
Computing Shortest Cycles Using Universal Covering Space

Xiaotian Yin, Miao Jin, Xianfeng Gu
Computer Science Department

Stony Brook University
Stony Brook, NY 11794, USA
{xyin, mjin, gu}@cs.sunysb.edu

Abstract

In this paper we generalize the shortest path algorithm to
the shortest cycles in each homotopy class on a surface with
arbitrary topology, by utilizing the universal covering space
(UCS) in algebraic topology. In order to store and handle
the UCS, we propose a two-level data structure which is ef-
ficient for storage and easy to process. For the shortest cy-
cle algorithm and the UCS data structure, we showed some
practical applications, such as topological denoise in geo-
metric modeling, polygonal schema construction in compu-
tational topology and etc.

1. Introduction

1.1. Problem Statement

The problem of finding shortest paths in graphs is a
fundamental optimization problem with many applications,
such as routing in networks, image segmentation in vision,
surface segmentation in graphics, robot motion and naviga-
tion, speech recognition and VLSI design, etc. Algorithms
with near-optimal efficiency, either in theory or in practice,
are known for some problem variants, such as the single-
source problem (see [3, 5, 21]) and the all-pairs shortest-
path problem (see [4, 12, 20]).

On the other hand, computing the shortest cycles on a
general surface is a more complicated problem. This is due
to the fact that cycles on general surfaces belong to different
homotopy classes, each class has its own shortest cycle and
these shortest cycles cannot be smoothly deformed to one
another without leaving the surface. For example, in figure
1.3 cyclec1 andc3 are in the same homotopy class, whilec0,
c1 andc2 are in different homotopy classes. In particular,
only c0 can shrink to a point. In many practical problems,
it is more useful to find the shortest cycles within certain
homotopy classes instead of over all cycles on the surface.

(a) (b)

Figure 1. Shortest cycles in different homo-
topy classes. (a) shows the shortest cycles
passing through a common vertex. (b) shows
the shortest cycles without the common ver-
tex restriction.

In this paper, we studied the following fundamental
problem:

General Shortest Cycle Problem: Given a surface
mesh M with arbitrary topology, find the shortest cycle in
each homotopy class of M (Figure 1.1 (b)).

In particular, we studied a restricted version of the above
problem:

Restricted Shortest Cycle Problem: Given a surface
mesh M with arbitrary topology, find in each homotopy
class the shortest cycle that passes through a given point
p on M (Figure 1.1 (a)).

This restricted problem can be solved more efficiently
and gives direct intuition towards a solution to the general
problem. Our algorithm is based on the universal covering
space (see section 2.2); therefore we also investigated effi-
cient data structures to handle the universal covering space.

1.2 Motivation

The solutions to the shortest cycle problem can benefit
many important applications in graphics. By finding these
shortest cycles, it is easy to compute the homotopy group
of the surface, to which different topological operations can
then be applied. In [6], a special set of homology basis
curves is selected and the surface is sliced open along them
to covert it to a geometry image. In the topological denois-
ing [9] and topological simplification [23] work of Wood
et al., the small handles are located and removed by slicing
along the shortest cycles. In the works of surface parame-
terization [8], [7], the homotopy group bases are explicitly
constructed. The results can be applied to mesh decomposi-
tion directly, to find cut curves on the surface with topolog-
ical and geometric properties for metamorphosis [15], com-
pression [13], shape revtrieval [24], texture mapping [18],
etc.

1.3. Related Work

There are several possible approaches to solve the prob-
lem. We call the first approachcurvature flow method.
The active contour method [14] is widely used in com-
puter vision. A planar curve on an image can be shrunk
by moving each point towards its curvature center. The de-
formation process does not change the homotopy type of
the curve. Later, in [17], geometric snakes, which are cy-
cles on a surface, are computed from active contours on
the corresponding parameter chart. By distorting the curve
based on geodesic curvature, the curves will be deformed
to geodesics with the same homotopy type. This approach
has several disadvantages. First, the geodesics are at a local
minimum; our goal is to find the global minimum. In addi-
tion, the iterative method is inefficient, and the computation
of the geodesic curvature is unstable.

Another approach uses a computational topology
method to construct theuniversal covering space(see Sec-
tion 2) and lift the closed curves on the surface to curve seg-
ments in this space. We call this method theuniversal cov-
ering spacemethod. Hershberger and Soneyink did some
pioneering work on this problem [10] and [11] using this
approach. However, their results only apply toboundary-
triangulated-2-manifoldsand cannot be used in our case be-
cause it assumes all vertices are on a boundary.

