, (f)-(h)
LSCM, circle patterns, and ABF++, respectively

In the tangent space of admissible curvature space, beaduse: {p} — {®:} with the constraintg .t pr =0 is bijective and
the Gauss-Bonnet theoremik is orthogonal ta, i.e. 5;dk = 0. real analytic.

In the tangent space of the normalized conformal metric espa
because of the normalization conditiaty is orthogonal td, i.e.
yidy = 0. Therefore, the Jacobi matrix is invertible. Accordingaqg g SinB.e

to the inverse function theorem, the curvature v—=% Ap  Ap :

is invertible. e N O (éi‘igze)z)

By direct computation, the Jacobi matrix is differentiatite Similar to Lemma 5.1, the following holds

%roof Similar to Egn. (9) and (10), direct computation shows

> 0,when6 € (0, )

infinite degree, and so is its inverse. Therefore the curgamnap agk

is aC® diffeomorphism. Furthermore, the explicit formula for the def = _d_(dpk —dp),

Jacobian shows that its elements are elementary functibtieo A

ui. Hence, the map is real analyticl then from equation 14, the Jacobian map is
d® = A(p)dp

whereA(p) has the same characteristics as Eq. (3). Therefore, it
is positive definite[]

The projected gradient optimization algorithm (Algorith#)

and curvature diffuse algorithm (Algorithm 5) can be dihgct
translated to the circle pattern setting.

Fig. 12. Circle pattern metric
9 P APPENDIXC: EMBEDDING INDUCED BY INVERSE CURVATURE

MAP

APPENDIXB: INVERSECURVATURE MAP THEOREM IN

In this section, we give the formal proof to show that the
CIRCLE PATTERN SETTING

embedding of the mesh induced by the Inverse Curvature Map
is harmonic. This builds the intrinsic connection to coniamal

We used the notations in [30] for the following explanatidine :
harmonic maps.

configuration of circle pattern is shown in Fig. 12, two face
[Vi,vj,w] and [vj,vi,vi] sharing an edges = [v;,vj]. The face
circum-circles centered atj and cj with radii v and yji,
intersecting at an anglé. Let pijx = logyijk. pji = logy;i, then
1 SinBe
e —cosBe’

wherex = gjjx — pji - Then the curvature of fadec T is defined
as

qé( =tan (13)

O =21y 2¢ (14)
t e% @

Theorem 5.3 (Inverse Curvature Map in Circle Pattern):

SupposeM is a closed meSh_ with a circle pattern. |f theFig. 13. The embedding induced by Inverse Curvature Map lisbaic.
edge weightsf. € (0,m) are fixed, the face curvature map
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Lemma 5.4:SupposeM is a mesh with a circle packing metric,[13] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe, ttfexmapping
which induces zero Gaussian curvature everywhérdyl — R?
is the isometric embedding oM onto the plane. Then the [14]
embeddingf is harmonic, namely

Af =0.

[15]

[16]

Proof As shown in Fig. 13,v is a vertex on the mesh,

Vo, V1, -+ ,Vn_1 are the neighbor vertices of andc; is the center
of the dual circle on the facgy,vi,vi+1], which is orthogonal to

the three circles centered at the vertices. We embed theinge r
neighborhood ofv onto the complex plan€, and use the same 18]
symbol to represent the complex coordinates of the vertitiesn

by definition, the edge weight of ed@evi], denoted asv; equals

[17

]

[19]
© 66
= c|,\;$‘c, Wi (Vi —V) = vV=1(ci — G_1).
h [20]
Therefore,
zwi(vi —v)=3% v-1(¢i—Ci-1) =0,
T [21]

where this is equivalent tAf = 0. Hence the coordinates of the
vertices ofM are harmonic functions.
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