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Abstract

We design signatures for curves defined on genus zero surfaces. The signature classifies curves according to the conformal

geometry of the given curves and their embedded surface. Based on Teichm̈uller theory, our signature describes not only the

curve shape but also the intrinsic relationship between thecurve and its embedded surface. Furthermore, the signaturemetric

is stable, it is close to identity between surfaces sharing similar Riemannian geometry metrics. Based on this, we propose a

surface matching framework: first, with curve signatures, we match the partitioning of two surfaces defined by simple closed

curves on them; second, the segmented subregions are pairwisely matched and then compared on canonical planar domains.

1 Introduction

Shape analysis and shape comparison are fundamental problems in computer vision, graphics and modeling fields with

many important applications. Lots of 2D and 3D shape analysis techniques have been developed in the past couple of decades,

most of which are based on comparing curvature or spacial positions of the points on the curve.

A complete different way is to consider all the closed curveson the surface. The curve space on surface conveys rich

geometric information of the surface itself and is easy to process. The philosophy of analyzing shapes by their associated

curve spaces has deep root in algebraic topology [8], infinite dimensional Morse theory [18] and Teichmüller space theory in

complex geometry [31].

SupposeM is a surface (a 2-manifold), a closed curve onM is a map

γ : [0, 1] → M, γ(0) = γ(1).

We define the set of all simple closed curves onM ascurve spaceand denote it asΩ(M). In algebraic topology,Ω(M) is

classified by homotopy relation,

γ0 ∼ γ1 : ∃F : [0, 1]× [0, 1], F (·)|0 = γ0, F (·)|1 = γ1,



then the quotient spaceΩ(M)/∼ forms a groupπ1(M), the addition ofπ1(M) is the concatenation of the curves. All the

topological information ofM is reflected by the algebraic structure of its fundamental groupπ1(M).

Milnor pointed out theΩ(M) is an infinite dimensional manifold, a nature curve length function is introduced

f : Ω(M) → R, f(γ) =

∫ 1

0

< ṙ, ṙ > dt,

where< ·, · > is the inner product inR3. It is shown thatf is a Morse function, its critical points are geodesics. By

analyzing the local structures of the critical points, the topology ofΩ(M) can be obtained. Furthermore, the topology of

Ω(M) determines the topology ofM . In differential geometry, locally, the surface shape is completely determined by the

curves in the neighborhood. For example, the curvatures of the sectional curves through one point specify the principle

curvatures of that point.

Our current research follows this philosophy but is based onTeichmüller space theory. SupposeM1 andM2 are two

surfaces,φ : M1 → M2 is a diffeomorphism1 between them. Then any curveΓ1 ∈ Ω(M1) will be mapped to a curve in

Ω(M2) by Γ2 = φ ◦ Γ1. Thereforeφ induces a one to one mapφ∗ from Ω(M1) to Ω(M2) by φ∗ : Ω(M1) → Ω(M2). Instead

of studyingφ, we can analyze relations between surfaces by studyingφ∗M .

Furthermore, we map the curve spaceΩ(M) to a canonical Lie groupDiff(S1), whereDiff(S1) denotes the group

of all diffeomorphism from the unit circleS1 to itself. We denote this map asgi, with g1 : Ω(M1) → Diff(S1) and

g2 : Ω(M2) → Diff(S1). Φ∗ : Ω(M1) → Ω(M2) induces a mapping fromDiff(S1) to itself byΦ̄ := g2 ◦ Φ∗ ◦ g−1
1 .

The process discussed above is summarized as the following diagram:

M1 M2

Ω(M1) Ω(M2)

Diff(S1) Diff(S1)

-
φ

? ?

-
φ∗

?

g1

?

g2

-
φ̄

This diagram demonstrates our methodology: three mappingsΦ, Φ∗, Φ̄ are closely related. In fact, any one of them deter-

mines the other two. In other words, for the purpose of studying surfacesM1, M2 and the mapsΦ among them, we can study

their curve spacesΩ(M1), Ω(M2), signatures of the curvesDiff(S1), and the mappingsΦ∗, Φ̄ among them. The following

theoretic results clarify the intuition.

Theorem 1 M is a metric oriented surface, the curve spaceΩ(M) andDiff(S1) are equipped withL2 metric, the mapΨ

from its curve spaceΩ(M) to Diff(S1) is a homeomorphism.

1A function is differentiable and has a differentiable inverse.