The shortest cycle problem has significant connections
with other important problems in computational topol-
ogy, such as constructing polygonal schema (cut a closed
genusg surface to a canonical polygon with4g edges),
contractibility test and transformability test. Vetger and
Yap sketched algorithms to construct canonical polygonal
schema in [22]. Lazarus et al. improved the algorithm in
[16]. The methods require refining the mesh; if it hasn

triangles, the result mesh may haveO(gn) faces, whereg
is the genus of the mesh. Based on [22], Schipper give an
O(g2k + gn) time and space algorithm to detect the con-
tractibility of curves in [19], wherek is the length of the cy-
cle. Dey and Schipper improved the algorithm toO(n+gk)
time by deriving a reduced polygonal schema in [2]. The
method will lose topological and geometric information by
merging some boundary vertices and cannot applied to our
purpose. Dey and Guha solve the transformability problem
in [1], where they abandon universal covering spaces and
use combinatorial group theory to improve the complexity
to O(n+k1 +k2). The method only reflects the topological
information of the curves without considering geometric in-
formation; therefore, it can not be applied to our case either.

c0 c1

c2 c3

Figure 2. Cycles on a surface. c0, c1 and c2

are in different homotopy classes; c0 is con-
tractible; c2 and c3 are transformable.

1.4. Contributions

To solve the shortest cycle problem, we proposed a gen-
eral framework that utilizes the universal covering space
(UCS) to transform the problem of finding shortest cycles
into the problem of finding shortest paths. In order to avoid
the exponential blowing up of the space required by naive
construction of the UCS, we developed a space efficient
data structure to handle UCS. We outline the contributions
in the following.

1. We proposed a general algorithm to compute the short-
est cycles (geometrically rather than combinatorially)

in each homotopy class. The algorithm can handle
surface meshes with arbitrary topology, either with or
without boundary.

2. We provided a storage efficient data structure to handle
the universal covering space of a given mesh, which is
scalable to meshes with complicated topology and/or
of large size. It also provides a fundamental framework
for other algorithms based on universal covering space.

3. We showed some potential applications of the shortest
cycle algorithm and several extensions to our universal
covering space data structure, which demonstrate the
capability and flexibility of the framework.

This paper is organized as the following. In section 2 we
introduce the concepts and theories involved in our algo-
rithm. The details of the algorithm are presented in section
3, together with some experimental results. We outline ap-
plications and extensions in section 4 and conclude in sec-
tion 5.

2. Theoretical Background

In this section we give an intuitive introduction to the
concepts and theories involved in our algorithm. The con-
cepts are explained both in the smooth setting and in the
discrete setting.

2.1. Homotopy Classes

Intuitively, two closed curves arehomotopic to each
other on a given surface if and only if one can be smoothly
deformed to the other without leaving the surface (such as
c1 andc3 in Figure 1.3). homotopy is an equivalence rela-
tion, it classifies the set of closed curves on a given surface
into a set ofhomotopy classes, where cycles in each class
are transformable to one another while cycles in different
classes are not. Under the operation of cycle product, all ho-
motopic equivalence classes form the so calledfundamental
group of the given surfaceS, denoted asπ1(S).

The same concepts can be defined on surface meshes
similarly. Supposeγ is a cycle on meshM , γ =
e0, e1, · · · , en, a facef is adjacent toγ, and the boundary
of f is ∂f = ē1 + ē2 + ē3, whereē1 = −ei. An elementary
transformation of γ replacesei by ē2, ē3, and the result cy-
cle isγ = e0, · · · , ei−1, ē2, ē3, ei+1, · · · , en. Two cyclesγ1

andγ2 are homotopic if there are finite elementary transfor-
mations to transformγ1 to γ2. Over this discrete definition
of homotopy, the homotopy classes and fundamental group
for meshes are defined in the same way as in the smooth
setting.

(a) (b)

Figure 3. Cycle lifting. (a) is the original
mesh, (b) is the flattend UCS. The red cycle
in (a) is lifted to the red path in (b).

