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Abstract

This paper develops a novel computational technique toelefin
construct powerful manifold splines with only one singupenint
by employing the rigorous mathematical theory of Ricci fldie
central idea and new computational paradigm of manifoléhepl
are to systematically extend the algorithmic pipeline dingpsur-
face construction from any planar domain to arbitrary toggl As
a result, manifold splines can unify planar spline represems
as their special cases. Despite their earlier success xibing
manifold spline framework is plagued by the topology-defes,
large number of singular points (i.62g — 2| for any genug sur-
face), where the analysis of surface behaviors such asncityti
remains extremely difficult. The unique theoretical cdnition of
this paper is that we devise new mathematical tools so thaifabé
splines can now be constructed with only one singular poaaich-
ing their theoretic lower bound of singularity for real-wbappli-
cations. Our new algorithm is founded upon the concept afrdie
Ricci flow and associated techniques. First, Ricci flow is leygd
to compute a special metric of any manifold domain (servisig a
parametric domain for manifold splines), such that the imdte-

comes flat everywhere except at one point. Then, the mettic na

rally induces an affine atlas covering the entire manifolcegt this
singular point. Finally, manifold splines are defined ovas affine
atlas. The Ricci flow method is theoretically sound, and ficalty

simple and efficient. We conduct various shape experimemds a

our new theoretical and algorithmic results alleviate tredeling
difficulty of manifold splines, and hence, promising to paimthe
widespread use of manifold splines in surface and solid firagle
geometric design, and reverse engineering.
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1 Introduction and Motivation

1.1 Problem Statement
Despite many algorithmic and theoretical advances in guolbdi-

eling and shape computing in most recent years, one fundamen

objective of our research community is always striving teedep
novel modeling, design, and simulation schemes that abtapf
accurately representing complicated real-world objecta com-
pact manner, and facilitating rapid computation of theisidsble
properties both globally and locally such as differentiaperties,
smoothness requirements, and topological validity. Furttore,
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how to stably and robustly compute CAD-based representatiad
how to rapidly simulate them with high fidelity remain to befia-
mentally challenging and are always in great demand. Slyang
spired by the recent development of subdivision surfacdszm-
ifold splines, our current research goal in this paper isurthir
advance the state of the knowledge in manifold splines. Atltle-
oretic level, we devise manifold splines with only one silagpoint
through the mathematical rigor of Ricci flow and relevant para-
tional techniques. At the application level, we design axiraew
algorithmic pipeline that enables all the computationaf@nts to-
wards the widespread use of manifold splines (especiadiyntw,
improved scheme with single extraordinary point) in soliddal-
ing, shape design, and reverse engineering.

1.2 Manifold Splines

For the perspectives of solid modeling, engineering dedigite
element simulation, and scientific computation, elegaonggsric
properties such as high-order continuity and the ease opatm
ing all the desirable properties rapidly are always marsiafiar
the development of novel shape representations. Therdfaie
not surprising to see that spline-centric polar forms [8kei®93]
are becoming the most popular computational tools in gedenet
modeling and shape design. Essentially, the methodologyplaf
forms naturally gives rise to parameterization-centepgelcewise
polynomials defined on any planar parameter domain for tlee-ef
tive modeling and accurate computing of smooth spline segfa

However, examining all the real-world applications, weeate
that the most natural shapes are manifolds with complidaisalo-
gies and arbitrarily detailed geometric configurationsjchvican
not be completely covered by a single open surface defineden o
coordinate system (note that, it does not matter if the patam
surface is a polynomial or a non-polynomial, this fundarakptin-
ciple remains the same). Instead, a manifold might be cdveye
a family of coordinate chartseach coordinate chart covers only a
portion of the manifold. Different charts may overlap witach
other, acoordinate transition functiotransforms from one coordi-
nate system to the other. If we follow the algorithmic pragedof
polar forms and other relevant computational techniquespnin-
cipled way, we can easily realize that conventional splide§ined
over any open domain) can not be transferred over the mdsifol
directly.

In order to model a manifold using piecewise polynomials; cu
rent approaches will segment the manifold to many patches, d
fine a single coordinate system over each patch, such that eac
patch can be modelled by a spline patch. Finally, any geragric
proach will glue/abut all the spline patches together bystitig
the control points and the knots along their common bourdari
This whole process is mainly performed manually, and it iregu
the users’ skill and mathematical sophistication, anddetes and
error-prone.

