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Abstract— Mesh parameterization is a fundamental technique
in computer graphics. The major goals during mesh param-
eterization are to minimize both the angle distortion and the
area distortion. Angle distortion can be eliminated by the use of
conformal mapping, in principle. Our paper focuses on solving
the problem of finding the best discrete conformal mapping that
also minimizesarea distortion.

Firstly, we deduce an exact analyticaldifferential formula to
represent area distortion by curvature change in the discrete
conformal mapping, giving a dynamic Poisson equation. On a
mesh, the vertex curvature is related to edge lengths by the
curvature map. Our result shows the map is invertible, i.e.
the edge lengths can be computed from the curvature (by
integration). Furthermore, we give the explicit Jacobi matrix of
the inverse curvature map.

Secondly, we formulate the task of computing conformal param-
eterizations with least area distortions as a constrained nonlinear
optimization problem in curvature space. We deduce explicit
conditions for the optima.

Thirdly, we give an energy form to measure the area distortions,
and show that it has a unique global minimum. We use this
to design an efficient algorithm, calledfree boundary curvature
diffusion, which is guaranteed to converge to the global minimum;
it has a natural physical interpretation.

This result proves the common belief that optimal parameteri-
zation with least area distortion has a unique solution and can
be achieved by free boundary conformal mapping.

Major theoretical results and practical algorithms are presented
for optimal parameterization based on the inverse curvature map.
Comparisons are conducted with existing methods and using
different energies. Novel parameterization applicationsare also
introduced. The theoretical framework of the inverse curvature
map can be applied to further study discrete conformal mappings.

Index Terms— Mesh, Conformal Parameterization, Poisson, Met-
ric, Curvature, Inverse map

I. I NTRODUCTION

Surface parameterization is the process of mapping a surface
to a planar region, and it has broad applications in graphics.
Parameterizations introduce distortions between the original sur-
face and its planar image, which can be separated intoangle
distortion andarea distortion[1]–[3]. In theory, angle distortion
can be eliminated completely by conformal mapping, but it is
impossible for conformal mappings to further eliminatearea
distortion completely, except for developable surfaces.

For a given surface, we can define infinitely many different
conformal mappings with different area distortions, as shown in
Fig. 1. The central problem of the optimal parameterizationcan
be stated as follows:

Fig. 1. There are an infinity number of conformal parameterizations for a
given surface. We minimize the area distortion within the conformal mappings.

How can we find the best conformal mapping that has the least
area distortion?

In this paper, we present a set of theoretical tools as well as
practical algorithms to tackle this problem.

A. Background

Parameterization methods have become a fundamental tool in
graphics, and a significant amount of research has focused on
it. Here, we briefly overview the most related works and refer
readers to [1]–[3] for wider surveys.

A common approach for parameterization is to minimize a certain
energy to control the distortion. Lévyet al. [4] defined an energy
to approximate the Cauchy-Riemann equation; Desbrunet al. [5]
optimize Dirichlet energy. Variations of harmonic energies are
also optimized using discrete Laplace-Beltrami operatorsin [6]–
[11]. More general energy forms can be found in [12]–[17]. Most
linear methods apply a convex Dirichlet-type boundary. Virtual
boundaries are applied in [17] and [18] to absorb distortions
introduced by the convex boundary conditions. Alternatively, [4]
and [5] provide parameterizations which require to fix only a
few vertices in the parametric domain. Karniet al. [19] discuss
the design of geometrically complex boundary conditions with
constraints. Zayeret al. [20] apply discrete tensorial quasi-
harmonic maps to improve the boundary and reduce the distortion.

One of the most prominent characteristics of conformal mapping
is that it preserves angles. Angle based flattening method (ABF)
[21] utilizes this property to produce high quality conformal map-
pings. They derive the discrete conformal mapping by minimizing
the ABF energy which is defined as differences between the
corner angles of faces on the original mesh and their images
on the parameter plane. During the process the boundary evolves
freely to further reduce the distortion. Recently, the method has
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been improved by several derivative works [22], [23] in terms of
speed and robustness.

Another characteristic of conformal mapping is to map infinitesi-
mal circles to infinitesimal circles and preserve their intersection
angles. This inspired the circle packing method in [24]. Circle
packings and circle patterns replace infinitesimal circleswith
finite circles. In the limit of refinement the continuous conformal
maps are recovered [25]. Collins and Stephenson [26] have
implemented circle packing in their softwareCirclePack which
only considers combinatorics. The connection between circle
packing and smooth surface Ricci flow [27] was discovered in
[28]. The discrete Ricci flow method was introduced in [29] for
hyperbolic parameterization.

Kharevychet al. [30] provided conformal parameterizations for
arbitrary genus types by applying circle patterns based on the
variational principle in Bobenko and Springborn [31]. The method
in [30] supports very flexible boundary conditions ranging from
free boundaries to control of the boundary shape via prescribed
curvatures. They can further reduce the distortion by incorporating
manually selected cone singularities. Ben-Chenet al. [32] intro-
duced a conformal parameterization which automatically deter-
mines the locations and target curvatures of the cone singularities.

Our work differs from the previous work in the following aspects.
Based on a rigorous theoretic proof, our method can produce
a discrete conformal parameterization with least area distortion
among all possible parameterizations. Similar to [30], ourmethod
is applicable for meshes with general topologies. Furthermore, the
method can be extended for optimizing more general energies
with constraints on curvatures and area distortions. (Fig.8 shows
parameterizations with special curvature constraints, such that all
boundary curvatures are constant.)