2.2. Universal Covering Space

Given a connected surfaceS, its Universal Covering
Space (UCS) is defined as a pair(S, π), whereS is a simply
connected surface,π is a continuous transformation fromS
onto S such that for each pointq ∈ S there are multiple
pre-imagesp ∈ S, and eachp has a neighborhood that via
π is topologically equivalent to a neighborhood ofq. The
transformationπ is called acovering map. Intuitively, S
consists of multiple copies ofS sewed together, coveringS
by multiple times by the covering mapπ.

For the interest of simplicity, we also use UCS to rep-
resentS (Figure 3 (c)). Each piece in the UCS is called a
fundamental domain (Figure 3 (b)).

On the UCSS we can define transformationf : S → S
among sheets. If such a transformation is a homeomor-
phism such thatπ ◦ f = π, it is called adeck transforma-
tion. Every deck transformation corresponds to a homotopy
class.

By the definition of covering mapπ, every cyclec pass-
ing through a base pointp in M lifts to a pathc̄ (either
closed or not), whose end points̄p0 and p̄1 are both pre-
images ofp. See Figure 2.1 for an example of cycle lifting.
As we can see,̄c depends on the choice of the starting point
p̄0 and the homotopy class ofc. Intuitively, if a cyclec is
homotopic to a point, then its liftinḡc is still a cycle, whose
starting and ending points coincides at one pre-image ofp;
otherwise,̄c is a curve connecting two different pre-images
of p.

In the discrete setting, we use meshM andM to repre-
sent surfaceS andS. The covering map is a surjective linear
simplicial map between the vertex sets ofM andM . The
pair (M, π) forms the UCS ofM . The lifting of curves can
be defined accordingly in the discrete setting, which allows
us to transform the problem of computing shortest cycles on
M to the problem of computing shortest paths onM .

3. Algorithms

The basic idea of our algorithm is to transform the prob-
lem of computing shortest cycles onM to the problem of
computing shortest paths onM (a finite portion of the uni-
versal covering space ofM).

In order to computeM , we need compute a fundamental
domainM̃0 by cutting the meshM along a set of curves.
Then we takeM̃0 as the center copy and glue more copies
{M̃i} (i ∈ [1..m]) along the cutting segments to formM .
Supposev is a vertex onM , andvi is the pre-image ofv
in M̃i. Since each pair(M̃0, M̃i) determines a homotopy
class ofM ; the shortest path fromv0 to vi for certaini cor-
responds to the shortest cycle through vertexv in a certain
homotopy class. Thus we can solve the restricted short-
est cycle problem by utilizingM . To remove the restric-
tion of passing through a fixed vertex, we just need to loop
v through all vertices ofM and keep the minimum-length
shortest path for each pair(M̃0, M̃i), which solves the gen-
eral shortest path problem.

In brief, our algorithm goes through the following steps:

1. Compute a fundamental domaiñM0 (section 3.1).

2. ComputeM by gluing multiple copies of the funda-
mental domain{M̃i} (i ∈ [0..m]) with M̃0 as the cen-
ter copy (section 3.2).

3. For a vertexv on M , and one of its pre-imagesv0 in
M̃0, find the shortest paths onM from v0 to vi for
i ∈ [1..m] (section 3.3).

4. repeat step 3 for each vertexv on M and keep the
minimum-length shortest path connecting̃M0 andM̃i

for eachi ∈ [1..m] (section 3.3).

Since we only compute a finite portion of the universal
covering space, the algorithm only outputs the shortest cy-
cles for a finite number of homotopy classes rather than for
all of them. But in practice, usually only certain homotopy
classes are of interests and our algorithm suffices. Even if
one is interested in all the classes, our algorithm can com-
pute the bases of the fundamental group, which is finite.

As a note, the above algorithm pipeline can handle sur-
faces with arbitrary topology, either with boundary or with-
out boundary.

In the following we will discuss the details of each step in
the pipeline respectively. In particular, we will discuss the
storage-efficient data structure for handling UCS in section
3.2.

3.1. Compute Fundamental Domain

A fundamental domaiñM is a topological disk that cov-
ers meshM once. Figure 3 (b) shows a flattened funda-

(a)

(b)

(c)

Figure 4. Fundamental domain and UCS. (a)
is the original mesh with cut graph. (b) is the
flattened fundamental domain, with four cut-
ting segments {s̃1, s̃2, s̃1

−1, s̃2
−1}. (c) is a fi-

nite portion of the universal covering space
(flattened onto the plane).

mental domain for the kitten model. Intuitively, it can be
obtained by cutting the mesh open along a certain set of
curves, calledcut graph, on the mesh. In our algorithm,
we use a set ofhomology basescomputed in [8] as the cut
graph. by cutting, the cut graph in the original mesh will
become thecutting boundary in the fundamental domain.

