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ABSTRACT
Polycube T-spline has been formulated elegantly that can unify T-
splines and manifold splines to define a new shape representation
for surfaces of arbitrary topology by using polycube map as its
parametric domain. Naturally, The data fitting quality using poly-
cube T-splines hinges on the construction of underlying polycube
maps. However, existing methods for polycube map construction
exhibit some disadvantages. For example, existing approaches for
polycube map construction either require projection of points from
a 3D surface to its polycube approximation, which is therefore very
difficult to handle the cases when two shapes differ significantly; or
compute the map by conformally deforming the surfaces and poly-
cubes to the common canonical domain and then construct the map
using function composition, which is challenging to control the lo-
cation of singularities and makes it hard for the data-fitting and
hole-filling processes later on.

This paper proposes a novel framework of user-controllable poly-
cube maps, which can overcome the disadvantages of the conven-
tional methods and is much more efficient and accurate. The cur-
rent approach allows users to directly select the corner points of the
polycubes on the original 3D surfaces, then construct the polycube
maps by using the new computational tool of discrete Euclidean
ricci flow. We develop algorithms for computing such polycube
maps, and show that the resulting user-controllable polycube map
serves as an ideal parametric domain for constructing spline sur-
faces and other applications. The location of singularities can be
interactively placed where no important geometric features exist.
Experimental results demonstrate that the manifold splines built
upon the proposed polycube maps can achieve the same fitting ac-
curacy by using much fewer control points, and subsequently make
the entire hole-filling process much easier to accomplish.
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1. INTRODUCTION AND MOTIVATION
Manifold splines, proposed by Gu, He, and Qin [7], is a computa-
tional framework to generalize splines defined on planar domains
to manifolds of arbitrary topology. Mathematically, a manifold can
be equivalently treated as a set of coordinate charts in R

2 via lo-
cal parameterization, and these local charts are then glued coher-
ently and smoothly to form a complete manifold surface. Gu et al.
showed that there must be singularities for any closed manifold ex-
cept tori [7]. Hence, for a closed manifold of g > 1, there has to
be singularities of the atlas which can not be covered by any chart
within its collection set. The existence of singularities comes from
the topological obstruction, which can not be avoided within the
current manifold spline framework. Given a closed domain mani-
fold of genus g, [7] proposed a method to compute the affine struc-
ture with Euler number |2− 2g| extraordinary points and showed
that the induced transition functions are simply the translation.

There are two research directions immediately following up Gu et
al.’s work. One is to further reduce the number of extraordinary
points. In [6], Gu et al. presented a method to construct mani-
fold splines with single extraordinary point reaching their theoretic
lower bound of singularity for real-world applications. They first
computed a special metric of any manifold domain such that the
metric becomes flat everywhere except at one point. Then, the met-
ric naturally induces an affine atlas covering the entire manifold ex-
cept this singular point. Finally, manifold splines are defined over
this affine atlas. They showed that the uniformity of the metric
varies drastically depending on the location of singularity.

Another direction, on the contrary, is to increase the number of ex-
traordinary points to reduce the total area distortion in the affine
atlas. In [20], Wang et al. proposed polycube T-splines which is a
variant of manifold spline such that the metric of the affine man-
ifold (polycube without corners) is explicitly determined by the
geodesic distance on the polycube. Compared to [6], the polycube
domain offers a rectangular structure which for sure facilitates geo-
metric computing and shape analysis. Within Wang et al.’s frame-
work, the user first constructs the polycube manually. Then both
the 3D model and polycube are mapped to one of the canonical do-
mains, i.e., sphere S

2, Euclidean plane E
2, and hyperbolic disc H

2,
depending on the topology of the input model. Next, they tried to
find a map between the fundamental domains which induced the
map between the input 3D shape and polycube. This method is
completely different from the method introduced in [18] such that
the former is intrinsic which totally avoids the projection of 3D
points to the polycube domains.



(a) User-controllable Polycube map (b) Polycube T-spline (c) T-junctions on polycube spline (d) Close-up of control points

Figure 1: Polycube spline for the David Body model. (a) The user-controllable polycube map serving as the parametric domain.
(b) and (c) Polycube T-splines obtained via affine structure induced by the polycube map. Note that our polycube spline is globally
defined as a “one-piece” shape representation without any cutting and gluing work except at the finite number of extraordinary
points (corners of the polycube). The extraordinary points are colored in green in (b). The red curves on the spline surface (see (c))
highlight the T-junctions. (d) Close-up of the spline model overlaid with the control points. The polycube T-spline contains 9781
control points. The original model contains 100K vertices. The root-mean-square error is 0.4% of the diagonal of the model.