In this paper, we will explain our theoretical results and algorith-
mic implementations with circle packings. Since circle packing
and circle patterns are equivalent in theory [33], [34], ourresults
can also be explained with the setting of circle patterns (see
Appendix B).

B. Overview

Most of the previous works minimize some energy forms which
measure both angle distortion and area distortion. In this work,
we take the approach similar to those in [5], [20] to separate
these two criteria. As shown in Fig. 1, we only minimize the
area distortion within the conformal mappings, which eliminate
the angle distortions.

We address the angle distortion by using the discrete conformal
mappings based oncircle packing. The given mesh is covered by
circles, each of which is centered at a vertex as shown in Fig.
3. A circle centered at a vertex is tangent to or intersects with
another circle centered at its neighbor vertex. We approximate
the conformal mapping by varying the radii while preservingthe
intersection angles among the circles. (see Section II).

With circle packing, we can establish the mapping from the
configuration of radii to the configuration of the curvatures, the
so calledcurvature map K:

K : {configuration of radii}→ {configuration of curvatures}.

We show that the curvature map is bijective in the conformal
mapping. We give an analytical formula for theinverse curvature
map by explicitly computing its Jacobian, which is revealed as
a dynamic Poisson equation (see Section II). Therefore, we can
easily compute the radii from the prescribed curvatures.

Discrete conformal parameterization can be treated as finding a
configuration of radii such that all curvatures are zeros except
those at the boundaries and cone singularities. All curvature
configurations corresponding to parameterizations form anaffine
subspace, which we call theadmissible curvature space. Area
distortions can be measured by various energy forms defined on
the configurations of radii. Optimal conformal parameterization
is equivalent to minimizing the specific energy in the admissible
curvature space, and therefore it is a nonlinear optimization
problem with linear constraints.

Energies with good properties, such as differentiability,unique
global minimum, simple forms of gradient and Hessian, are
highly preferred in practice. We discovered an energy form that
meets all the requirements (see Section III-E). Furthermore, a
simple curvature flow algorithm with free boundary conditions is
guaranteed to converge to the global minimum.

The pipeline of optimal parameterization system is as follows.
1. Mesh preparation (Section III-A)
2. Computing the initial circle packing metric (Section III-B)
3. Selecting the singular vertex set (Section III-C)
4. Computing the optimal circle packing metric (Section III-D,
Section III-E)
5. Isometric embedding (Section III-F)

The theoretical results of inverse curvature map are explained in
Section II. Each step of the algorithm pipeline is elucidated in
Section III. The experimental results are demonstrated in Section
IV. We conclude our work and point out the future direction in
Section V. Detailed theoretical proofs are presented in Appendix.

II. I NVERSEDISCRETECURVATURE MAP

In this section, we introduce the inverse curvature map, which is
the key ingredient of our optimal parameterization.

The discussion is based on general triangular meshes with arbi-
trary topologies. We denote a mesh byM = {V,E,F}. A vertex,
an edge, and a face are denoted asvi , [vi ,v j ] (or ei j ), and[vi ,v j ,vk]
(or fi jk ), respectively. A meshM embedded inR3 has a naturally
induced Euclidean metric, which is determined by each edge
length. The vertex curvatures are defined as follows. For an
interior vertex, the curvature equals 2π minus the sum of angles
between edges at the vertex, whereas for a boundary vertex, it is
π minus this sum. The discrete Gauss-Bonnet theorem states that
the total curvature is 2πχ(M), whereχ(M) is the Euler number
of the mesh.

A. Circle Packing Metric

Given a triangular mesh, we associate to each vertexvi a circle
with radius γi . On edgeei j , the two circles with radiiγi and γ j

intersect at an angle ofφi j , as shown in Fig. 3.
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Fig. 2. Algorithm pipeline.
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Fig. 3. Circle packing metric.

Definition 2.1 (Circle Packing Metric):A circle packing metric
for a meshM is defined as(M,Γ,Φ), where M represents the
triangulation,Γ : V→R

+ is the circle radius function for vertices
(i.e., vi 7→ γi ), andΦ : E→ [0, π

2 ] is the angle function for edges
(i.e., ei j 7→ φi j ). The discrete metric on an edgeei j is determined

by l i j =
√

γ2
i + γ2

j +2γi γ j cosφi j .

Now, the edge lengths can be determined by the circle radiiγi

and the intersection anglesφi j with the cosine law, depicted in
Fig. 3. Since the edge lengths determine the angles on each face,
the circle radii determine the vertex curvatures. We designate the
mapping from the configuration of radii to the configuration of
the vertex curvatures as thecurvature map.

B. Inverse Curvature Map

Two circle packing metrics of the same meshM, (M,Γ1,Φ1) and
(M,Γ2,Φ2), areconformal to each other, ifΦ1 equalsΦ2. Each
conformal equivalence class of circle packing metrics forms a
space which we call aconformal discrete metric space, denoted
by U . Upon fixing the edge anglesφi j , a discrete circle packing
metric can be represented by a vectoru = (u1, · · · ,un), where
ui = logγi , ui ∈ (−∞,+∞), andn is the number of vertices. Each
conformal discrete metric space is homeomorphic toR

n. Because
scaling does not affect the curvature, we normalize the conformal
metrics by requiring∑i ui = 0, which defines a hyper-plane in
the R

n that we denoteΠu. The discrete curvatureK maps each
u to a curvature functionk = (k1,k2, · · · ,kn), and the image of
Ωk := K(Πu) is a convex polytope [28].