To facilitate later construction of the UCS, we partition
the cutting boundary of the fundamental domain intocutting
segments. For such segmentation, we need find thejunction
vertices in the cut graph whose degree is not two. These
vertices will partition the cut graph intok simple curve seg-
mentssi onM , eachsi will result in two cutting segments,
s̃i and s̃i

−1 on the cutting boundary of̃M , wheres̃i and
s̃i
−1 are calleddual segments.
Here is the algorithm outline to compute a fundamental

domainM̃ and a set of cutting segments for a given mesh
M .

1. Compute a set of homology bases (by [8]) as a cut
graphΓ.

2. CutM open along curves inΓ and get an open mesh
M̃ .

3. Partition the cutting boundary of̃M by junction
points in Γ to get the set of cutting segments
{s̃1, s̃1

−1, s̃2, s̃2
−1, . . . , s̃k, s̃k

−1}.

3.2. Compute Universal Covering Space
with Storage-Efficient Data Structure

Constructing a finite portion of the universal covering
spaceM is the key of the whole pipeline. The major dif-
ficulty here is to reduce the memory space taken byM . In
a naive manner, we can construct a mesh to representM
by gluing a set of fundamental domain copies. However,
such a method will eat up the memory space quickly with
increasing number of fundamental domain copies for a high
genus surface.

In fact the storage requirement can be reduce dramati-
cally. By further inspections we can see that each̃Mi has
the same structure. It is not necessary to store such structure
more than once in the universal covering spaceM . Based
on this fact, we proposed a two-level data structure to store
M compactly.

(a)

(b)

(c)

Figure 5. The two-level data structure for
UCS. (a) is the flattened UCS. (b) is the
high level graph G, capturing the connectiv-
ity among pieces in the UCS. (c) is the low
level graph, capturing the internal structure
of each piece in the UCS.

The Data Structure At the low level of the UCS data
structure, we reuse the mesh of one fundamental copyM̃0

to keep the local structure (Figure 3.2 (c)). At the high
level, we need to construct an undirected graphG to capture
the connectivity among the copies of fundamental domains
(Figure 3.2 (b)). Each vertexvi in G represent one funda-
mental domain copỹMi, and is assigned with a unique id
ci to identify the fundamental domain copy this high level
vertex represents. Further, there is an edge(vi, vj) if and
only if M̃i andM̃j are glued together directly along some
cutting segments.

Under such a data structure, each vertex of the universal
covering spaceM can be identified by a global id(ci, vj),

whereci is the copy id of the resident fundamental domain
M̃i (i.e. the vertex id of the corresponding vertex in the high
level graphG), vj is the vertex id within the fundamental
domain. Each vertex not on any cutting segment owns a
unique global id, while that on cutting segments will have
multiple alias, one for each incident copy of fundamental
domain according toG. The correspondence among alias
of the same vertex actually reflect the splitting of a given
vertex in the cut graph, and can be obtained easily while we
build the cutting segments in the previous step.

Constructing UCS Constructing a UCS using the two-
level data structure is straightforward. Since we already
have a fundamental domain from previous step, here we fo-
cus on constructing the high level graphG. The following
is the outline for this task.

1. Initialize M with the center copy of fundamental do-
mainM̃0, initialize G with a single vertexc0 that rep-
resentsM̃0.

2. Fori ∈ [1..m] add a new copỹMi into M iteratively:

(a) add a new vertexci into G.

(b) Glue M̃i to the cutting boundary of currentM
along a maximum continuous set of cutting seg-
ments.

(c) Whenever̃Mi is glued to another copỹMj in the
previous step, add a new edge(ci, cj) in G.

(d) UpdateM and the cutting boundary ofM .

3. Output the high level graphG.

Figure 3 (c) and Figure 2.1 (b) give examples of the flat-
tened UCS we computed for a genus one model and a genus
two model respectively.

Traversing UCS This two-level data structure not only
saves memory space to storeM , but also allows fast traver-
sal onM . In brief words, traversing within a fundamen-
tal domain only needs the low level graph, while traversing
across different domains involves the high level graph.