Although the method presented in [20] can naturally compute the
polycube map in an intrinsic way, it has some drawbacks: 1) there
are very limited number of user-specified controls which can be
used in Wang’s method. For example, the user can only specify
three points on the 3D model and their images on polycube for the
genus zero cases. Therefore, they can not control the desired lo-
cation of the extraordinary points (corners of polycube). If the ex-
traordinary points happen to locate on the highly detailed regions,
then it is difficult to fill the "holes" in the postprocessing step. 2)
It is difficult to handle open surfaces in Wang et al.’s method. The
only feasible way is to use double covering technique introduced
in [9] which convert the open surfaces into closed ones. However
this technique will at least double the time complexity and not prac-
tical for large scale datasets. 3) It is difficult to handle high genus
models, since computing the fundamental domain of high genus
model is known to be error-prone since the numerical truncated er-
ror may cause serious problems when the points are near the bound-
ary of the Poincare disk. 4) It is difficult to control the total area
distortion if the user-designed polycube differs the input 3D model
too much.

In this paper, we aim to further improve the work of [20] by propos-
ing a novel framework of user-controllable polycube maps, which
overcome the aforementioned disadvantages and chanllenging, and
is much more efficient and accurate. Within this framework, the
current approach allows users to directly specify the extraordinary
(corner) points of the polycubes on the input 3D surfaces. The loca-
tion of singularities can be interactively placed where no important
geometric features exist to facilitate later hole-filling process. We
then develop algorithms for computing polycube maps in an intrin-
sic way, and show that the resulting user-controllable polycube map
is an ideal parametric domain for spline constructing and other ap-
plications. Figure 1 demonstrates an example of polycube splines
construction upon proposed user-controllable polycube maps.

1.1 Contributions
The specific contributions of this paper are as follows:

1. We propose a novel framework to construct user-controllable
polycube maps by using discrete ricci flow. Our method is
fundamentally different from Tarini et al.’s technique [18]
and the method proposed in [20]. The user is allowed to
choose the extraordinary points directly and freely on the
given 3D surfaces, thus, can avoid the high detailed regions
which facilitates later hole-filling process.

2. The proposed method for polycube map construction has lower
area distortion compared to traditional methods and preserves
small angle distortion as well. By minimizing the size of sin-
gularities on the parametric domain, we can ensure that the
corresponding holes in the resulting surfaces are also small.

3. The proposed method can construct polycube map easily for
high genus surfaces and open surfaces, which are usually dif-
ficult to be handled by the traditional methods as explained
above.

The remainder of this paper is organized as follows. We review
the related work on splines and parametrizations in Section 2. We
present the details of our algorithm to construct the user-controllable
polycube map of arbitrary topology in Section 3. We then dis-
cuss our construction algorithms for polycube splines and docu-
ment experimental results with statistics and performance data in
Section ??. Finally, we conclude our paper in Section 4 with future
research directions.

2. PREVIOUS WORK
Global surface parameterization is critical to many applications in
graphics, vision and computer-aided design, such as texture map-
ping, remeshing, shape matching, spline construction, etc [4, 17].
Gu and Yau pioneered global conformal parameterization using
holomorphic 1-forms [9]. Jin et al computed optimal holomorphic
1-form to reduce the area distortion of conformal mapping [12].
Kharevych et al. computed the conformal parameterization using
circle patterns [14]. Dong et al. proposed a method for quadri-
lateral remeshing using harmonic functions [3]. This method is



theoretically equivalent to using a holomorphic one-form as [9] ex-
cept that it has at least four more zero points than Gu and Yau’s
method. Tong et al. generalized harmonic 1-forms to incorporate
cone singularities and used them for quadrilateral remeshing [19].
Ray et al. parameterized surfaces using periodic potential func-
tions guided by two orthogonal input vector fields [16]. Dong et al.
stuided Laplacian eigenfunctions, whose extrema are evenly dis-
tributed on the mesh. Connecting these extrema via gradient flow
led to a quadrangular base mesh which can serve as the parametric
domain for quadrilateral remeshing [2]. Kälberer et al. computed
global parameterization using branch covering and demonstrated
their algorithm in high quality quadrilateral remeshing [13].

Besides the Euclidean plane, other domains can also serve as the
parametric domain for surface parameterization. Spherical parametriza-
tion for genus zero surfaces are introduced in [5, 8]. Jin et al. com-
puted hyperbolic surface parameterization of surfaces with neg-
ative Euler characeteristic using discrete Ricci flow [11]. Kho-
dakovsky et al. parameterized the surfaces using simplicial com-
plexes [15]. Tarini et al. pioneered the concept of polycube maps
which aims to reduce both the angular distortion and area distor-
tion [18]. Wang et al. presented an intrinsic method to construct
the polycube map which avoids the projection of the vertices on 3D
model to the polycube domain [20].

3. CONSTRUCTION OF POLYCUBE MAPS
In this section, we explain in details our algorithm for constructing
polycube maps for surfaces with arbitrary topologies.