The curvature mapK from the conformal metric space to the
curvature spaceK : Πu→ Ωk is bijective; both the map and the
inverse map have an infinite degree of smoothness. Furthermore,
the curvature map is real analytic (so it can be represented as the
summation of an infinite series.)

Theorem 2.2 (Inverse Curvature Map):The curvature mapK
from a conformal class of circle packing metricsΠu to the
curvature spaceΩk is a C∞ diffeomorphism. Furthermore, it is
real analytic.

The derivative mapdK : TΠu(u)→ TΩk(k), satisfies the discrete
Poisson equation,

dk = ∆(u)du, (1)

whereTΠu(u) is the tangent space ofΠu at the pointu, TΩk(k)
is the tangent space ofΩk at the pointk, and∆(u) is a positive
definite matrix when restricted toTΠu(u).

Therefore, the curvature map and the inverse curvature map can
be represented as

k1−k0 =

∫ u1

u0

∆(µµµ)dµµµ, u1−u0 =

∫ k1

k0

∆(ξξξ )−1dξξξ . (2)

A detailed proof can be found in Appendix A. Here we give an
intuitive picture using adifferential network flow modelas shown
in Fig. 4. We treat the mesh as a network. Curvature flows along
the edges when vertex radii change. Supposevi and v j are two
adjacent vertices, such that the logarithms of the radii change by
δui and δu j respectively, and the conductivity (weight) for the
edge iswi j > 0, which depends on the current vertex radii.

Then the curvature flux fromvi to v j along the edge isδki j =
wi j (δu j −δui). Each vertex has several edges connected to it, so
the net edge curvature flux equals the overall curvature change
at the vertex,δk j = ∑i δki j . Therefore, the Laplace matrix has an
explicit form: ∆ = (di j ),

di j =







−wi j i 6= j, [vi ,v j ] ∈ E
∑k wik i = j
0 i 6= j, [vi ,v j ] 6∈ E

(3)

We now explain the geometric meaning of the edge weight. On
each face, there exists a unique circle perpendicular to allthree
circles, as the red circle shown in Fig. 3. The center of the circle
is the radial center (or power center). Then the weight for a
halfedge equals to

hi j
li j

, wherehi j is the distance from the radial
center to the halfedge,l i j is the current length of the halfedge.
The edge weight is the sum of those of its halfedge weights
and depends on the current curvature (or, equivalently the radii).
Therefore the Laplace-Beltrami operator is dynamic. This fact
makes the whole theory more complicated.

wi j
vi

δui δu j

vk

v j

δki j

δki j = wi j (δu j −δui)δk j = ∑i δki j

Fig. 4. Differential network curvature flow model. The curvature flux along
edgeδki j is driven by the gradient ofδu. The change of curvature at a vertex
δki equals the divergence of the curvature flow.

Algorithm 1 computes theinverse curvature map, which can be
applied for conformally parameterizing general meshes directly.
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Fig. 5. Discrete conformal parameterizations usingInverse Curvature Map([#v, #f, execution time (sec)] are [20660, 41118, 6.3], [29923, 59417, 11.2],
[20224, 40118, 5.8], [20618, 40803, 6.6], and [10219, 20438, 2.5], respectively with Pentium4 2.8GHz with 2GB memory).

Fig. 5 demonstrates some parameterization results using this
algorithm.

Algorithm 1 for computing the discrete conformal metric̄u for
the prescribed curvaturēk is as follows:

Algorithm 1 Inverse Curvature Map̄u = K−1(k̄)

Compute the initial circle packing metric(M,Γ,Φ)
Compute initial curvaturek
u⇐ u0, whereu0 is the initial circle packing metric.
while |k̄−k|> ε do

Computewi j (u) to form the Laplace matrix∆(u).
du⇐ ∆(u)−1(k̄−k)
u⇐ u+du
k⇐ K(u)

end while
ū⇐ u

C. Relation with Discrete Ricci Flow

Inverse curvature map can be also deduced from the theory of
discrete Ricci flow [28]. The fact that curvature mapK : u→ k
is invertible is proven in the following way.

Let u0 be the initial metric with the curvaturek0. Supposek̄ is
the prescribed curvature and its corresponding metric isū, then
we can define the followingdiscrete Ricci energy

ERic(u) =

∫ u

u0

(k̄−k)Tdµµµ. (4)

From discrete Ricci flow theory,ERic(u) is convex in the sub-
affine space∑ui = 0, andū is the unique global minimal point.
The target metric̄u can be obtained by minimizing the energy,
using the steepest descent method

du
dt

=−∇ERic(u) =−(k̄−k),

which is the discrete Ricci flow. Therefore, the curvature map K
is invertible.

In order to compute the optimal parameterization, we need an
explicit form of the Jacobi matrix of the curvature map, which is
related to the Hessian matrix ofERic(u). This is the key step for
a nonlinear optimization algorithm.

III. O PTIMAL SURFACE PARAMETERIZATION

This section explains the algorithm pipeline for the optimization
system as shown in Fig. 2, each subsection corresponds to one
step respectively.

A. Mesh Preparation (optional)

In practice, the initial circle packing metric requires allthe edge
angles to be acute, so that the Jacobi matrix of the curvature
map is positive definite (equivalently, the Ricci energy Eq.(4) is
convex) to ensure the uniqueness of the solution. If the input mesh
has too many obtuse angles and skinny triangles, we remesh it
using the algorithms described in [35], [36] to improve the mesh
quality.

B. Computing the initial Circle Packing Metric

We use a simple method for the initial circle packing metric,
described in Algorithm 2.