Now let’s get into some details. Suppose we are trav-
elling from vertex(ci, vj) to one of its neighbor vertices
whose local id isvj

′
. If the source vertex is not on any

cutting segment, then the move is in the same fundamental
domainM̃i, leading to target vertex(ci, vj

′
) directly. Other-

wise, we can identify the right target vertex(ci
′
, vj

′
) utiliz-

ing the alias correspondence of the source vertex, and make
a move into a different fundament domain copyci

′
. As a

note, each move in our UCS data structure is determined;
there is no ambiguity.

3.3. Compute Shortest Cycles

As state at the beginning of the paper, the major prob-
lems we are studying are the restricted shortest cycle prob-
lem and general shortest cycle problem. Both of them can
be solved using our universal coving space data structure.

As discussed in the previous section, given a mesh
M we can build a finite portion of its universal covering
spaceM by gluing a set of fundamental domain copies
{M̃0, M̃1, . . . , M̃m}. In order to compute the shortest paths
in each homotopy class passing through a given vertexv on
M , it is sufficient to find the shortest path betweenṽ0 and
ṽi for eachi ∈ [0..m], whereṽi is the pre-image ofv in
fundamental domaiñMi .

Here we outline the subroutine for computing the short-
est cycles passing through a given vertexv.

1. On the givenM , locate the set of pre-images ofv,
π−1(v) = {ṽ0, ṽ1, · · · , ṽm}, whereṽi ∈ M̃i.

2. For eachi ∈ [0..m], compute the shortest path̃γi con-
nectingṽ0 andṽi onM .

3. Project each̃γi back ontoM , the projected imageγi =
π(γ̃i) is the shortest cycle (passing throughv) in one
of the homotopy classes.

The above subroutine gives solutions to the restricted
shortest cycle problem. In order to solve the general shortest
cycle problem, we only need to loopv through every vertex
of M , call the above subroutine repeatedly, keep track of
the minimum-length̃γi for eachi, and project back ontoM
to get the set of shortest cycles within different homotopy
classes.

Figure 1.1 (a) shows a result of our restricted shortest
cycle algorithm on a two hole torus model. Figure 1.1 (b)
and Figure 4 show the results of the general shortest cycle
algorithm on a two-hole torus model and a sculpture model
respectively.

4. Extensions and Applications

Our algorithm of computing shortest cycles can be ex-
tended to solve related problems, such as building polyg-
onal schema, topological denosing and etc. The storage-
efficient data structure for universal covering space can also
be utilized to handle other problems in computational topol-
ogy, such as testing contractibility and transformability.

Polygonal Schema For a given surface meshM , if we
cut it open along acanonical cut graph where there is only
one junction vertex in the cut graph, then we get a disk-like
mesh, which is called apolygonal schema.

(a) (b)

(c) (d)

Figure 6. Shortest cycles through a com-
mon vertex. The marked shortest cycles in
(a), (b), (c) and (d) are in different homotopy
classes while passing through the same ver-
tex (marked in green).

Our shortest cycle algorithm can help to compute a
canonical cut graph. We start by an arbitrary cut graph,
build the UCS and compute a set of shortest cycles pass-
ing through a given base point. We can choose a subset of
these shortest cycles to form a homology bases, which is in
turn a cut graph. Since all the cycles are the shortest ones,
the cut graph is be very close to be canonical. If not, we
can either perturb the cut graph to be canonical, or change
the base point and retry. Upon the canonical cut graph is
computed, we can construct the polygonal schema.

Topological Denoising With the advances of digital scan-
ners and triangulation techniques, it is very easy to ac-
quire surface meshes in nowadays. However, such meshes
are usually very noisy, containing unexpected tiny handles.
How to address and fix such topological noises is a chal-

lenging work.
Our shortest cycle algorithm provides an automatic

method to find such tiny handles. We can compute the short-
est cycles that winding each handle once, and order them by
length. Those cycles at the lower end are good candidates
for noise handles.

Contractibility and Transformability Given a curve on
a surface, it is contractible if it can shrink to a point
smoothly (for instance, cyclec0 in Figure 1.3). Two curves
are transformable to each other if one can be smoothly de-
formed to another without leaving the surface (for instance,
cyclec1 andc3 in Figure 1.3). Our UCS data structure can
be utilized to solve both of them.

For contractibility, we can build a finite portion of the
universal covering spaceM for meshM , lift the given cycle
γ on M to a pathγ on M . If γ is also a cycle (i.e. its
starting vertex coincides with the ending vertex), thenγ is
contractible; otherwise,γ is not contractible.