Therefore, to measure the distance between two curves on a surface, the distance between two signatures inDiff(S1) is

sufficient.

Theorem 2 SupposeM1 andM2 are two oriented metric surfaces,φ is a conformal map if and only if̄Φ is the identity map

of Diff(S1).

The mapping fromΦ to Φ̄, F : Φ → Φ̄ discovers a lot of geometric information aboutM1 andM2. It is highly possible

that, by choosing appropriate metrics,F is continuous. The kernel ofF is all the conformal mapping betweenM1 andM2.

Contributions:

1 In theoretical aspect, we design curve signatures for curves on surfaces, which can be used to study curves on the same

surface or on different but similar surfaces. (Section 2)

2 With the mappinḡφ, we can study the mappingΦ between surfaces, more specifically, surface matchings areguided by

feature curve matchings. (Section 3)

Curve space on surfaces contains much richer information compared to planar curve space. Planar curve space theory [27]

characterizes the curves themselves, whereas our curve space on surface emphasizes both the curves and theirrelationswith

the embedded surfaces. In other words, our signatures classify and compare curves based on how they segment the embedded

surface. The curve space on surface can be applied for geometric processing of surfaces such as shape comparison and

registration. Planar curve space can be treated as a specialcase of our general surface curve space. Although in this paper, we

focus on genus zero surfaces only, the theoretic framework can be generalized to arbitrary surfaces.

1.1 Related work

In computer vision/graphics fields, existing effective curve matching and comparison methods focused on properties of

planar curve itself [5, 32, 2, 26, 30, 7, 15, 23, 3, 19].

Recent research on conformal geometry opens a new way to study curve and shape matching. [27] modeled the planar

simple closed smooth curves by diffeomorphisms from a circle to itself via conformal mapping and proved the space of

all such curves modulo scaling and transformation is isomorphic to the diffeomorphism group of the circle quotient Möbius

transformations group restricted on the circle. Conformalgeometry was also applied by for surface classification and matching

[13, 10].

Current available techniques for surface matching and comparison typically fall into several categories. A large number

of shape descriptors attempt to label shapes using histograms collecting specific global properties of the underlying object.

Ankerstet al. [1] defined the histogram of the volume distributed on concentric shells and sectors, and used a quadratic form

to measure distance between two objects. Osadaet al. [22] used the probability of distances between two randomlysampled

points from the surface as its shape descriptor. Ohbuchiet al. [21] presented an inertial principal axis histogram about many

sampled axes for shape comparison. On each axis, the moment of the inertia, the average distance and its variance from



surface points to the axis constitute the histogram. Kazhdan et al.[17] introduced a reflective symmetry descriptor as a surface

analysis and rigid-body alignment tool, which is a histogram consisting of distances from surface points to planes passing

through the mass center. Galet al. [9] designed a histogram that comprises a so called local diameter function and theD2

functions introduced in [22] to arrive at a pose-oblivious descriptor. Another type of descriptors usually comes from signal

decomposition methods, Saupe and Vranic [25] introduced a ray-based spherical harmonic descriptor. Kazhdanet al. [16]

also used the spherical harmonics but they worked on voxel grids. Novotni and Klein [20] proposed to use a more generalized

3D Zernike function as the base function. Reuteret al. [24] designed the descriptor using the Laplacian shape spectrum. The

third type of descriptors relies on the skeleton or the topology structure of the surface. Sundaret al. [29] designed a skeleton

descriptor which converts the object to its volume skeletonand they matched the skeleton graphs using methods introduced

in [28]. Hilagaet al. [14] and Biasottiet al. [4] used Reed graph as the shape descriptor. Deyet al. [6] compared shapes by

analyzing flow and their critical points on surface. The vastmajority of the existing work try to compare the objects in a global

sense relying on their geometry information, without any involvement of semantic feature curves. In contrast, our method

tackles the shape comparison in a divide-and-conquer way sothat the comparison between complex objects can be greatly

simplified, while at the same time, with the help of feature alignments, the matching can be more flexible and application-

specific. Furthermore, while we are capable of quantitatively identify the overall, global shape difference, one key feature of

our curve-centric comparison is to offer the local shape variation and its distribution in order to facilitate shape registration,

segmentation, and analysis.

2 Signatures in Curve Space

This section outlines our theoretical results on how to compute curve signatures for curves defined on a surface. Simple

closed planar curves can be represented as a diffeomorphismfrom unit circle to itself [27] up to the scaling and translation.