Algorithm 2 Compute the initial Circle Packing Metric

for all faces[vi ,v j ,vk] ∈ F do
for all cornersci , related tovi in each facedo

γ(ci)← lki+li j−l jk
2

end for
end for
for all vertexvi ∈V do

γi ←max{γ(c)|c is attached tovi}

end for
for all edges[vi ,v j ] ∈ E do

φi j = min{cos−1 l2i j−γ2
i −γ2

j
2γi γ j

, π
2}, where l i j is the Euclidean

edge length
end for

In experiments, this algorithm guarantees to get acute corner
angles, and the initial circle packing metrics are very closed to
the induced Euclidean metric of the mesh.

C. Selecting Singular Vertex Set

In order to reduce the area distortion, it is very helpful to
concentrate curvatures on a subset of vertices, which we call a
singular vertex set. For example, if a mesh has boundaries, all
of the boundary vertices are in the singular vertex set in general.
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Moreover, we can set several interior vertices as singular ones in
order to minimize the area distortions. Several effective methods
have been introduced to select singular vertices, including manual
selection [30], vector field analysis [37], and spectral analysis
[32].

We select the singular vertex set in step 3 of algorithm pipeline
in Fig. 2. Intuitively, we first let the curvature be uniformly
distributed on all vertices, then measure the area distortion, and
finally pick the critical points of the area distortion function. The
algorithm is described in Algorithm 3. Fig. 6 demonstrates the
algorithm using the Stanford Bunny model.

Algorithm 3 Compute the Singular Vertex Set

k̄i ← 0 for vi ∈ ∂M,
k̄i← 2πχ(M)

n for vi 6∈ ∂M, wheren is number of interior vertices
ū← K−1(k̄) using Algorithm 1
S⇐ ∂M∪{local minima ofū}

100

1

1e-6

Fig. 6. Singularity selection process: (a) and (b) depict the area distortion of
the bunny model without any singular vertex. We select critical points in ear
tips and the point between the roots of the ears. (c) shows thearea distortion
after computing the inverse curvature map with the selectedsingular vertices.
The uniformity of the area distortion is greatly improved.

D. Compute the Optimal Circle Packing Metric

Now, we explain the process to compute the optimal circle pack-
ing metrics in step 4 of the algorithm pipeline in Fig. 2. There are
two methods for the optimization, the projected gradient method
described in Section III-D.1 and the free boundary curvature
diffusion method described in Section III-E.

1) Projected Gradient Method for Optimization:We can define
various energy forms to measure the area distortion. The energy
can be defined either in the conformal metric space or in the
curvature space. In terms of computational complexity, they are
equivalent. We decide to define the energy in curvature space
because this is a convex affine subspace. If the energy is convex,
only one optimum exists. Therefore, it is easy to handle both
theoretically and practically.

The possible solutions must be a valid parameterization, namely,
all curvatures are zeros except at the singularities.

Definition 3.1 (Admissible curvature space):Given a meshM,
the vertices are divided into two setsS and N. S represents the
singular vertices, whereasN represents non-singular vertices. The
admissible curvature space is an affine subspace defined as the
intersection of the following hyper-planes:

Πk :=
⋂

vi∈N

{ki = 0}
⋂

{∑
v j∈S

k j = 2πχ(M)}
⋂

Ωk (5)

Then the optimal parameterization problem is equivalent toopti-
mizing some energy formE(k) in the admissible curvature space.

Optimal Parameterization Problem: Compute the minima of
the energyE(k) in the admissible curvature spaceΠk :

minkE(k), s.t. k ∈Πk .

Basically, we compute the gradient ofE(k) w.r.t k, denoted as
∇kE, and project the gradient to the affine subspaceΠk . While
the projected gradient is not equal to zero,k is updated along its
direction. Namely, at a critical point ofE(k), ∇kE is orthogonal
to the admissible curvature space.

This procedure can find one local minimum but does not guar-
antee that neither all minima, nor the global minimum can be
found. In next subsection, we design a special energy with a
unique minimum, in order that this algorithm can reach the global
minimum.

Algorithm 4 Optimal Discrete Conformal Parameterization
Randomly select ak ∈Πk
repeat

u← K−1(k) using Algorithm 1
Compute the gradient∇uE
∇kE⇐ ∆(u)−1∇uE
for all vi ∈ N do

∇kE⇐ ∇kE−< ∇kE,ei > ei

end for
∇kE← ∇kE−< ∇kE,d > d

|d|2
k← k−λ∇kE

until |∇kE|< ε

where d is a vector withdi = 0 for non-singular vertices and
d j = 1 for singular vertices.

Theorem 3.2:Supposek is an interior point ofΠk , also an
optimum for an energy formE(u), then all the components of
∇kE corresponding to the singular vertices are equal.

Proof The proof is based on the KKT theorem [38]. Ifk is an
optimum of E(k), then ∇kE⊥Πk . Supposevi is a non-singular
vertex, the normal to the hyperplane{ki = 0} is ei , the normal
to the plane{∑v j∈Sk j = 2πχ(M)} is d, wheredi = 0 for non-
singular verticesvi andd j = 1 for singular verticesv j . Therefore

∇kE = ∑
vi∈N

λiei + µd,

whereµ is a real number.�

The common energy forms used in the literature are:

1) Angle Based Flattening energy defined in [21]: this energy
measures the differences between the original and the target
angles at all the corners, (a corner is determined by a face
and one vertex adjacent to it).