Itis highly desirable to design splines defined over madgali-
rectly, such that different spline patches can be autowrdétiglued
together with high continuity, and the modelling procesguies
neither segmentation nor patching. Pioneering work has Heee
by Grimm and Hughes [Grimm and Hughes 1995], which can
model splines on arbitrary surfaces. Recently, Ying andrding
and Zorin 2004] introduced a general method by construciing
conformal atlas. In both methods, smooth functions are défin



on each chart and blended together to form a function cotigren
defined over the entire manifold. The methods are flexibleafor
manifolds with arbitrary topologies. The functions arehnany de-
gree of desirable continuity without any singularity. Thémary
drawbacks of these methods are that surfaces construdsedai
are no-longer polynomials and their computation expensesedh
atively high in comparison with conventional spline sugsc

Most recently, the manifold splines proposed by Gu, He, aind Q
[Gu et al. 2005] offer a different approach to manifold domedn-
struction. The main advantage for manifold splines is tima¢ach
local chart, the functions are all piecewise polynomialscam-
mon use, currently available spline surfaces in commesofivare
packages can easily serve as building blocks towards tketivt
design of complicated models of arbitrary topology, anddeethe
evaluation and all the necessary computational proceduesisoth
efficient and robust. Furthermore, existing algorithms anft-
wares for conventional spline surfaces can all be easilytaedo
for use in applications of manifold surfaces. Neverthelesstain
drawbacks still remain: there must be singularities forsgahman-
ifolds except tori. In [Gu et al. 2005], they discovered ttrat ex-
istence of the manifold splines is equivalent to the existeof a
special atlas of the underlying manifold domain, whosesiitaom
functions are all affine among themselves, denotedffase atlas
Unfortunately, it is impossible to find an affine atlas to aoaebi-
trary closed surfaces except tori. There must be singidaffior the
atlas which can not be covered by any chart within its calbect
set. Moreover, they proved that the minimal number of siagul
ties equals to one without developing any practical algarit So,
how to lower the number of singular points remains elusivel a
how to devise new algorithms with a minimum number of singu-
lar points for practical applications remains extremelghtecally
challenging.

Using existing popular techniques of polar forms and Eeelid
metrics, the manifold splines in the neighborhoods of demfies
appear to be extremely difficult to construct, unstable, amdr-
prone. In addition, the mapping distortion from the surfaz¢he
affine atlas significantly affects the quality of the finalisplsur-
face. The distortions are intrinsically determined by timgslari-
ties for the affine atlas. Therefore, it is highly desiraldedsers to
be able to control the position and the number of the singdidar
For open surface cases, however, it is ideal to push the lsingu
ities away from the surfaces. In this paper, we demonsttate t
Discrete Ricci flow is a powerful theoretic and computaticoal
for constructing affine atlas with full control of singultéeis, and
specifically, being capable of minimizing the number of silagi-
ties to its theoretical lower bound (which is at most one fosed
surfaces and zero for all open surfaces).

13

In reality, surfaces are typically acquired via modern saagm
devices, and they are initially approximated by a set of {3oin
and/or triangular meshes. We shall consider the triangiebm
approximation of domain manifolds first. In order to find afiref
atlas of a triangle mesh, it is sufficient to find a configunataf
edge lengths, such that the one-ring neighbor of each virféat.
So, any parameterization problem can be formulated as:

Intrinsic Shape Space

Finding a configuration of edge lengths, such that each wentes
zero discrete Gaussian curvattre

One could naturally raise the following much broader questi
given a mesh,

1Discrete Gaussian curvature is defined as the differenceebet 2t
and the summation of all angles adjacent to the vertex (Set®8e.2)

1. What are the all possible configurations of edge lengths?

2. What are the all possible configurations of curvatures on ver
tices?

3. What is the relation between edge length configurations and
curvature configurations? It is obvious that edge lengths de
termine curvatures. Can curvatures determine edge lefigths

The entire space of all possible configurations of edge kenit
denoted as thenetric space The entire space of all possible con-
figurations of vertex curvatures is denoted asdbevature space
Metric space and curvature space imteinsic shape spacesf the
mesh.

The answer to the admissible edge lengths is straightfakwar
any configuration satisfying triangle inequality is adribés For
admissible curvature configuration, the answer is much roone
plicated. There are mainly two constraints: topologicaistoaint
and combinatorial constraint. The topological constr&mepre-
sented as the Gauss-Bonnet formula, the total curvaturalstu
the 2y, wherey is the Euler number of the mesh. The combinato-
rial constraint ensures that all angles are between Omadd rep-
resented solely by inequalities of curvature and conniggtiihe
technical details will be discussed in the next Section.

The answer to the third question has fundamental importance
it is the main focus of this work. It is easy to compute curvatu
using edge lengths, but the inverse is much more complicéted
tuitively speaking, the Gaussian curvature is a map fronmagic
space to the curvature space, the mapping in general isjaotiire.
However, one can select a subspace of the whole metric spade,
that any two metrics in the subspace are conformally eqgeital
Restricted on this subspace, Gauss curvature map is a hamneom
phism, namely, any curvature configuration uniquely deteesian
edge length configuration in this subspace.

In practice, one can specify the target curvature and defbem
edge length according to the difference between the cument
vature and the target curvature. It is guaranteed that thetue
configuration of the final mesh will reach the target one. Kiisl
of deformation process driven by Gaussian curvature isdftaked
Ricci flow

1.4 Ricci Flow

Ricci flow was first introduced in differential geometry byiton
in [Hamilton 1988]. It has solid theoretic foundations. Bstare,
it is a constructive geometric tool and can be easily implees;
therefore, it has a great potential for real-world appiara.