For spatial curves defined on a surface, we also use a diffeomorphism2 from the unit circle to itself to represent it. This

diffeomorphism represents the spatial curve on surface uniquely up to a Möbius transformation. By removing the Möbius

ambiguity using some special markers, we obtain the signatures corresponding to the curves bijectively.

2.1 Theory and Algorithm Overview

Given a simple closed curveΓ on a genus zero surfaceM , the central idea to compute its signature is illustrated inFig-

ure 1(a), (b) and (c).

Case 1: If M is closed, as shown in Figure 1(a), thenΓ partitionsM into two componentsΓ+, Γ−, both are topological

disks and can be conformally mapped onto planar unit disks∆+, ∆− by Ψ+, Ψ−. Γ is the boundary ofΓ+ andΓ−, denoted

by ∂Γ+ = Γ and∂Γ− = −Γ, and is mapped to the disk boundary, which is the unit circle∆ = ∂∆+ = −∂∆−. The mapping

induced byΨ+ andΨ− on the boundaries∂∆+ and∂∆− is a diffeomorphism. This diffeomorphismΨ : ∂∆+ → ∂∆− is the

signatureof Γ.

2Such a diffeomorphism can be viewed as a real periodic function from [0, 2π] to itself.
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Figure 1. Curves as equivalence classes of diffeomorphisms .
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(a) Blue curve on (b) Signature of the
david head surface. blue curve.

Figure 2. Curves on David Head surface and its signature.



(a) Upper patch of (b) Patch conformally (c) Patch conformally (d) Patch conformal
David Head Surface mapped to sphere mapped to disk texture mapping

(e) Bottom patch of (f) Patch conformally (g) Patch conformally (h) Patch conformal
David Head Surface mapped to rectangle mapped to annulus texture mapping

Figure 3. Conformal Mappings of SubPatches.

Case 2: If M is open, as shown in Figure 1(b), thenΓ partitionsM into a topological diskΓ− and a topological annulus

Γ+. Γ− can be conformally mapped onto a unit disk∆−, whileΓ+ can be conformally mapped onto an annulus∆+ with unit

inner radius. We denote such annulus with unit inner radius as canonical annulus, the inner boundary of∆+ as∂1∆+, and

use the diffeomorphismΨ : ∂∆− → ∂1∆+ as the signature ofΓ. One example is shown in Figure 2, the blue curve in genus

zero open surface David head model (a) has its signature shown in (b).

In [27], Sharon and Mumford used Teichmüller theory to prove that any simple closed planar curve can be represented with

such a diffeomorphism from a unit circle to itself uniquely up to scaling and translation. In this paper, we generalize this idea

to arbitrary genus zero surface using Riemann surface theory.

In technical essence, we compute the conformal mapping for each component segmented by the curve, and take the bound-

ary mappingsΨ as shown in Figure 1(c) as the signature. Some landmarks and constraints are used to eliminate the so-called

Möbius ambiguity.

2.2 Conformal Map from an Open Genus-zero Surface to a Disk

We seek a conformal mapΦ from a disk-like surfaceM to a unit disk. The map does exist according to Riemann mapping

theory. Extensive relevant work has been done on finding a good parameterizationfor disk-like surfaces. However, complete

conformality is usually not guaranteed. Based on the fact that the harmonic map from a closed genus zero surface to a sphere

is also conformal, we use thedouble coveringtechnique [13] to convert an open surface to a closed one, andreduce computing



Φ to computing a harmonic map fromdouble coveringof M onto a sphere(Section 2.3).

For an open surfaceM , we compute the double covering ofM and then compute its harmonic mapping onto a sphere. Due

to the exact symmetric property of double covering, the boundary∂M is harmonically mapped onto the equator of the sphere

andM is conformally mapped onto a hemisphere. Then we compose a stereo graphic projection to get a conformal map from

M to the unit disk. The procedure computing conformal map fromtopological disk in the previous example(Figure 2) onto

the unit disk is shown in Figure 3(a)-(d).

2.3 Conformal Map from a Closed Genus-zero Surface to a Sphere

To compute a conformal mapΦ from a closed genus-zero surfaceM to a sphere, we initiate a map between them and

minimize the harmonic energy by diffusing the heat-flow on the sphere surface. This process is introduced and proved to

converge to a harmonic/conformal map [11].

The process is as follows:

1. Compute the normal vector for each triangle face. For eachvertex, compute its normal~n(v) as the weighed sum of

normals on the adjacent faces weighed by their areas. Then set the initial map as the Gauss map:Φ(v) = ~n(v).