EABF(k) = ∑
θ

(θ(k)−θ(k0))
2 ,

whereθ(k0)’s are the original corner angles.
2) Area distortion energy defined in [5]: this energy measures

the ratio between the original face area and the face area
on the parameter plane,

EAD(k) = ∑
f

(

sf (k)

sf (k0)
−1

)2

, (6)
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wheresf (k0),sf (k) are the areas of the facef under the
original metric and the target metric. This energy is the
most direct measurement for area distortion.

3) u-square energy: this energy is just the norm ofu, which is
a vector with the logarithms of the change of circle radii.
Because the mean ofu is zero, this energy can be treated as
the variance ofu, which is a measurement of the uniformity
of ui .

Eu2(k) = |u(k)−u(k0)|2, (7)

whereu(k0) is the initial circle packing metric.

The gradient of an energyE w.r.t. u is ∇uE, which is related to
∇kE by

∇kE = ∆−1(u)∇uE.

Fig. 7. Approximating conformal mappings by circle packing. The circle
radii are changed while tangency relations are preserved. The second column
shows a circular boundary condition; the third column showsa free boundary
condition. For the free boundary condition, all circle radii on the boundary
vertices are equal.

E. Curvature diffusion with free boundary conditions

The energies introduced in the above are not satisfactory in
practice. Firstly, it is unclear whether they have a unique global
minimum or not. Secondly, their gradient has a complicated form,
leading to an expensive computation using the projected gradient
method.

In this part, we introduce a novel energy, calledcurvature entropy,
which overcomes the shortcomings of other energies. It has a
unique global minimum; its gradient has the simplest formu; it
can efficiently be computed with methods other than the projected
gradient method.

Definition 3.3 (Curvature Entropy Energy):The entropy energy
is

EEN(k) =
∫ k

k0

(u−u0)
Tdξξξ ,

whereu0 is the initial metric with the curvaturek0 defined with
the initial mesh.

The integration measures the uniformity of the area distortion
function, (i.e., conformal factor). The one-formuTdk is a closed

one-form, and therefore the integration is path independent. We
can choose an arbitrary path fromk0 to k in the curvature space.

The curvature entropy energy is closely related to theu-square
energy defined in Eq. (7),

Eu2(u) =
∫ u

u0

(µµµ−u0)
T Idµµµ,

where I is the identity matrix. If we replaceI by ∆(u)−1 in the
above formula, we will get the curvature entropy energy

EEN(u) =
∫ u

u0

(µµµ−u0)
T∆(µµµ)−1dµµµ =

∫ k

k0

(u−u0)
Tdξξξ .

Both ∆−1(u) and I are positive definite. Therefore,u-square en-
ergy and curvature entropy energy are equivalent for the purpose
of measuring the uniformity of the area distortionu.

This energy can be directly optimized using the projected gradient
method. The gradient of the curvature entropy is very simple,

∇kEEN(u) = u−u0.

It can also be minimized by the followingcurvature diffusion
method.

Algorithm 5 Curvature Diffusion with Free Boundaries

while maxvi∈N|ki |> ε do
for all vi ∈ N do

dui ⇐−ki

ui ← ui +λdui

end for
c← ∑vi∈V ui

|V|
for all vertexv j ∈V do

ui ← ui −c
end for

end while

Intuitively, Algorithm 5 sets du
dt = −k. According to Eq. (1),

the curvature will evolve like a heat diffusion,dk
dt = −∆k. The

singular vertices absorb all the curvature flux, and the whole
surface deforms to be flat in the most natural way. Because the
entropy increases in the heat diffusion process, we name this
energy as curvature entropy.

We show that when the algorithm terminates, the deformationof
the singular vertices is uniform.

Lemma 3.4:Supposeu is the solution of the free boundary
curvature diffusion algorithm, thenui −u0

i ≡ const,∀vi ∈ S.

Proof At the beginning, theui−u0
i terms are zero for all boundary

vertices. At each normalization step,ui−u0
i changes by the same

amount. Therefore,ui −u0
i ’s are always equal.�

The third column in Fig. 7 demonstrates this fact that all the
circle radii of the boundary vertices are equal (this is because the
radii for all vertices in the initial circle packing metric are equal).
This result is consistent with theorem 3.2, i.e. the gradient of the
curvature entropy isu, and this algorithm leads to a solution
where allui ’s are equal on the singular vertices. Therefore, this
algorithm minimizes the entropy in a different approach.

Theorem 3.5:The curvature entropy energy is well defined
(namely, the value is independent of the choice of the integration
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path) and has a unique global minimum point in admissible
curvature space. The free boundary optimization algorithmleads
to the global minimum.

Proof In order to show that the energy is well defined, we need to
show that the 1-form∑(ui−u0

i )dki is closed. Namely, the matrix
( dui

dkj
) is symmetric.∆ is symmetric, therefore∆−1 = ( dui

dkj
) is also

symmetric.

We can directly compute the gradient ofEEN(k), ∇kEEN(k) =
u−u0. The necessary condition of the optimum point isui−u0

i =
const for all singular vertices.

We further compute the Hessian matrix ofEEN, which is directly
∆−1(k). Because∆ is positive definite,∆−1 is positive definite.
Therefore EEN is a convex energy. On the other hand, the
admissible space ofk is a convex affine space, implying that
the energy has a unique global minimum on it.

The free boundary optimization algorithm can reach one critical
point of EEN andEEN has only one unique critical point. Hence,
the free boundary curvature optimization algorithm can reach the
global minimum.�

Comparing to the projected gradient algorithm in Section III-
D.1, the curvature diffusion algorithm doesn’t need to solve the
Poisson equation, it is simple, direct and easy to implement. With
free boundary conditions, we can apply the curvature diffusion
algorithm directly.