The key differences between the techniques employed in [18, ?]
and ours in this paper are that Tarini et al.’s technique is trying to
find a one-to-one mapping from the original surface to the poly-
cube surface extrinsically, which typically requires the projection
of points from the suface to the polycube. As a result, their method
is usually quite difficult to handle cases where the surface and the
polycube differ too much, because the point projection does not
establish a one-to-one correspondence; the methods used in paper
[?] compute such a mapping in an intrinsic way. They first con-
formally map the 3D shape and the polycube to the same canonical
domains (e.g., sphere, Euclidean plane, or hyperbolic disk), then
construct a map between these two domains, which induces a one-
to-one map between the 3D shape and the polycube. The draw-
back of this intrinsic method is that user has very limited control
on the whole mapping. For example, user can not control the posi-
tions of those points, which are mapped to the corner points of the
polycube. If the neighborhoods of those points have rich geometric
features, hole fillings will very challenging and error prone. In con-
trast, our method offers users the full control of the corner points,
therefore, users can choose the corner points at regions with less
geometric features to simplify the hole filling procedure. Further-
more, the method in [?] compute the polycube first, then construct
the mapping between the surface and the polycube. If the poly-
cube is changes, the mapping need to be recalculated; whereas, in
our current method, we establish the mapping first, then we deter-
mine the polycube based on the mapping. If we modify the shape
of the polycube, the correspondence between the surface and the
polycube doesn’t change. Therefore, we can adjust the shape of
the polycube easily to obtain a better fitting for the polycube to the
original surface. Our experimental results show that the new poly-
cube method introduce less area distortion. Smaller area distortions
around the corner points induce better hole filling results.

The polycube is constructed in the following way:

1) user set the positions and the curvatures of the corner points on
the surface.
2) we deform the Riemannian metric of the surface by Ricci flow,
such that all the corners have the prescribed Gaussian curvatures,
and other points are flat.
3) We compute the straight lines connecting corners on the surface
under the new metric to partition the surface to a collection of pla-
nar quadrilaterals.
4)We transform each quadrilaterial to a planar rectangle by setting
the corner angles to be π

2 ’s, and running Ricci flow.
5) Assembly all the planar rectangles to the desired polycube. Then
for vertices on the edges of the polycube, they might be mismatched.
We enforce them to meet together on the edge, and use harmonic
map to relax the interior of each rectangle.

In the above construction, the mapping between the polycube and
the surface is automatically established. The shape of the poly-
cube and the correspondence are fully determined by corner points.
Therefore, the choices of the corner points are crucial. The fol-
lowings are the important criteria for choosing the positions of the
corners: the corners should be at regions with less geometric fea-
tures for the purpose of better hole filling; the configuration of the
corners should reflect the symmetry of the original surface.

Our experimental results show that current method gives users more
freedom to design the polycube; it induces less area distortion be-
tween the surface and the polycube; it capable to handle surfaces
with more complicated topologies, such as high genus surfaces or
open surfaces, which are difficult to handle by conventional meth-
ods.

3.1 Discrete Ricci Flow
Suppose S is a surface with a Riemannian metric g. Let u : S→R be
a function on the surface, then ḡ = e2ug is also a Riemannian metric
of S, where u represents the area distortion and called the conformal
factor. Furthermore, the angles between two tangle vectors at the
same point measured by g equal to those measured by ḡ, therefore,
we say ḡ is conformal to g. Gaussian curvatures are determined
by Riemannian metrics. Let K and K̄ are the Gaussian curvature
functions induced by g and ḡ respectively. Then K, K̄ and u are
governed by the following Yamabe equation:

K̄− e2uK = ∆u, (1)

where ∆g is the Laplace-Beltrami operator determined by g. This
equation shows that given a desired Gaussian curvature K̄, we can
uniquely determine a Riemannian metric e2ug. The desired metric
can be computed using Ricci flow method:

du(t)
dt

= K̄−K(t), (2)

where the initial condition is u(0) = 0, K(t) is the Gaussian cur-
vature induced by the metric e2u(t)g. Riccif flow is proven to be
convergent to the unique solution under the constraint that the sur-
face area is preserved during the flow [10].

Discrete Ricci flow method is introduced in [1] and applied for
solid modeling in [20]. Basically, the surface is approximated by
a triangular mesh. The Riemannian metrics are approximated by
the edge lengths. The Gaussian curvatures are approximated as the
angle deficit from 2π at each vertex. The conformal metric is ap-
proximated by circle packing metric, where the mesh is covered by
a collection of circles centered at each vertex. The circles intersect



each other. We can change the circle radii and preserve the inter-
section angles, then the radii and the intersection angle together
determines the edge lengths, then the discrete curvatures at the ver-
tices. Let the circle radii at vertex vi be γi, ui be lnγi, then discrete
Ricci flow has exact the same form as the smooth Ricci flow

dui(t)
dt

= K̄i −Ki(t),

with a normalization constraint, that during the flow the total area
of the mesh is preserved. Discrete Ricci flow is a powerful tool to
design edge lengths according to the user defined curvatures.