2. Compute Laplace-Beltrami operator at each vertex:∆(v) =
∑

[u,v]∈M wu,v(Φ(v) − Φ(u)), the weightwu,v associated

with edge[u, v] is the well known harmonic weight, calculated aswu,v = 1
2 (cot(αu,v) + cot(βu,v)), whereαu,v and

βu,v are two angles opposite to the edge[u, v] in the two triangles sharing the edge.

3. Project Laplacian∆(v) onto the tangent space ofΦ(v),

∆s2(v) = ∆(v) − (∆(v) · Φ(v))Φ(v).

4. Update the mapΦ, Φ(v) = Φ(v) − ε∆S2(v) whereε is a small constant to assure the numerical stability. In our

experiment we setε = 0.1.

5. Normalize the mapΦ by

Φ(v) =
Φ(v) − c

|Φ(v) − c|
,

wherec is the weighted mass center:c =
P

v
kvΦ(v)

P

v
kv

wherekv is the summation of the areas of all faces adjacent to

vertexv.

6. Repeat step 2 through 5 until it converges.

2.4 Conformal Map from a Topological Annulus to a Canonical Annulus

For curves on an open genus-zero surface, we need to compute aconformal mapΦ from a topological annulusM (with

∂M = Γ1 − Γ2 whereΓ1 andΓ2 are two boundaries) to a canonical planar annulus. First, wedouble-cover the surface to



get a closed genus-one surface; next we compute a conformal map from a closed genus-one surface onto a rectangle planar

domain by integrating a holomorphic 1-form [13] which describes two vector fields perpendicular to each other everywhere

on surface; finally, we compose the conformal map from the rectangle to the canonical annulus usinge
2π

b
z to get theφ.

The algorithmic flow is detailed as follows:

1. Double-coverM to a closed genus one surfacēM .

2. Compute a holomorphic 1-form basis ofM̄ by using the method introduced in [12]. Denote the basis asω̄.

3. For an arbitrary pathτ connectingΓ0 andΓ1, compute a holomorphic 1-formω such that
∫
Γ0

ω = 1, ω = 1
R

Γ0
ω̄
ω̄.

4. Trace a vertical trajectoryr of ω, such thatr is an integration curve ofω along imaginary direction. Namely,r is iso-u

in the(u, v) domain.

5. SliceM alongr to get a fundamental domaiñM , by integratingω, whereM̃ is conformally mapped to a rectangle on

the plane.

6. Conformally map the rectangle to an annulus with unit inner radius bye
2π

b
z.

The procedure computing conformal map from a topological annulus in the previous example(Figure 2) onto the canonical

annulus is shown in Figure 3(e)-(h).

2.5 Eliminating the Möbius Ambiguity

Conformal mappings between surfaces are not unique; e.g., all conformal mappings from a unit diskD2 to itself form a

Möbius group, with the form:τ : z → w, w = eiθ z−z0

1−z̄0z
, z, z0 ∈ C, θ ∈ [0, 2π), wherez0 is a constant point,θ is a constant

angle. All suchτ form a 3 real dimensional group. Two mappings from a topological disk to a unit disk differ by a Möbius

transformation, this ambiguity affects the signature and has to be eliminated via certain extra constraints.

For closed genus-zero surfaces, we first fix a marker pointp on the surface and define a tangent direction~tp going out from

p. A closed curveΓ separatesM into two disk-topology patches, the patch containingp is denoted asΓ+. We require thatΨ+

mapsp onto the origin, and~tp onto the positive x-axis direction. These constraints uniquely determineΨ+.

For open genus-zero surfaces, we fix the markerp on the boundary.Ψ+ mapsΓ+ to ∆+, where∆+ is a canonical annulus

with unit inner radius. The outer radius of∆+ is denoted asR, which is uniquely determined by the surfaceΓ+. Furthermore,

we require thatΨ+(p) = R. SuchΨ+ uniquely exists.

Through the above construction pipeline, every closed curveΓ ∈ Ω(M) corresponds to a diffeomorphismΨ ∈ Diff(S1).

Γ corresponds to two signaturesΨ1, Ψ2 if and only if there exists a Mobsüs transformationτ : D2 → D2, such thatΨ2◦Ψ
−1
1 =

τ |∂D2 . The above equation defines an equivalence relation∼ in Diff(S1). We claim that the mappingΨ : Ω(M) →

Diff(S1)/ ∼ is an one-to-one map. With appropriate metrics onΩ(M) andDiff(S1), it is a homeomorphism. In other

words, each closed curve onM corresponds to an equivalence class of diffeomorphisms from the unit circle to itself.