The fundamental idea of Ricci flow is rather simple. We can de-
form the surface driven by its curvature to the desired sh&pg-
poseS s a closed surface with Riemannian mefgicandu is a
function onS, thene?g is another metric orB conformal tog.
Ricci flow is explicitly defined as

du(t)

g = KK,

1)

where the area preserving constraint is explicitly forrnredeas,

'/SdAz/SeZ“dA

andK(t) is the Gaussian curvature induced by the meafit!g,
andK is a constant

)

2mx(S)
JsdA
It has been proven that Ricci flow converges to the unifornrimet

that induces constant Gaussian curvatQien the surfacek (co) —
K. Furthermore, Ricci flow converges to the final stable sofuti

K=




exponentially fast, for a given surfa& there exist two positive
constants,, ¢, determined by the geometry 8f such that,

IK(t) — K ()| < cre™2.

Ricci flow has many promising properties, which make it very
valuable for real-world applications,

e Ricci flow offers the freedom to traverse the intrinsic shape
space (all the admissible configurations of edge lengths) by
driving the surface to deform to all possible shapes as lang a
the Gaussian curvature of the target shape is known.

The deformation induced by a Ricci flow is conformal.

Ricci flow deforms the surface to a single solution and con-
verges to the solution exponentially fast.

Ricci flow can be formulated as a variational problem, the
energy is a convex function, therefore has single globat opt
mum. Ricci flow is the negative gradient flow of the energy, it
can be further speed up using Newton's method.

In our current research, the fundamental motivation foousse
Ricci flow is its computational power to compute the affinasitl
of a mesh with any desired number of singularities, espgaiath
only one singularity.

1.5 Contributions

In this paper, we devise a novel algorithm to construct nuéahif
splines with only one singular point for closed surfaces aeb
singular point for open surfaces, reaching its lower bourttieory.
The algorithm is uniquely founded up on a mathematicallgnogis
tool in differential geometry, namely, Ricci flow. Key coitintions
of this paper include:

1. We formulate the intrinsic space of a mesh: the metricespac
(i.e., all admissible configurations of edge lengths) arel th
curvature space (i.e., all admissible configurations ofexer
curvatures). We point out the topological constraints dred t
combinatorial constraints for the metric spaces. We readefi
the general surface parameterization problem as equa@len
to finding flat metrics with any user-assigned singularities

. We articulate our new computational method to constroct a
affine atlas with any pre-determined singularities usinccRIi
flow. The affine atlases serve as the key and necessary ele
ments for constructing manifold splines, especially, f@mnin
fold splines with only one singular point.

. We offer a theoretically rigorous, practically simplelarom-
putationally efficient tool, Ricci flow, to solve geometrinca
solid modeling problems. In its discrete case, given thesSau
sian curvature on each vertex, Ricci flow will be employed to
compute the configuration of edge lengths.

2 Background Review

This section briefly reviews previous work on splines, Ritoiv,
parameterization, and circle packing.
Manifold Splines. Pioneering work has been done earlier by
Grimm and Hughes [Grimm and Hughes 1995], which can model
splines on arbitrary surfaces. Recently, Ying and Zorimfrand
Zorin 2004] introduced a general method by constructingrdare
mal atlas. The function basis in their constructions areatmand
without singularities, however, they are not polynomiaégjuiring
the necessary data exchange between polynomial-baseé sph-
faces and their special-purpose functions for surfacegdesi
Manifold splines defined by piecewise polynomials over mani
fold domains of arbitrary topology were first rigorously fimulated

in [Gu et al. 2005], which unifies the conventional splinefaces
based on polar forms and the subdivision surfaces of arpiiaol-
ogy. In their work, it is proven that a manifold admits a matdf
splines based on polar forms if and only if it has an affinesatla
The topological obstruction for the existence of the affilasais
the Euler class. By removing only one point, any orientedasear
has an affine atlas.
Ricci Flow. Ricci flow on surface is introduced by Hamilton in
[Hamilton 1988], which will conformally deform the metrid a
surface to a canonical metric with constant Gaussian aureafEor
a closed genus-zero surface, Ricci flow will change the métri
the spherical metric with constant positive Gaussian ¢urea for
a genus-one closed surface, the solution to Ricci flow is tegp
metric with zero Gaussian curvature; for a high genus clesed
face, the solution to Ricci flow is the hyperbolic metric wibn-
stant negative Gaussian curvature. The analogue of Riggiiflo
the discrete, combinatorial setting is first studied in [®@famd Luo
2003]. It is proven that combinatorial Ricci flow will deforthe
metric of a triangle mesh to metrics with constant vertexvaur
tures. Recently, Jiet al. applied discrete Ricci flow to compute
the hyperbolic and real projective structure of surfacés ¢ al.
2006].
Circle Packing and Circle Pattern. Circle packing and circle pat-
tern are used for approximating conformal deformationsrcl€i
packing is first introduced by Thurston in [Thurston 1982henre
he designed an algorithm to find the circle packing of a graph b
adjusting the radii at vertices one at a time. Stephensadn é¢wzel-
oped practical algorithms in [Stephenson 2005]. Circleégpatis
introduced in [Bobenko and Springborn 2004] and appliedstor
face parameterizations in [Kharevych et al. 2005], whictiasely
related to circle packing. Instead of using circles cemtereeach
vertex, this method uses the circum-circles of trianglesnfaring
with circle pattern, the theoretic framework of Ricci flowngich
simpler and clearer. Furthermore, the implementation efRfcci
flow is much easier in practice.
Global Surface Parametrization. Affine atlas can be computed
using surface parametrization algorithms. In the litematahere
exist many parameterization methods using a variety obdist
metrics. For a thorough survey, we refer the readers to tbellext
work of Floater and Hormann [Floater and Hormann 2005]. We
shall focus on the most related work, especially global patari-
zation methods.

