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Abstract

We design signatures for curves defined on genus zero sarféle signature classifies curves according to the conforma
geometry of the given curves and their embedded surfacedBas Teichriller theory, our signature describes not only the
curve shape but also the intrinsic relationship betweerctihee and its embedded surface. Furthermore, the signateteic
is stable, it is close to identity between surfaces sharinglar Riemannian geometry metrics. Based on this, we pef
surface matching framework: first, with curve signatures,match the partitioning of two surfaces defined by simplsedo

curves on them; second, the segmented subregions are paiywmatched and then compared on canonical planar domains.

1 Introduction

Shape analysis and shape comparison are fundamental mobiecomputer vision, graphics and modeling fields with
many important applications. Lots of 2D and 3D shape anatgsihniques have been developed in the past couple of dgcade
most of which are based on comparing curvature or spaci@igusof the points on the curve.

A complete different way is to consider all the closed cureaghe surface. The curve space on surface conveys rich
geometric information of the surface itself and is easy wcpss. The philosophy of analyzing shapes by their assalciat
curve spaces has deep root in algebraic topology [8], iefaliinensional Morse theory [18] and Teichmiller spacerheo
complex geometry [31].

SupposeV/ is a surface (a 2-manifold), a closed curveMnis a map

7 :[0,1] = M,5(0) =~(1).

We define the set of all simple closed curvesMnascurve spacand denote it a8} (M). In algebraic topology§2(M) is

classified by homotopy relation,

Yo~y AF 2 [0,1] x [0,1], F(+)|o = v0, F(-) |1 = 71,



then the quotient spade(M )/~ forms a groupr; (M), the addition ofr, (M) is the concatenation of the curves. All the
topological information of\/ is reflected by the algebraic structure of its fundamen@ligrr (M).

Milnor pointed out the2(1/) is an infinite dimensional manifold, a nature curve lengtiction is introduced

1
F000) = Rf0) = [ <hi>a

where< -,- > is the inner product irR3. It is shown thatf is a Morse function, its critical points are geodesics. By
analyzing the local structures of the critical points, thpdlogy of Q(M) can be obtained. Furthermore, the topology of
Q(M) determines the topology af/. In differential geometry, locally, the surface shape imptetely determined by the
curves in the neighborhood. For example, the curvaturebefsectional curves through one point specify the principle
curvatures of that point.

Our current research follows this philosophy but is based@ishmuller space theory. Supposé and M, are two
surfacesgp : M; — M, is a diffeomorphisrhbetween them. Then any cur¥e € Q(M;) will be mapped to a curve in
QO(Ms) byT'y = ¢ o T'y. Thereforep induces a one to one may from Q(M;) to Q(Ms) by ¢* : Q(M;) — Q(Ms). Instead
of studyinge, we can analyze relations between surfaces by studying.

Furthermore, we map the curve spdeeM) to a canonical Lie grou@if f(S'), whereDif f(S') denotes the group
of all diffeomorphism from the unit circles* to itself. We denote this map ag, with g, : Q(M;) — Diff(S') and
g2 : Q(My) — Dif f(SY). ®* : Q(M;) — Q(M-) induces a mapping fromi f f(S*) to itself by ® := g, 0 &* 0 g7 *.

The process discussed above is summarized as the followagoaeh:

¢

M, Mo
e
Q(My) Q(Ms)
g1 g2

Diff(S") —~ Dif(s")

This diagram demonstrates our methodology: three map@n@s, ® are closely related. In fact, any one of them deter-
mines the other two. In other words, for the purpose of stuglgurfacesd\/;, M, and the map® among them, we can study
their curve spaceQ(M; ), 2(M), signatures of the curvesi f f(S'), and the mapping®*, & among them. The following

theoretic results clarify the intuition.

Theorem 1 M is a metric oriented surface, the curve spatg\/) and Dif f(S') are equipped with.? metric, the mapl

from its curve spac@(M) to Dif f(S*) is a homeomorphism.

1A function is differentiable and has a differentiable irser



Therefore, to measure the distance between two curves orfacsuthe distance between two signature®iiy f(S?) is

sufficient.

Theorem 2 Supposé\/; and M, are two oriented metric surfaceg,is a conformal map if and only i is the identity map

of Dif f(SY).

The mapping fromp to ®, F : & — & discovers a lot of geometric information abauy andA/,. It is highly possible
that, by choosing appropriate metriésjs continuous. The kernel df is all the conformal mapping betwedd; and M.

Contributions:

1 In theoretical aspect, we design curve signatures foresuon surfaces, which can be used to study curves on the same

surface or on different but similar surfaces. (Section 2)

2 With the mappingp, we can study the mappinl between surfaces, more specifically, surface matchingguaded by

feature curve matchings. (Section 3)

Curve space on surfaces contains much richer informatiorpeoed to planar curve space. Planar curve space theory [27]
characterizes the curves themselves, whereas our curge spasurface emphasizes both the curves and rlationswith
the embedded surfaces. In other words, our signaturesfglassl compare curves based on how they segment the embedded
surface. The curve space on surface can be applied for ggomseicessing of surfaces such as shape comparison and
registration. Planar curve space can be treated as a spas&bf our general surface curve space. Although in thisrpaye

focus on genus zero surfaces only, the theoretic framewarlbe generalized to arbitrary surfaces.