In some scenarios, we might want to completely eliminate theambiguity of signatures. For this purpose, we can further

eliminate Möbius ambiguity using more markers. To uniquely reconstruct a curve,Ψ and three markers are sufficient for the

closed genus-zero surfaces while for the open genus-zero surfaces,Ψ and two markers are sufficient.

2.6 Distances between Curves

(1) (2) (3)

Figure 4. The stability of curve signatures under isometry, perturbation and bending of embedded surfaces.

For a genus-zero surfaceM , we create signatures for curves defined onM . The deviation between two curves can be

measured by the distance between their signatures usingWeil-Peterson metriconDiff(S1) as introduced in [27].

If surfacesM1 andM2 are with similar Riemannian geometries inR3, then there exists a diffeomorphismφ : M1 → M2

close to an isometry, the induced mapφ̄ between the signatures is close to the identity map fromDiff(S1) to itself. In other

words, if the curveΓ1 ⊂ M1 corresponds toΓ2 ⊂ M2 with Γ2 = φ(Γ1), thenΓ1 andΓ2 have similar signatures. Hence, the

signatures of curves have a property of strong stability under the Riemannian metric perturbation of their embedded surfaces

and can be used to analyze curves on different surfaces as a robust tool.

Figure 4 demonstrates the stability of the signatures. All the curves and their corresponding signatures are drawn in the same

color. Note that the signature is a diffeomorphism from a circle to itself, thus it can be considered as a periodic real function

from [0, 2π) to [0, 2π), and only one period is shown in our figures. In(1), a planar rectangle is isometrically deformed to a

cylinder, our computation shows that the corresponding curves have exactly the same signatures. In(2), the planar rectangle

is perturbed about6% in z direction, and about1% in x, y directions, signatures of the corresponding curves are very close to

each other. In(3), the planar surface in(a) is simulated as cloth and deforms as shown in(b), namely, it allows large bending

but little stretching, the signatures of the correspondingcurves are also almost identical(i.e., undistinguishable); also, the curve

on surface in(a) is perturbed a little and shown in red curve in(c), the signature perturbs little.

Therefore, curves on different surfaces, which are close toeach other in terms of geometry or differ by a near-isometric

mapping, can be robustly and accurately compared and analyzed using their signatures.



3 Surface Matching

Based on the analysis of curve space, we design our surface matching framework for curve alignment, surface registration,

and shape comparison.

3.1 Feature Alignment for Surface Segmentation and Matching

We now decompose the entire surface comparison problem intotwo sub-tasks: (1) segmenting a surface via a set of feature

curves and their alignment; (2) matching boundary curves and surface patch interiors. The general framework is as follows.

AssumeM1 andM2 are the two surfaces to be matched and compared, if they sharesimilar geometries, meaning there

exists a mappingφ : M1 → M2, φ is close to an isometry, then

1. Extract a set of feature curves{Γ1
1, Γ

1
2, · · · , Γ

1
n} onM1, which can be either marked by users as certain meaningful fea-

tures, or automatically computed based on geometric information ofM1 such as the extremals of the principal curvatures

along the corresponding principal directions.

2. Compute the curve signatures ofΓ1
i on M1 using algorithms introduced in Section 2, and obtain the signature set

{Ψ1, Ψ2, · · · , Ψn}.

3. Compute the curve set{Γ2
1, Γ

2
2, · · · , Γ

2
n}, such that the curve signature ofΓ2

i equals toΨi.

4. The curve set{Γk
i } segmentMk to several connected components{ck

1 , c
k
2 · · · , c

k
m}, k = 1, 2, such that the boundaries

of c1
i correspond to the boundaries ofc2

i .

5. Matchc1
i with c2

i pairwise. c1
i andc2

i are conformally mapped to the canonical planar domains(done as a by-product

from the process of computing signatures). We reduce the mapping between 3D surfacec1
i andc2

i to the matching on

their 2D planar domains.

From the theoretical perspective, the entire algorithmic pipeline can be formulated as the problem of solvingφ : M1 → M2

from knowing φ̄ = id : Diff(S1) → Diff(S1), then the resultantφ is the one closest to an isometry.φ is the best

diffeomorphism for the surface registration betweenM1 andM2.