Gu and Yau computed the conformal structure based on Hodge
theory in [Gu and Yau 2003]. The method computes the holomor-

phic 1-form basis, and induces a flat metric wittp-22 singular-
ities. Ni et al. extracted the topological structure usiagnhonic
morse function, the vector fields are holomorphic 1-fornms -
duced a flat metric with more singularities [Ni et al. 2004]e-R
cently, Ray et al. [Ray et al. 2006] computed the global contd
parameterization also using holomorphic 1-form, but djeadly
tailored the parameterization to follow the principle atore lines.

It may be note that, all current parameterization methodk wi
introducemultiple singularities due to the topological obstruction.
The method to be developed in this paper is capable of reducin
the number of singularity points to its theoretic lower bound
(which is one)

3 Global Surface Parameterization Using
Discrete Ricci Flow

Conventionallocal surface parameterization refers to the process
of mapping a simply connected surface patch to a planar megio
In contrast, alobal surface parameterization maps the whole sur-
face to the plan&2, the unit spher&2 or the hyperbolic spac&?
periodically. The global surface parameterization probteuld be
formulated in a precise and general way as deforming thegive
face to satisfy the prescribed curvatures. By deformingstiréace,



we mean finding a different Riemannian metric (the first funde-
tal form). If conformality is required, then the new metriwsild be
conformal to the original metric. Mathematically, suppagss the
original metric, then the metric conformal ¢phas the forme?ig,

whereu is the function defined on the surface. Then global surface

parameterization is to solve functiarby the prescribed curvature.

In the following, we assume the surface is an oriented
manifold, represented by a two dimensional simplicial ctamp
(i.e., triangular meshl = (V,E,F), whereV is the set of all ver-
tices,E is the set of all non-oriented edges, @nthe set of all faces.
We usevi,i = 1,2,--- ,nto denote its vertices; to denote an ori-
ented edge fronv; to vj, fjjx to denote an oriented face, vj, vk
are sorted counterclock-wisely.

2-

(a). front side

(b). back side

Figure 2: Affine atlas induced by a global conformal surface -
rameterization. The affine atlas is illustrated by texture mapping
of a checkerboard pattern. There a2g — 2 singularities centered
at the white octagons.

3.1 Discrete Conformal Metrics

The central task is to approximate Ricci flow (1) in the disere
mesh setting. Continuous Ricci flow conformally deforms & su
face.

Figure 1 illustrates an important observation for contimioon-
formal mappings: they transform infinitesimal circles téinitesi-
mal circles, and preserve the intersection angles amongjrities.
Based on this property, Thurston introduced the circle jpaciet-
ric in early eighties [Thurston 1982]: a circle with the nasly; is
associated with each vertex For an each edgej, two circles
intersect at the angl®;jj, called edge weight. The edge length of
gj is determined by, y; and®;;,

Ii,-:\/yi2+y1-2+2y.y,-cos¢ij. (©))

It can be shown that for any fadgy with vertex radii{y, yj, y}
and edge weight§®;j, @, i}, if edge weights are acute angles,
then the edge lengthidij, 1, i} satisfy the triangle inequality,

Iij +|jk > i

We usel’ : V — R* to denote the vertex radiip : E — [0, Z]
the edge weights, then a circle packing metric is repredease
(M,T,®).

Two circle packing metricéM, M1, P1) and(M, 2, d2) are con-
formal to each other, ifp; = ®,. Namely, a discrete conformal
mapping will change the vertex radii only and preserve therin
section angles. Figure 5 and Figure 4 illustrate the cirelekng
metric.

3.2 Discrete Curvature
Given a discrete metrigM, ®,T"), supposejji is a face, the angle
of vertexv; in fjj is denoted asﬂ-’k, then the discrete Gaussian
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Figure 3: Computing the affine structures for genus one sur-
faces using discrete Ricci flowThe right column (b) and (d) shows
the embedded fundamental domain. The last row shows theruniv
sal covering space.

curvatureK; at an interior vertex; is defined as

Ki =2m— Z Qijk,vigal\/l7

ﬁwGF

(4)

the discrete Gaussian curvature for an boundary vertesdefined

as i«
65 v € oM. (5)

Ki=rm— i

ﬂmGF
Figure 6 demonstrates the circle packing metric for a tetlatn
surface, where all the edge weights are zeros, all the veatkxare
0.5, and all the vertex curvatures ame
The Gaussian curvature at each vertex could be arbitraryhéu
total curvature is confined by the topology of the surfaceis T
indicated by the Gauss-Bonnet theorem.