F. Embedding

The final step in our algorithm pipeline in Fig. 2 is to isometrically
embed the mesh on the plane using the circle packing metric
obtained from the optimization.

We first compute a cut on the mesh to slice it to an open
topological disk. Several algorithms [39], [40] can be applied
directly. Then we embed the open mesh isometrically onto the
plane using the optimal circle packing metric. For meshes with
less than 30k faces, we select a face near to the center of the
mesh as the root face and directly embed it, then flatten the faces
adjacent to it.

We propagate the embedding face by face until the whole mesh
is flattened.

For large scale meshes, the propagated errors accumulate, so
instead, we use a method similar to [22]. According to lemma
5.4, the planar embeddingf : M → R

2 is a harmonic map
∆ f = 0, where the Laplace-Beltrami operator is determined by the
final circle packing metric. We first fix the parametric positions
of two vertices, then form a linear system to approximate the
parameter positions for other vertices in the least square sense.
The result was always found to be a valid embedding for all of
our experiments.

IV. I MPLEMENTATIONS AND EXPERIMENTAL RESULTS

In this section, we give the experimental results of our algorithms
and compare our methods with the state-of-the-art techniques
including LSCM [4], ABF++ [22], and circle patterns [30]. For

Fig. 8. Mesh parameterization with the inverse curvature map for a
topologically complicated model: The David head model has four boundaries,
as shown in (a) and (b). Four different configurations are depicted in (c)-(f),
each of which has one outer boundary and three inner boundaries in the
parametric space. For each case, the parameterization is obtained by using
the inverse curvature map by specifying the sum of target curvatures for an
outer boundary as 2π, the sum of target curvatures for each inner boundary
as−2π andkie−ui is constant for boundary vertices.

fair comparisons, we tested the previous methods with the codes
which are available on the websites of the original authors.

Table I summarizes the statistics of our experiments on several
models as shown in Fig. 9, Fig. 10, Fig. 11. Angle distortionsare
measured with three different energy forms: conformality [4], L2
shear [22], and squared sum of angle differences [22]. As shown
in Table I, all of the methods minimize the angle distortion and
hold the conformality well.

Area distortions are measured with two different energy forms: L2
stretch in [13] and Log area distortion Eq. (8). Our optimization
approaches provide the best results for the complicated models,
such as the horse and the camel. ABF++ produces small area
distortions in many cases, but it may fall into a local minimum
(see Fig. 11). The circle patterns provide comparable good results
with all the tested models.

Log area distortion= ∑
f

(

log
sf (k)

sf (k0)

)2

(8)

The efficiency of both Algorithm 1 and Algorithm 4 greatly
depends on solving the Poisson equationdk = ∆(u)du. Since the
Laplace matrix∆ is positive definite when restricted onTΠu(u),
we use the conjugate gradient method to solve the linear system,
which is efficient in terms of time and storage. As shown in Fig. 5,
our parameterization with inverse curvature map is comparable to
those of ABF++ and circle pattern methods. The error deduction
is very fast as in the convergence chart. Most models can be
parameterized within 4 steps in Algorithm 1.

For optimal parameterization, the free boundary curvaturedif-
fusion method (Algorithm 5) is much more efficient than the
projected gradient method (Algorithm 4). This is because the
latter needs to compute inverse curvature map for each iteration
step, which is very time consuming when the energy is close
to the minimum. In the experiment for the horse model (Fig.11)
with 30k vertices, the ICM entropy method takes several minutes,
whereas the curvature diffusion method only takes 21s to get
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the similar result. For other energy forms (ABF, Area Distortion
U2), their gradients are more complicated than one of curvature
entropy energy, thus they are computationally more expensive.
Experiments show that the optimizations of curvature entropy
energy and ABF energy lead to parameterizations with higher
qualities than other energies. The area distortion energy Eq. (6)
has the local minima.

V. CONCLUSION AND FUTURE WORK

In this work, we introduce a set of rigorous theoretical tools and
practical algorithms to solve the optimal conformal paramateri-
zation problem.

Inverse curvature map represents the exact analytical relation
between area distortion and curvature as a dynamic Poisson
system. This enables us to find the conformal parameterization
with the least area distortion using nonlinear optimization tech-
niques with linear constraints. The explicit conditions for the
optima are deduced from the variational principle. A special
energy form to measure the area distortion, called the curvature
entropy, is investigated. It has a unique global minimum and
can be optimized using curvature diffusion algorithm with free
boundaries. Our experiments on complex meshes support our
theoretical discoveries.

The inverse curvature map theorem is deduced for meshes with
Euclidean geometry, i.e. the mesh is formed by gluing Euclidean
triangles. We believe that the inverse curvature map holds for
meshes with hyperbolic and spherical geometry, and leads to
novel hyperbolic and spherical parameterization algorithms. Both
of them play important roles for shape analysis and geometric
modeling.

Although we solved the optimal parametrization problem fora
given singular vertex set, it remains a challenging problemto
determine the optimal vertex set. The common belief for choosing
singular vertices is to pick the critical points of the area distortion
function, as our algorithm in Section III-C does. In the future, we
will apply our theoretic tools to continue the exploration along
this direction.
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APPENDIX A: PROOF OFINVERSECURVATURE MAP

THEOREM

In this appendix, we give a detailed proof of the main theorem
in this paper. The proof is based on analytic geometry. We have
used Maple to derive various formulae. In order to save space,
we omit the calculation results returned by Maple.