In practice, in Step 3 above, users may prefer to label the meaningful feature curve set{Γ2
1, Γ

2
2, · · · , Γ

2
n} on M2. Then we

compute their signatures and by comparing the signatures, we find an one-to-one matching between these two sets of feature

curves. Then following Steps 4 and 5, the matchingφ can be constructed in the similar way. Because the signatures depend on

the curves continuously and stably, small deviations of thelabeled feature curves will have no or very little affect on the final

comparison result as far as the surface comparison is concerned.

3.2 Surface Comparison in 2D Planar Canonical Domains

When all feature curves are matched, we segment the surfacesinto several patches, each of which is conformally mapped

onto a canonical planar domain, then we reduce the 3D surfacecomparison task to an much easier 2D matching problem on



the planar domain, which can possibly be solved with many existing techniques. A possible technique to solve such a problem

is to use theconformal representation[10], which consists of two functions(λ(u, v), H(u, v)) defined on canonical domains,

whereλ is called conformal factor, representing the area stretching of the mapping from the original surface to the planar

domain andH is the mean curvature implying the bending information of the surface. In our experiments, we normalize the

original surface and then compute its conformal factor of each vertex by dividing its one-ring-neighbor area on the surface by

its counterpart on the planar domain.

There are several advantages to measure surface patch difference using conformal representation. First, the conformal

representation is complete in the sense that it allows us to fully reconstruct the original surface from the representation, which

is guaranteed by the following theorem.

Theorem 3 (Conformal Representation) If a surfaceS(u, v) is parameterized by some conformal parameter(u, v) on a

domainD, then the conformal factor functionλ(u, v) and mean curvature functionH(u, v) defined onD satisfy the Gauss

and Codazzi equation. Ifλ(u, v) andH(u, v) are given, along with the boundary conditionS(u, v)|∂D, thenS(u, v) can be

uniquely reconstructed.

Second, according to [10], conformal representation stably represents the geometry distance between surfaces inR
3; the

perturbation in geometry leads to stable and continuous perturbation in their conformal representations.

Third, as a by-product, the computation process of curve signatures has already computed conformal maps from most 3D

patches to the planar domains, so the surface matching basedon these mappings can be done without further computation cost.

The matching energy between two corresponding surface patchesM0 andM1 is defined on their common canonical planar

domainsD: E =
∫
(u,v)∈D

||λ0(u, v) − λ1(u, v)||2dudv +
∫
(u,v)∈D

||H0(u, v) − H1(u, v)||2dudv.

Figure 5 shows an example on how to make use of conformal representation for surface comparison. A unit disk planar

surfaceM0 as shown in (a) is compared with a center-bulb surfaceM1 shown in (b). The conformal factor and mean curvature

of planar surface is constant everywhere; the conformal factor and mean curvature of surface (b) in 2D planar domain are color

coded and shown in (d) and (e); the deviationd(u, v) = (λ0(u, v)−λ1(u, v))2 +(H0(u, v)−H1(u, v))2 between the matched

surfaces are color-coded in surfaceM0 and shown in (f).

4 Experimental results

4.1 Human Faces

To illustrate our framework, we firstly present a human face matching example. Two human faces,f0(female) andf1(male),

as shown in Figure 6 (a) and (b), are compared by aligning feature curves enclosing eyes, noses and mouths. Assuming that

the geometries of human faces are similar, namely, there exist mappingsΦ : f0 → f1 that are close to isometry, we manually

label on each face four feature curves and compute their signatures. The curves and their signatures are highlighted with the

same color. For example, curves enclosing the right eyes andtheir signatures are colored in red. As shown in Figure 6 (c),

signatures with the same color are quite similar to each other.



(a) (b) (c)

(d) (e) (f)

Figure 5. Conformal representation. (a) and (b) are surface s to be compared, (c) is the color scheme
we use in this paper, (d) and (e) are conformal factor and mean curvature of (b) drawn in 2D planar
domain, and (f) is the conformal representation difference distribution between (a) and (b).
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Figure 6. Curves on faces((a),(b)), their signatures(c), and the segmentations for the matching purpose((d),(e)).

The experiment shows that similar feature curves on two faces have similar signatures, while different feature curves on

the faces have dramatic different signatures. Therefore, the curve signature is a reliable tool to align the same features across

different human faces. The faces can then be segmented and mapped onto common canonical planar domains for subsequent

registration and comparison, as shown in Figure 6 (d) and (e).