1.1 Related work

In computer vision/graphics fields, existing effectivexaimatching and comparison methods focused on properties of
planar curve itself [5, 32, 2, 26, 30, 7, 15, 23, 3, 19].

Recent research on conformal geometry opens a new way tp stude and shape matching. [27] modeled the planar
simple closed smooth curves by diffeomorphisms from a eitol itself via conformal mapping and proved the space of
all such curves modulo scaling and transformation is isqumiarto the diffeomorphism group of the circle quotient Nlibh
transformations group restricted on the circle. Conforgeaimetry was also applied by for surface classification aatdining
[13, 10].

Current available techniques for surface matching and eoisgn typically fall into several categories. A large nianb
of shape descriptors attempt to label shapes using histeggeallecting specific global properties of the underlyifgeat.
Ankerstet al.[1] defined the histogram of the volume distributed on cotréeshells and sectors, and used a quadratic form
to measure distance between two objects. Osa@dh [22] used the probability of distances between two randsatypled
points from the surface as its shape descriptor. Ohbetcal. [21] presented an inertial principal axis histogram aboahyn

sampled axes for shape comparison. On each axis, the mornde mertia, the average distance and its variance from



surface points to the axis constitute the histogram. Kazletlal.[17] introduced a reflective symmetry descriptor as a serfac
analysis and rigid-body alignment tool, which is a histegreonsisting of distances from surface points to planesimpgss
through the mass center. Gatlal. [9] designed a histogram that comprises a so called locatetier function and thé?2
functions introduced in [22] to arrive at a pose-obliviogsdriptor. Another type of descriptors usually comes frigna
decomposition methods, Saupe and Vranic [25] introduceayébased spherical harmonic descriptor. Kazhelaal. [16]

also used the spherical harmonics but they worked on voids.glovotni and Klein [20] proposed to use a more generdlize
3D Zernike function as the base function. Rewgtal.[24] designed the descriptor using the Laplacian shapemspecThe
third type of descriptors relies on the skeleton or the togwistructure of the surface. Sundsral. [29] designed a skeleton
descriptor which converts the object to its volume skeletnd they matched the skeleton graphs using methods inedduc
in [28]. Hilagaet al.[14] and Biasottiet al.[4] used Reed graph as the shape descriptor. @ey. [6] compared shapes by
analyzing flow and their critical points on surface. The vaajority of the existing work try to compare the objects inabagl
sense relying on their geometry information, without anyoliement of semantic feature curves. In contrast, our oteth
tackles the shape comparison in a divide-and-conquer walgagdhe comparison between complex objects can be greatly
simplified, while at the same time, with the help of featurigrahents, the matching can be more flexible and application-
specific. Furthermore, while we are capable of quantitbtiikentify the overall, global shape difference, one kegtéee of

our curve-centric comparison is to offer the local shapéatian and its distribution in order to facilitate shapeistgtion,

segmentation, and analysis.

2 Signaturesin Curve Space

This section outlines our theoretical results on how to cat@purve signatures for curves defined on a surface. Simple
closed planar curves can be represented as a diffeomorgtaerunit circle to itself [27] up to the scaling and trangbat
For spatial curves defined on a surface, we also use a diffigghiso? from the unit circle to itself to represent it. This
diffeomorphism represents the spatial curve on surfacquaty up to a Modbius transformation. By removing the Mdbiu

ambiguity using some special markers, we obtain the sigesittorresponding to the curves bijectively.
2.1 Theory and Algorithm Overview

Given a simple closed curdé on a genus zero surfadd, the central idea to compute its signature is illustrateHig:
ure 1(a), (b) and (c).

Case 1: If M is closed, as shown in Figure 1(a), themartitions)/ into two component$',, I"_, both are topological
disks and can be conformally mapped onto planar unit disksA_ by ¥, ¥_. T"is the boundary of . andI'_, denoted
byol'y, =T andoI' - = —T, and is mapped to the disk boundary, which is the unit citcle 0A, = —9A_. The mapping
induced by¥; and¥_ on the boundarieSA . and0A_ is a diffeomorphism. This diffeomorphisin: 0A; — 0A_ is the

signatureof I.

2Such a diffeomorphism can be viewed as a real periodic fondtom [0, 27] to itself.
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Figure 1. Curves as equivalence classes of diffeomorphisms

(a) Blue curve on (b) Signature of the
david head surface. blue curve.

Figure 2. Curves on David Head surface and its signature.