Theorem 1 (Gauss-Bonnet) Suppose M is a mesh, the total dis-
crete Gaussian curvature equals to the produc2mfand its Euler

number,
z K = 2my. (6)



Figure 1: Circle packing for a surface. Conformal mappings transform the infinitesimal circles ba texture plane to the infinitesimal

circles on the surface.

Figure 4: Close-up view of the flat circle packing metric usimg
Ricci flow.

Furthermore, for any discrete metiM, ®d,I"), ® : E — [0, %]
and any proper subskbf verticesv,

%Ki(r) > —<e. )Z

v)eLk(l)

(m—®(e)) +2mx (), (@)

whereF is the set of all faces iM whose vertices are ih Lk(1) is
the link of | being the set of pair&, v) of an edgee and a vertex
so that(1) the end points o€ are not inl and(2) the vertexvis in
I and(3) eandv form a triangle.

The following theorem is fundamental that the map between th
vertex radiil” and the discrete curvatuik€ is a homeomorphism,
detailed proof can be found in [Chow and Luo 2003].

Theorem 2. If a discrete metridM, ", ®) induces discrete curva-
ture K, then K satisfies the Gauss-Bonnet Equation (6) andé¢he
of all linear inequalities (7). If M andp are given, K satisfies (6)
and the set of all linear inequalities (7), then there exisfsunique
up to scaling, such that K is induced by the mefht. I, ®).

Global surface parameterization problem can be re-forredla
as follows:

Global surface parameterization is to find a special mesigh
that the curvatures are zero almost everywhere except &raev
singularities

For example, conventional global conformal surface patarme

ization is to compute a special metric on the mesh, such that a

|2g — 2| singularities, the curvatures equal+@m. The singular-
ities are determined by the geometry of the surface, as sliown

Figure 5: Circle packing metric for a triangle.
[v1,V2,Vv3] has vertices ¥, v» and 3, edges &, 3 and 1. Three
circles centered atMvy, va, with radii y1, y» and y3 intersect one
another, the intersection angles abg,,®,3 and®3, which are the
weights associated with the edges. The edge lengths ofidhgle
are determined by, and ®;; by the cosine law.

Triangle

Figure 2. Ricci flow method allows the user to freely assigiysi
larities for global parameterizations, as long as the targesature
satisfies the conditions in Theorem 2. Figure 7 illustratesrela-
tion between circle packing metric space and curvatureespac

3.3 Discrete Ricci Flow

One can assign discrete Gaussian curvatufer a weighted mesh
(M, ®) as long a¥ satisfies the conditions in Theorem 2. Discrete
Ricci flow is able to solve the vertex radii We useg'T” to denote
the conformal metric with vertex radigs y; at vertexi. Similar to
the continuous Ricci flow (1),

Definition 3 (Discrete Ricci flow) The discrete Ricci flow is de-
fined as

dy —
gt = (Ki—K), 8
wherek; is the desired discrete Gaussian curvature at verfemmn-
der the constraing u; = 0 (equivalent to the area-preserving con-

straint).

Similar to continuous Ricci flow, it is proven that discretied®
flow also converges to this stable solution exponentialty.fa

Definition 4 (convergence) The solution to (8) is calledonvergent
if
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Figure 6: Circle packing metric and curvature. For a canonical
tetrahedron, the edges lengths equal te 1.0, the radii on all the
vertices equal to = 0.5. The curvature on each vertex equals to
Kj = m. The weights of all edgeB equals ta0.
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Figure 7: Gaussian curvature is a homeomorphism between the
circle packing metric space based oM, ®) and the curvature
space, the inverse map can be computed using Ricci flowVe
start from the known metrigy and the known curvaturkg, then
flow to the target curvatur&. using Ricci flow, then the metric
will flow to the corresponding metrig, = M~1(Ko).

1. limi_«Ki(t) = K; exists for all i,

2. limi—w Yi(t) = Vi € Z* exists for all i.

A convergent solution is calledonvergent exponentially fast
there are positive constantg,cy, so that for all time t 0,

IKi(t)

- |Z|| S C167C2t>

and

y| < Cle Czt

M(t) -

The following theorem states that discrete Ricci flow is gnar
teed to converge exponentially [Chow and Luo 2003].

Theorem 5. Suppos€M, @) is a closed weighted mesh. Given any
initial circle-packing metric based on the weighted mekk, 20lu-
tion to the discrete Ricci flow (8) in the Euclidean geometithw
the given initial value exists all the time and convergesoeen-
tially fast. The solution converges to the meffict(K).