4.2 Brain Cortex Analysis

Another example is brain cortex comparison, we locate feature curves segmenting the whole surface into disks and annuli.

These features are functional ”landmarks” given by users. Our practical example is for medical imaging: The two cortex

surface data are reconstructed using MRI images of one paralytic acquired at different times. The feature curves are manually

labeled by the clinical doctor who is monitoring the recovery of this patient’s brain. It is desirable to compare the cortex

surfaces such that the corresponding curves and regions arematched. Noted here although these two brains are similar in



(a) First brain (b) First brain (c) First brain 2 (d) First brain
view from left view from top view from bottom view from right

(e) Second brain (f) Second brain (g) Second brain 2 (h) Second brain
view from left view from top view from bottom view from right
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(m) Three curves on (n) Signatures of (o) Three curves on (p) Signatures of
first brain curves on 1st brain second brain curves on 2nd brain

Figure 7. Surface match on brains using curve features simil arity comparison.



terms of Riemannian metric, they cannot be matched simply via a rigid transformation.3

We apply our matching procedure as explained above. The feature curves for the first and the second brain are shown

separately in Figure 7 (a) - (d) and (e) - (h) from different view directions. Feature curves and their corresponding signatures

are shown in (m),(n) and (o),(p). By comparing their signatures, each curve on the first brain is mapped to the the curve on

the second brain with the same color. The curves segment the cortex surfaces to four components, each of which is either a

topological disk or an annulus; the segmentation is color encoded as shown in Figure 7 (a)-(h).

Each component on the cortex surface is conformally mapped to either the unit disk or the canonical planar annulus. Figure 7

(q) through (t) show the conformal mappings for the 4 components of the first cortex surface. Similarly, the components on

the second cortex surface are conformally mapped to the unitdisks or canonical annuli. By matching these canonical planar

domains, the map between two cortex surfaces can be easily induced using existing method such as [10].

4.3 Elephant Gallop
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(13) (14) (15) (16) (17) (18)

Figure 8. Feature curves and their signatures on two elephan t models with different postures. The
first row: (1)-(6) shows one geometric configuration of the el ephant from different view directions;
the second row: (7)-(12) shows another model from different view directions; the third row: (13)-
(18) shows the signatures. Note that, each column shows a spe cial curve on two models and their
signatures, and the curve is depicted with the same color as i ts signature. In (13), the red and blue
signatures are almost identical so that they overlap and are not distinguishable.

We use an elephant gallop example to further evaluate our curve signatures and our surface comparison framework. As

shown in Figure 8, there are two models of one elephant in different postures. Suppose we want to compare these two models,

we first label feature curves which segment the elephants into several parts. We compute signatures for all curves on bothsur-

faces, as shown in the third row. Every signature of curve on one surface is matched to the most similar signature of curve on
3Because the cortex surfaces are highly convoluted, two points on the surface with small Euclidean distance inR

3 may have huge geodesic distance on
the surface.



(1) (2) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16)

(17) (18) (19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30) (31) (32)

(33) (34) (35) (36) (37) (38) (39) (40)

Figure 9. Segmented parts from the elephant model and their c olor-coded function distributions, high-
lighting their intrinsic differences. The first row: (1)-(8 ) show the conformal factor function distribu-
tions mapped on the original surface of the first model; the se cond row: (9)-(16) show the conformal
factor distributions of the second model; the third row: (17 )-(24) shows the mean curvature distri-
butions of the first model; the fourth row: (25)-(32) shows th e mean curvature distributions of the
second model; the last row: (33)-(40) shows the difference o f conformal representation between two
models.

another surface. The matched pairs are all placed in the samecolumn, and each feature curve and its corresponding signature

are drawn in the same color. The experiment results demonstrate that the correct matching can be induced automatically with-

out human intervention. This attractive property on curve signatures results from the fact that the signatures for corresponding

curves are very similar, and the underlying reason of this fact is that the skin deformation is very close to isometry because the

stretch of skin under these kinds of deformation is relatively small.

Once the corresponding feature curves are matched, the surfaces are segmented into several parts with explicit correspon-

dence established by the segmenting curves. These parts arethen considered separately on their own canonical planar domains,

as shown in Figure 9. On each domain, we use the stretching andbending functions to compare their differences. The con-

formal factor and mean curvature are computed and colorizedin the original surface to show the function value distributions.