For a Euclidean triangle[v1,v2,v3] with a circle packing metric
with radii γ1,γ2,γ3, and intersection anglesφ12,φ23,φ31, the three
common chords intersect in one pointO (see Fig. 3), called the
radial centerof three circles.

For a triangle with the circle packing metric, the following
equations hold (the proof can be found in [24]):

∂ θi

∂u j
=

hk

lk
(9)

whereu j = logγ j , andhk is the distance from the radial centerO
to the edgeek.

Also we have (the proof can be found in [26], [28]):

∂ θi

∂u j
=

∂ θ j

∂ui
. (10)

Lemma 5.1:For a triangle with the circle packing metric, the
derivative ofθi satisfies:

dθi =−hk

lk
(dui −duj )−

h j

l j
(dui −duk). (11)

Proof Because the face is a Euclidean triangle,θi + θ j + θk =
π, and therefore∂ θi/∂ui + ∂ θ j/∂ui + ∂ θk/∂ui = 0. Because of
symmetry in Eqn. 10,∂ θi/∂ui =−∂ θi/∂u j−∂ θi/∂uk. Therefore,

dθi = ∂θi
∂ui

dui +
∂θi
∂u j

duj +
∂θi
∂uk

duk

= −hk
lk

(dui −duj)− h j
l j

(dui −duk).

�

Now, we are ready to prove the main theorem,

Theorem 5.2 (Inverse Curvature Map):The curvature mapK
from a conformal class of circle packing metricsΠu to the
curvature spaceΩk is a C∞ diffeomorphism. Furthermore, it is
real analytic.

The derivative mapdK : TΠu(u)→ TΩk(k), satisfies the discrete
Poisson equation,

dk = ∆(u)du, (12)

whereTΠu(u) is the tangent space ofΠu at the pointu, TΩk(k)
is the tangent space ofΩk at the pointk, and∆(u) is a positive
definite matrix when constrained toTΠu(u).

Proof We consider the one ring neighborhood of a vertexvi . Let
an adjacent face be[vi ,v j ,vk], whereθ jk

i denotes the angle atvi

within the face. Then from the definition of discrete curvature
and from Eqn. 11 in the lemma 5.1,

we getdki =−∑[vi ,v j ,vk]∈F dθ jk
i = ∑[vi ,v j ]∈E wi j (dui−duj ),

wherewi j is the edge weight as defined in Eqn. 9. If edge[vi ,v j ]
is adjacent to two faces[vi ,v j ,vk] and [v j ,vi ,vl ], then its weight
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Model Methods conformality Angle L2 L2 log area
distortion shear stretch distortion

camel LSCM 0.00002 0.002030.0511185.809011.84310
#v: 20775ABF++ 0.00015 0.001350.0453 5.1039 0.74653
#f: 40384CirclePatterns 0.00008 0.001450.0472 8.5819 0.70627

Free Boundary 0.00032 0.003970.0699 5.1496 0.68069
Optimize U2 0.00125 0.003740.0691 5.4908 1.92130
Optimize entropy 0.00019 0.002910.0613 5.4141 0.74996
Optimize ABF 0.00020 0.002780.0596 5.4812 0.73377

horse LSCM 0.00017 0.000810.0310 16.8601 7.45106
#v: 31400ABF++ 0.00005 0.000470.0256 1.5570 0.86409
#f: 61588CirclePatterns 0.00005 0.000460.0262 1.6924 0.40167

Free Boundary 0.00034 0.001950.0502 1.6968 0.40979
Optimize U2 0.00051 0.001670.0465 1.3928 0.36636
Optimize entropy 0.00028 0.001610.0458 1.7169 0.42591
Optimize ABF 0.00027 0.001560.0454 1.6462 0.40199

oliverhandLSCM 0.00024 0.000340.0216 3.2283 3.97385
#v: 5660 ABF++ 0.00007 0.000180.0162 1.0274 0.05258
#f: 10782CirclePatterns 0.00012 0.000380.0228 1.0278 0.05314

Free Boundary 0.00117 0.003530.0641 1.0383 0.06702
Optimize U2 0.00077 0.002630.0569 1.0766 0.13460
Optimize entropy 0.00095 0.002640.0584 1.2530 0.39787
Optimize ABF 0.00081 0.002490.0543 1.0363 0.06675
Optimize AD 0.00104 0.002940.0587 57.0863 6.40391

woodfish LSCM 0.00022 0.000360.0209 3.2104 3.33530
#v: 4457 ABF++ 0.00008 0.000210.0152 1.0126 0.02515
#f: 8449 CirclePatterns 0.00008 0.000280.0192 1.0135 0.02689

Free Boundary 0.00162 0.003300.0664 1.0171 0.02832
Optimize U2 0.00108 0.002270.0571 1.0217 0.03755
Optimize entropy 0.00158 0.003150.0649 1.0167 0.02803
Optimize ABF 0.00128 0.002150.0555 1.0167 0.03056
Optimize AD 0.00066 0.002670.0620 3.8291 2.09491

TABLE I

COMPARISON OF DIFFERENT CONFORMAL PARAMETERIZATION METHODS.

Fig. 9. Comparison of different parameterization with the Woodfish model: (a) initial, (b)-(e) optimizing ABF, AD, entropy, and U2, respectively, (f)-(h)
LSCM, circle patterns, and ABF++, repectively

is equal towi j =
∂θ jk

i
∂u j

+
∂θ jl

i
∂u j

. In [24], Thurston gave a geometric

proof to show that∂θi
∂ r j

is positive if the radial center is inside the
triangle, which is guaranteed if all edge anglesφi j are acute.
Therefore all edge weightswi j are positive. In our work, we
require all of the edge angles to be acute.