3.4 Variational Approach

Discrete Ricci flow can be interpreted as an energy optinaizat
process, and the convergence speed can be further imprgved b
ing Newton’s method.

Discrete Ricci flow is variational, namely, it is the negatiyra-
dient flow of certain convex energy, therefore, we can usetbies
method to further improve the convergence speed.

Given initial metric (M,®,I") and the conformal metric
(M, ®,€e"T), the energy form is defined as

0= [, m

KI dLi ) (9)

whereu = (Ug, Uz, - ,Un), Ug is (0,0, -- ,0). Thus =K —K;,
that is, the Ricci row is the negative gradlent flow of the gyef.
The Hessian matric of is,

02f
ou;du;

_ K
o ﬂu]'.
Direct computation shows,
> ij =]
Yi ki =]
O eamr
0 i#j,aj ¢E
o
— 1#j.&cE
1-(A))?

oK,
au;

JK;
=y = 10
3y (10)

Yi2k

where ' 2V
A
ij _ 2V + W+ 2)
20y + )2 +v))?
ij_ 24vf
K MW +Y)?

It can be verified that the Hessian matrix is positive defjnite
is strictly convex, therefore, it has a unique global minimuBoth
gradient descend method and Newton’s method converge agd th
are also stable.

3.5 Conformality

In practice, it is highly desirable for the deformation todmnfor-
mal, namely, angle preserving. A conformal map transforms a
infinitesimal circle to an infinitesimal circle, as shown iig&re 1.
Therefore conformal mapping only changes the rgdti the circle
packing metric(M, ®,I"), and preserves the intersection angles
among the circles. It can be proven that continuous conflommag-
ping can be approximated with arbitrary accuracy by discneaps
using circle packing [Rodin and Sullivan 1987].

In graphics applications, the meshes are embedded®inthe
metrics are induced from that Bf. We can find the optimal weight
@ with initial circle radii I, such that the circle packing metric
(M,®,I") is as close as possible to the Euclidean metric in the least
square sense. Namely, we want to i, @, ") by minimizing the
following functional

mince Y [l —lij 2, 11

&;€E

whereljj is the edge length af; in RS.

4 Affine Atlas Construction

In this section, we detail our algorithm for constructing tffine
atlas by employing Ricci flow. The entire pipeline of the altgon
is illustrated in Figure 9.

Step 1: Selecting Singularities

We can select the singular vertices v, - -+ , v}, k > 0 anywhere
on the mesh arbitrarily, then we assign the target curvaitithe
singular vertices such that

i K(vi) = 2my,

where x is the Euler number the surface; the target curvature of
other vertices are zero. Note that, there are several $p=sEas
that must be addressed.
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(e) Open Covering (f) Open covering (g) The central chart Qthjer charts
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Figure 8: Affine atlas automatically acquired by using RicciFlow. First, the user selects one singular point as shown in (aeriTa cut
graph is labelled either manually or automatically as theldeaurves in (a), where the cut graph is a set of canonical Hompobasis curves
passing through the singular vertex. Second, the flat cjpaleking metric is computed using Ricci flow, illustratedt. (The flat metric
induces an planar embedding. The entire surface is slicesh@bong the cut graph to form a topological disk (i.e. funéatal domain).
The interior of the fundamental domain is bijectively mappe the plane. The mapping of the one-ring neighbor of thgudar vertex is
notlto 1, but2g— 1 to 1 shown in (d). Other charts covering the cut graph are cortrd as shown in (e) and (f), and their overlapping
relation with the central chart is shown in (g) and (h) by eded colors, respectively.

e |f the surface is a closed genus one mesh, then no singular In practice, we replace the combinatorial constraints 7 by a

vertex is selected. stronger one which is independent of the edge wedght
e For a high genus mesh, we can select only one singular vertex Z Kir)>—- 5 m+2mx(R).
i€ (ev)elLk(l)

and concentrate all curvature on it.
. . We modify the connectivity around the extraordinary pointl a
° Ifth_e me_sh is open, we can assign the_target curvatureslfor al make the sampling in the neighborhood of the singularity muc
the interior vertices to be zero and assign the target aumat  genser. We increase the connectivity of the singularityess than
for boundary vertices such that the total boundary cureatur  foyr times of genus, and vertices in the neighborhood halesea
equals to 2ry. By this way, all the non-zero curvature willbe o apout 6. This can be summarized as follows:

pushed to the boundary.
1. The topological valence of a singular verteis no less than

Ricci flow only changes the vertex radii, therefore, the tésmy 4 KW
metric is conformal to the original one, no angle distortiafi be n
introduced. But the area distortion is unavoidable. Théounmiity 2. For all the vertices in the firstring neighbor of the singular
of the parameterization varies drastically depending enctivice vertex, their valences are no less thamés a small integer.
of singularities. Figure 11 demonstrates that differerdicds of In our implementation, we choosegrom 1 to 3.
the singular vertices affect the uniformity of the paramietions Figure 10 demonstrates the step of the connectivity motiica
rather significantly. around the extraordinary point.
Step 2: Modify Local Connectivity around the Singular Step 3: Ricci Flow
Vertex