For contractibility test, we first bridge the two given cy-
cles to form a bigger cycle, then check whether the bigger
cycle is contractible or not. If and only if the answer is yes,
the given cycles are transformable to each other.

5. Conclusion

In this paper the shortest cycle problems are studied in
both the general case and a restricted case. We proposed an
algorithm to compute the shortest cycles within each homo-
topy class on the general surface mesh with arbitrary topol-
ogy, with or without boundary.

The algorithm utilizes the universal covering space of the
given mesh, where a two-level data structure is proposed to
store and handle the UCS. Such a data structure is not only
compact in storage but also efficient for traversing, it can be
used as a general framework for other algorithms based on
UCS.

Finally We pointed some potential applications to the
shortest cycle algorithm, as well as some extensions to the
UCS data structure, which are all candidates for further ex-
ploration.

References

[1] T. K. Dey and S. Guha. Transforming curves on surfaces.
Journal of Computer and System Sciences, 58:297–325,
1999.

[2] T. K. Dey and H. Schipper. A new technique to compute
polygonal schema for 2-manifolds with application to null-
homotopy detection.Discrete and Computational Geome-
try, 14:93–110, 1995.

[3] E. W. Dijkstra. A note on two problems in connection with
graphs.Numer. Math, 1:269–271, 1959.

[4] R. W. Floyd. Algorithm 97 (shortest path).Communications
of the ACM, 5(6):345, 1962.

[5] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms.JACM,
34:596–615, 1987.

[6] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In
SIGGRAPH, 2002.

[7] X. Gu, Y. Wang, and S.-T. Yau. Multiresolution computation
of conformal structures of surfaces.Journal of Systemics,
Cybernetics and Informatics, 1(6), 2004.

[8] X. Gu and S.-T. Yau. Global conformal surface parameteri-
zation. InACM Symposium on Geometry Processing, 2003.

[9] I. Guskov and Z. Wood. Topological noise removal.Graph-
ics Interface, 2001.

[10] J. Hersberger and J. Snoeyink. Around and around: com-
puting the shortest loop. InProceedings of the third Cana-
dian Conference on Computational Geometry, pages 157–
161, 1991.

[11] J. Hersberger and J. Snoeyink. Computing minimum length
paths of a given homotopy class. InProceedings of the sec-
ond Workshop on Algorithms and Data Structures, 1991.

[12] D. B. Jason. Efficient algorithms for shortest paths in sparse
networks.Journal of the ACM, 24(1):1–13, 1977.

[13] Z. Karni and C. Gotsman. Spectral compression of mesh
geometry. InProceedings of ACM SIGGRAPH, pages 279–
286, 2000.

[14] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. InInternational Journal of Computer Vi-
sion, pages 321–331, 1988.

[15] S. Katz and A. Tal. Hierarchical mesh decomposition using
fuzzy clustering. InProceedings of ACM SIGGRAPH, pages
954–961, 2003.

[16] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Com-
puting a canonical polygonal schema of an orientable trian-
gulated surface. InSeventeenth Annual ACM Symposium on
Computational Geometry, 2001.

[17] Y. Lee and S. Lee. Geometric snakes for triangular
meshes.Computer Graphics Forum at Eurographics 2002,
21(3):229–238, 2002.

[18] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. In
Proceedings of ACM SIGGRAPH, pages 362–371, 2002.

[19] H. Schipper. Determining contractiblity of curves. InPro-
ceedings of the 8th ACM Symposium on Computational Ge-
ometry, pages 358–367, 1992.

[20] A. Shoshan and U. Zwick. All pairs shortest paths in undi-
rected graphs with integer weights. InProceedings of the
40th Annual Symposium on Foundations of Computer Sci-
ence, pages 605–614, 1999.

[21] M. Thorup. Undirected single-source shortest paths with
positive integer weights in linear time.JACM, 46:362–394,
1999.

[22] G. Vegter and C. Yap. Computational complexity of combi-
natorial surfaces. InProceedings of the 6th ACM Symposium
on Computational Geometry, pages 102–111, 1990.

[23] Z. Wood, H. Hoppe, M. Desbrun, and P. Schr
[24] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral sur-

face decomposition with applications.Comters and Graph-
ics, 2(5):733–743, 2002.