The Jacobi matrix in Eqn. 1 has the following characteristics:
summation of each row is zero, and only the diagonal elements
are positive. Using linear algebra, it can be shown thatJ has a
one dimensional null space, spanned byt = (1, · · · ,1), and J is
positive definite constrained on the complement space.
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Fig. 10. Comparison of different parameterization with theOliver’s hand model: (a) initial, (b)-(e) optimizing ABF, AD, entropy, and U2, respectively, (f)-(h)
LSCM, circle patterns, and ABF++, respectively

In the tangent space of admissible curvature space, becauseof
the Gauss-Bonnet theorem,dk is orthogonal tot, i.e. ∑i dki = 0.
In the tangent space of the normalized conformal metric space,
because of the normalization condition,du is orthogonal tot, i.e.
∑i dui = 0. Therefore, the Jacobi matrix is invertible. According
to the inverse function theorem, the curvature mapK : Πu→Ωk
is invertible.

By direct computation, the Jacobi matrix is differentiableto
infinite degree, and so is its inverse. Therefore the curvature map
is aC∞ diffeomorphism. Furthermore, the explicit formula for the
Jacobian shows that its elements are elementary functions of the
ui . Hence, the map is real analytic.�

vk

vl

vj

cijk

cjil

γijk

γjil

φk
e φl

e

θe

θe

Fig. 12. Circle pattern metric

APPENDIX B: INVERSECURVATURE MAP THEOREM IN

CIRCLE PATTERN SETTING

We used the notations in [30] for the following explanation.The
configuration of circle pattern is shown in Fig. 12, two faces
[vi ,v j ,vk] and [v j ,vi ,vl ] sharing an edgee = [vi ,v j ]. The face
circum-circles centered atci jk and c jil with radii γi jk and γ jil ,
intersecting at an angleθe. Let ρi jk = logγi jk , ρ jil = logγ jil , then

φ k
e = tan−1 sinθe

ex−cosθe
, (13)

wherex = ρi jk −ρ jil . Then the curvature of facet ∈ T is defined
as

Φt = 2π−∑
e∈t

2φ t
e (14)

Theorem 5.3 (Inverse Curvature Map in Circle Pattern):
SupposeM is a closed mesh with a circle pattern. If the
edge weightsθe ∈ (0,π) are fixed, the face curvature map

Φ : {ρ} → {Φt} with the constraints∑t∈T ρt = 0 is bijective and
real analytic.

Proof Similar to Eqn. (9) and (10), direct computation shows

∂ φ k
e

∂ ρl
=

∂ φ l
e

∂ ρk
=

sinθeex

(ex−cosθe)2(1+ sin2 θe
(ex−cosθe)2 )

> 0,whenθe∈ (0,π)

Similar to Lemma 5.1, the following holds

dφ k
e =−∂ φ k

e

∂ ρl
(dρk−dρl ),

then from equation 14, the Jacobian map is

dΦ = ∆(ρ)dρ

where∆(ρ) has the same characteristics as Eq. (3). Therefore, it
is positive definite.�
The projected gradient optimization algorithm (Algorithm4)
and curvature diffuse algorithm (Algorithm 5) can be directly
translated to the circle pattern setting.

APPENDIX C: EMBEDDING INDUCED BY INVERSE CURVATURE

MAP

In this section, we give the formal proof to show that the
embedding of the mesh induced by the Inverse Curvature Map
is harmonic. This builds the intrinsic connection to conventional
harmonic maps.

v

vi

vi+1

vi−1

vi+2

vi−2
ci

ci−1

ci+2

ci−2

Fig. 13. The embedding induced by Inverse Curvature Map is harmonic.



TO APPEAR IN IEEE TVCG 11

Initial

ICM ABF

ICM entropy

ICM U2

ABF++

Circle Patterns

LSCM

ICM Free Boundary

Fig. 11. Comparison
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Lemma 5.4:SupposeM is a mesh with a circle packing metric,
which induces zero Gaussian curvature everywhere,f : M→ R2

is the isometric embedding ofM onto the plane. Then the
embeddingf is harmonic, namely

∆ f = 0.

Proof As shown in Fig. 13,v is a vertex on the mesh,
v0,v1, · · · ,vn−1 are the neighbor vertices ofv, andci is the center
of the dual circle on the face[v,vi ,vi+1], which is orthogonal to
the three circles centered at the vertices. We embed the one ring
neighborhood ofv onto the complex planeC, and use the same
symbol to represent the complex coordinates of the vertices. Then
by definition, the edge weight of edge[v,vi ], denoted aswi equals
to

wi =
|ci−1ci |
|vvi |

,wi(vi−v) =
√
−1(ci−ci−1).

Therefore,

∑
i

wi(vi−v) = ∑
√
−1(ci−ci−1) = 0,

where this is equivalent to∆ f = 0. Hence the coordinates of the
vertices ofM are harmonic functions.
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[20] R. Zayer, C. Rössl, and H.-P. Seidel, “Setting the boundary free:
A composite approach to surface parameterization,” inEurgraphics
Symposium on Geometry Processing(H. Pottmann and M. Desbrun,
eds.), pp. 91–100, 2005.

[21] A. Sheffer and E. de Sturler, “Parameterization of faced surfaces for
meshing using angle based flattening,”Engineering with Computers,
vol. 17, no. 3, pp. 326–337, 2001.
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