In order to compute the flat metric, we use Ricci flow to drive th
In order to determine the desired flat metric, the combinatoon- mesh to deform in this order:

straints for the curvature (7) have to be satisfied. If bothitfitial
curvature configuration and the target curvature configumatat-
isfy the constraints, any intermediate curvature confitjpmaluring 2. Assign the weight for each edge and the radii for each verte
Ricci flow will satisfy the constraints. Thus, it is enoughdnly ' by minimizing the energy.

consider the target curvature. If some singularities hagk target ’

curvature concentration, we need to modify the local cotivigc min- o Z I _|i_]. 2, (12)
in their neighborhoods. ’ e'cE

1. Setthe initial value; = O for each vertex.
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Figure 9: The pipeline to compute the affine atlas using dis@te Ricci flow.

wherel;; is the edge length d; in R3. Namely, the discrete
metric(M, ®,I") is consistent with the induced Euclidean met-
riconM.

. Update the vertex radiug by €“'y;. Compute current edge
lengthlij’s using Equation (3), corner angles and discrete cur-
vatures for each vertex using Equations (4) and (5).

. Update vertex radii,

Ui+ =& x (K —Kj), (13)

wheree is a carefully selected step length.

. Normalizeu;, such that the summation of alj’s equals to
Zero.

. Check the deviation betwe&h andK_i, if the error is less than
a predetermined threshold, the algorithm terminates. ©the
wise, goto Step 2.

The algorithm will converge exponentially fast. In praetithe step
length might be time-varying in order to improve the efficgn

Step 4: Segmentation

Next, in order to construct the affine atlas, an open covesfrige
mesh need to be built. The basic idea is to find a set of curves
G such that the meshl can be sliced open along the curves and
form a topological disk, such kind of curves formed the graph
as introduced in the work on geometry images [Gu et al. 2005].

If there is only one singularitypg, the cut graph can be con-
structed using a set of canonical homology basis passimgighr
the singularity as introduced in [Carner et al. 2005]. Theé cu
graph has one node ang 2dges. The edges can be labelled as
ag, b17a27 bZa 0, ag, bg-
_ Then the mesh is cut open along the cut graph to form a big chart
M. The boundary oM has canonical form

OM = agbya; by taphpa, thy - aghyag Moyt

Each edge starts and ends at the singulgigtyWe cover each edge
s« by a chart

Uk = UvesNi, Vi # po, Ni = Uik,

whereN; represents the one ring neighbor of vertgx The algo-
rithm for computing an open covering bf is as follows:

1. Compute a cut grapB using a canonical homology basis.

2. Slice the mesh along the cut graph to form a topologicd dis
M.

3. For edges of the cut graph, compute the union of one ring
neighbors of all its interior vertices.

4. The open covering d¥l is formed byM andUy,

M/{po} € MUy Uk.

Step 5: Planar Embedding

Because the curvature for each vertex is zero, the faceseciatb
tened one by one on the plane. The following algorithm dbssri
the details on how to flatten an open bett M/{pg}. Let the de-
sired parameterization is: U — R2,

1. Label all faces itJ as non-processed ones. Meanwhile, label

all vertices inU as non-processed.

. Select randomly a fack = [Vp,V1,V] from U, label fg as
processed, label all its vertices as processed. Assigy) =
(0,0) and1(v1) = (lp1,0). Computer(v,) such that

[T(v2) = T(Vo)| = log, |T(v2) = T(v1)| = l12,  (14)
and
(T(v1) = T(v)) x ((v2) = T(vp))-n>0,  (15)

. Find all faces irJ sharing an edge witffiy, insert them to a

face queu®.

. If Qis empty, simply terminate. Otherwise, fetch the first face
f = [vo,Vv1, V2] from Q, label f as processed.

. If all vertices off have been processed, go to Step 3. Other-
wise, there must be only one vertex which has not been pro-
cessed, assume itvs, labelv, as processed.

. Computet(v,), such that both distance condition (14) and
orientation condition (15) are satisfied.

. Find all neighboring faces sharing an edge witind they are
not yet to be processed, add thentoGo to Step 3.

In order to reduce the accumulation error, the paramet@iza
can be further improved by minimizing the following funatil,

miny (|7(w) — 7(v) P~ 172
8j



In practice, this step is usually unnecessary if singlésriare care-
fully chosen to spread out the surface and the curvaturessafdr of
them is not extremely high.

Figure 3, 8, and 12 demonstrate the affine atlas for surfacas f
genus one, two and three, respectively.

5 Manifold Spline Construction

After the affine atlas are constructed in the previous sectinis
section first briefly summarizes the theory of manifold sgdinand
then presents our experimental results.

SupposeM is a mesh with the one ring neighbors of the singular
vertices removed{(U;, 7j)} is an affine atlas, wheng; is a topo-
logical disk comprised by a set of facesMf 1 : U — %22 maps
U; onto the plane, namelyl;, 7j) forms a local coordinate chart.
The chart transition functions; : 7;(Ui NUj) — 1j(UiNUj) is a
rigid-body motion in%?2.