Furthermore, discrete Ricci flow is the gradient flow of the so called
discrete Ricci energy. Let u be the vector of logarithms of radii
(u1,u2, · · · ,un), k be the vector of vertex Gaussian curvature (K1,K2, · · · ,Kn).
Let u0 be (0,0, · · · ,0), then the discrete Ricci energy is given by

E(u =
∫ u

u0

n

∑
i=1

(K̄i −Ki)dui.

It is proven that the discrete Ricci energy is convex, therefore has a
unique global minimum, which induces the curvature k̄. Therefore,
we can use Newton’s method to compute the desired metric from
the user defined curvature.

3.2 Construction of Polycube Maps
Corner Selection Given a mesh M with arbitrary topology, user can
design the polycube P based on the shape of the surface by directly
selecting corners of P on M. The choices of the corners reflect the
symmetry of M. The curvature at each corner c equals to (2− k

2 )π ,
where k is the valence of c on the polycube p. Namely, protruding
corners are with π

2 , recessed corners are with − π
2 . The total cur-

vatures of all corners equals to 2πχ(M), where χ(M) is the Euler-
characteristic number of M. Figure 2 shows the selected corner
points on Buddha model. The red corners are the protruding cor-
ners, the green corners are the recessed corners. For non-corner
vertices, we set the curvature to be zeros.

Mesh Partition We use the discrete Euclidean Ricci flow to com-
pute a new circle packing metric according to the target curvature.
For any two corners c1,c2 on the mesh, whose correspondences
are connected on the polycube, we compute the shortest path con-
necting them on the mesh under the new metric using Dijkstra’s
method. All such shortest paths segments partition the mesh to
patches.Figure 4 shows the partition of the buddha mesh by this
step.

Rectification Each patch is a planar quadrilateral under the new
metric, but may not be a rectangle. We can use the Ricci flow
method to rectify the planar quadrilateral to the rectangle by set-
ting the target curvatures of 4 corners to be π

2 , and all the other
interior and boundary vertex curvatures to be zeros. Ricci flow can
find a flat metric, the layout of the mesh under the flat metric is a
rectangle. The aspect ratio of the rectangle is solely determined by
original geometry of the patch. Figure ?? illustrates the rectifica-
tion result.

Polycube Assembly Assemble all the rectangles to a polycube, scale
each rectangle along x and y directions when it is necessary. First,
we build the dual graph of the polycube, each node represents a face
of the polycube, each edge corresponds to an edge. Then we use
breadth first searching method to traverse the dual graph. We first
embed the root face, each time we access a new face, we determine

the coordinates of its corners. In this way, we can embed the whole
polycube in R

3.

If two rectangles on the polycube share one edge, make the cor-
responding vertices to align each other. Then we use a discrete
harmonic map to relax the positions of the interior vertices of each
rectangle with the fixed boundary condition.

Figure 2: Corner points are marked on Buddha model, red
ones with π/2 target Gaussian curvature, and green ones with
−π/2 target Gaussian curvatures.

Figure 3: Geodesics between corner points are marked with
sharp edges, which are computed using Dijkstra’s algorithm
with computed conformal metric as edge lengths.

4. CONCLUSIONS
We proposes a novel framework of user-controllable polycube maps,
which can overcome the disadvantages of the conventional methods
and can be generalized to complicated surfaces of arbitrary topol-
ogy. The proposed method allows users to directly select the corner
points of the polycubes on the original 3D surfaces, then construct
the polycube maps by using the new computational tool of discrete
Euclidean ricci flow. The resulting polycube map usually has lower
area distortion and small angle distortion which are pleasing for
spline construction. We develop algorithms for computing such
polycube maps, and show that the resulting user-controllable poly-
cube map serves as an ideal parametric domain for constructing
spline surfaces. The location of singularities can be interactively



Figure 4: Geodesics between corner points are marked with
sharp edges, which are computed using Dijkstra’s algorithm
with computed conformal metric as edge lengths.

placed where no important geometric features exist. Experimental
results demonstrate that the manifold splines built upon the pro-
posed polycube maps can achieve the same fitting accuracy by us-
ing much fewer control points, and subsequently make the entire
hole-filling process much easier to accomplish. Through extensive
experiments on various models, we demonstrate that proposed user-
controllable polycube maps are well suited for spline construction
of complicated geometric models of arbitrarily complicated topol-
ogy.
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Figure 6: Examples of Polycube T-splines.