We color-code the conformal factor of the first model in the first row, (Figure 9 (1)-(8)), and color-code this model’s mean

curvature in the second row ((9)-(16)); similarly we color-code the conformal factor and the mean curvature of the second pose



in the third ((17)-(24)) and fourth rows((25)-(32)). The matching difference between two surfaces based on the functions on

2D domains are color-coded on the first pose and shown in the last row ((33)-(40)). The color-code scheme is the same as in

the previous example (Figure 5 (c)), where “red” representsthe max value and “blue” is for the min value. Note that, the last

column is color coded in one uniform scheme. And the results shows that largest stretching and bending differences locate on

leg joints and ankles.

4.4 The Collapsing Horse
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Figure 10. The first row views feature curves on the standing-horse model; the second row shows their corresponding signatures;
the third row displays the accordingly reconstructed curves on the collapsed-horse model.

The next experiment is to compare a horse and its collapsed pose. Users first mark feature curves on one pose. With their

signatures, we could reconstruct the curves on the second surface. Techniques introduced in [27] can be used to reconstruct the

curve on the complex domain, which corresponds to a unique curve on the spherical domain. Combined with three predefined

markers introduced in section 2.5 and the mapping from the original surface to the sphere, the unique curve on the original

surface can be reconstructed. With this process, feature curves can be transferred onto the second object as shown in Figure 10.

The original feature curves on rest pose, their signatures,and the transferred curves are shown in the three rows in Figure 10

respectively.

The conformal factor and the mean curvature distributions of all parts are computed and color-coded in the first four rows

of Fig 11 (the first two rows are for the standing pose, while the third and fourth rows are for the collapsed pose).

The surface comparison framework can be interactively controlled by changing weights of the two terms in our matching

energy. For example, if isometry-invariant comparison is preferred, only stretching factor needs to be considered. Soby

ignoring the mean curvature, a metric invariant under bending is designed, which naturally leads to a bend-invariant orpose-

invariant result. The conformal representation difference between the two horse models(a) and(b) is color-coded on the first



(a) (b) (c) (d) (e)

Figure 11. The first and the second row color-code conformal factorλ and mean curvatureH of the standing horse model; the third
and fourth rows are of the collapsed horse model; the last rowshows the final matching results between the standing model(a) and
the collapsed model(b), with (c)-(e) color-coding differences on conformal representation,λ, andH respectively. (Mesh size: 17k
Triangles)

model as shown in Figure 11(c) and the difference ignoring the bending term is shown in Figure 11(d); also, the difference

with only the bending term is color-coded in(e). As shown in the above examples, our matching algorithm findsout between

two complicated objects a difference distribution which can be flexibly adjusted for different goals such as thebending-

invariant purpose. Since it can catch the difference on the metric ignoring the embedding of the surface inR3, it becomes a

useful tool for non-rigid matching applications. One example is the colons matching and analysis in medical imaging. People

with different poses under CT scans might have large bendingdifferences on their colons with little changes in metric, in

which case such a bending-invariant matching is ideal for the analysis purpose.

5 Conclusions and Future Work

We have designed a metric space for simple closed curves on genus-zero surfaces via conformal mappings. Curves on

surfaces are represented by equivalence classes of diffeomorphisms of the unit circle to itself. The proposed curve signature

corresponds uniquely to the curve defined on a surface. It includes information of how the curve segments the surface, which

are invariant under isometry and stable under near-isometric transformation of surfaces. Therefore, the signature enables a

powerful practical tool for the effective analysis of curves and surfaces among geometrically similar objects.

Besides the above theoretical results, we develop a framework for shape registration and comparison guided by feature



curves alignments. After curves with the most similar signatures are correctly identified and aligned, genus-zero surfaces are

then segmented into several parts and registered separately. This automatic process accurately forces the alignment of feature

curves and alleviates the difficulties of 3D surface matching by reducing it to the simple comparison of functions definedon

canonical planar domains. Also, the algorithm can be flexibly adjusted to provide a pose-invariant shape descriptor.

One potential limitation is that the curve signature developed in this paper is perhaps best suitable to analyze curves defined

on one surface or two surfaces of similar geometry. When the signature is compared for curves defined on surfaces with

large difference, it is only stable when there exists a near-isometric mapping between the surfaces. In general, aligning curves

defined on surfaces with dramatically different geometry istechnically challenging.

Constructing shape space of curves on surfaces with arbitrary topology is promising and challenging. We plan to explore

further along these directions in the near future.
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