A manifold spline is defined on the meBh M — %3, such that

e The local representations of manifold splings,o Tfl :
1i(Uj) — %3, are commonly used spline schemes with pla-
nar parameter domain.

e The evaluation of manifold splines is independent of the
choice of local parameter charts,

FoTi_leoTj_loTij

In our current implementation for this paper, we use tridagu
B-splines, because it has no restrictions on the connectifithe
mesh and it can represent any polynomials defined over pthmar
main. The implementation details are also described in [Cal.e
2005]. The implementation of Ricci flow algorithm is very gil®,
and it takes tens of lines of source code in C++. We have imple-
mented our own version based on a generic half edge meshylibra
as in [Hoppe 1998], while adding the edge lengths, vertei, @t
curvature as the new attributes for the underlying mesh.

In our prototype software system, we have tested severdieses
of genus from zero to three. In this paper, we choose manifold
triangularB-spline because of its flexibility in domain construction.
This method can be also applied to other manifold splinesh a8
T-splines and Powell-Sabin splines.

Given a domain manifolél, a manifold triangulaB-spline sur-
face is defined as follows:

Z > CpNip(n(u), ueM,

IBl=n
wherel is the triangle index. The algorithm for constructing mani-
fold triangularB-spline is as follows:

1. The initial control pointg; 5 are chosen by uniformly subdi-
vided the domain manifolty according to the user-specified
degreen. Each domain triangle is associated w(itht 1)(n+
2)/2 control points.

. We modify the control points; g by solving the following
least square problem:

S l&p—cpl?

A=n

min
© T

subject togy g =

(16)

fI(Vg), V1,98, 1Bl =n.Bo <r

whereVg = {tgo, ..,
the knots for trlangle

il !
0/30 e tzo, -ty g1} andt ; are

Note that the initial manifold triangulaB-spline surfaces ac-
quired by step 1 usually have very bad curvature distrilouites-
pecially along the edges of the domain triangles. The perppds
step 2 is to fair the spline surface by modifying the contraihgs.

In the objective function Eq (16), we minimize the squaresiatice
between the control points of the original and the new spdime
face, which implies that the minimal change of the shape.hén t
constraints, we use an integer0 <r < n—1, to control the fair-
ness of the spline surface. The bigger the valuge more faired
surface we obtain. In our experiments, we can get visuadigigihg
surfaces withr = 1 for cubic splines or = 2 for splines of degree
5 or above. For the detailed information about spline fgirplease
refer to [He et al. 2005].

Figure 8 shows the flat circle packing metric of a genus twe sur
face and its affine atlas. Figure 9 demonstrates the professng
Ricci flow on how to compute the affine atlas. The sculpture sur
faces in Figure 12 is of genus three with different resohgioThe
singular vertex and the cut graph are explicitly shown is flyure.
The affine atlas are also highlighted in the figure. All theregbes
of manifold triangularB-splines are shown in Figure 13. Table 1
shows the statistics of the test cases. As shown in this,table
algorithms for constructing the affine atlas and manifolantgular
B-splines are extremely fast, i.e., within only a few seconds

6 Conclusion and Future Work

This paper has developed an efficient and rigorous algorftim
constructing a manifold spline surface of complicated togyp and
complex geometry with single extraordinary point, whicls fed
ready reached the theoretic lower bound of the number ofing
ities. The uniqueness of this construction algorithm foniftad
splines is that, it is solely based on a simple and powerfai-co
putational tool: Ricci flow. From the mathematical point aéw,
Ricci flow has substantial relevance to the curvature flowhoebt
in differential geometry. For example, Ricci flow can comfaidly
deform the metric to induce any prescribed curvature.

The intrinsic connection between manifold splines and pola
forms results from affine structure and affine atlas. To mhkee
geometric structures computational tractable in shapeetimagap-
plications, we resort to the powerful tool of global paraenizta-
tion over arbitrary manifold domain. The quality of the figddbal
parameterization is determined by many factors, such asdhe
nectivity of the mesh, the weights on edges, the positionscan
vatures of the singularities. It is technically challergion how to
optimize these factors towards the quality improvementiobag
parameterization. In the near future, we plan to furtheestigate
the design of new algorithms to localize singularities aadaa full
control on the curvature distribution.

Current manifold splines are essentially founded upon #te n
ural integration of the affine atlas for domain manifold arodlap
forms used to define conventional spline surfaces over aayapl
domain. Due to their topological obstruction, general higimus
surfaces admit neither a flat metric nor an affine atlas. Tomre
ideally the most natural spline solutions for high genus ifoéds
should not depend on the affine structure. In the near futuee,
shall investigate different spline schemes which are neetéan
the affine structure of the underlying surface domain.
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Figure 13: Examples of manifold triangular B-splines. The affine atlas are computed using Ricci flow under free bayndondition.
The transition function is a combination of translation amthtion. The red curves on the spline surfaces (see (d}jligigt the triangular
patchwork.