(a) Upper patch of (b) Patch conformally (c) Patch confotynal (d) Patch conformal
David Head Surface mapped to sphere mapped to disk textypinta
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(e) Bottom patch of (f) Patch conformally (g) Patch confolisna (h) Patch conformal
David Head Surface mapped to rectangle mapped to annulus turearapping

Figure 3. Conformal Mappings of SubPatches.

Case 2: If M is open, as shown in Figure 1(b), thErpartitions/ into a topological disk’_ and a topological annulus
I';.. I'_ can be conformally mapped onto a unit disk , whileT" . can be conformally mapped onto an annulus with unit
inner radius. We denote such annulus with unit inner radscaaonical annulusthe inner boundary ofA, asd'A ., and
use the diffeomorphisn : 9A_ — 9'A, as the signature df. One example is shown in Figure 2, the blue curve in genus
zero open surface David head model (a) has its signaturersimo{v).

In [27], Sharon and Mumford used Teichmiller theory to grthwat any simple closed planar curve can be represented with
such a diffeomorphism from a unit circle to itself uniquelyto scaling and translation. In this paper, we generalizidea
to arbitrary genus zero surface using Riemann surfaceyheor

In technical essence, we compute the conformal mappingafdr eomponent segmented by the curve, and take the bound-
ary mappingsl as shown in Figure 1(c) as the signature. Some landmarksarstraints are used to eliminate the so-called

Mobius ambiguity.
2.2 Conformal Map from an Open Genus-zero Surface to a Disk

We seek a conformal map from a disk-like surfacé/ to a unit disk. The map does exist according to Riemann mappin
theory. Extensive relevant work has been done on finding d gatameterizatioror disk-like surfaces. However, complete
conformality is usually not guaranteed. Based on the faattttie harmonic map from a closed genus zero surface to aespher

is also conformal, we use tliwuble coverindechnique [13] to convert an open surface to a closed oneagalude computing



® to computing a harmonic map frodouble coveringf M onto a sphere(Section 2.3).

For an open surfack/, we compute the double coveringbf and then compute its harmonic mapping onto a sphere. Due
to the exact symmetric property of double covering, the loauypo M is harmonically mapped onto the equator of the sphere
andM is conformally mapped onto a hemisphere. Then we composgeogjraphic projection to get a conformal map from
M to the unit disk. The procedure computing conformal map ftopological disk in the previous example(Figure 2) onto

the unit disk is shown in Figure 3(a)-(d).
2.3 Conformal Map from a Closed Genus-zero Surface to a Sphere

To compute a conformal map from a closed genus-zero surfagé to a sphere, we initiate a map between them and
minimize the harmonic energy by diffusing the heat-flow oa #iphere surface. This process is introduced and proved to
converge to a harmonic/conformal map [11].

The process is as follows:

1. Compute the normal vector for each triangle face. For eactex, compute its normal(v) as the weighed sum of

normals on the adjacent faces weighed by their areas. Thémesmitial map as the Gauss map(v) = 7i(v).

2. Compute Laplace-Beltrami operator at each verfed) = >/, 11 Wu,o(®(v) — ®(u)), the weightw,, associated
with edgefu, v] is the well known harmonic weight, calculatedag, = %(cot(au,v) + cot(Bu.v)), Wherea,, ,, and

Bu,» are two angles opposite to the edgev] in the two triangles sharing the edge.

3. Project Laplacian\ (v) onto the tangent space ®{v),

4. Update the ma@, ®(v) = ®(v) — eAg2(v) wheree is a small constant to assure the numerical stability. In our

experiment we set= 0.1.

5. Normalize the mag by

d(v) —c
Ply) = —~L
W =B =
wherec is the weighted mass center:= w wherek, is the summation of the areas of all faces adjacent to

vertexv.

6. Repeat step 2 through 5 until it converges.

2.4 Conformal Map from a Topological Annulus to a Canonical Annulus

For curves on an open genus-zero surface, we need to compatdamal mapd from a topological annulud/ (with

oM = I'y — I'; wherel’; andT’; are two boundaries) to a canonical planar annulus. Firslouble-cover the surface to



get a closed genus-one surface; next we compute a conforagafnom a closed genus-one surface onto a rectangle planar
domain by integrating a holomorphic 1-form [13] which delses two vector fields perpendicular to each other everyg/her
on surface; finally, we compose the conformal map from tharege to the canonical annulus using * to get thep.

The algorithmic flow is detailed as follows:

1. Double-cover\! to a closed genus one surfate

2. Compute a holomorphic 1-form basisf by using the method introduced in [12]. Denote the basis.as

1
Try @

3. For an arbitrary path connecting’y andI';, compute a holomorphic 1-form such thatfFO w=1lw= @.

4. Trace a vertical trajectonyof w, such that is an integration curve ab along imaginary direction. Namely,is iso-u

in the (u, v) domain.

5. SliceM alongr to get a fundamental domairt, by integratingv, wherelM is conformally mapped to a rectangle on

the plane.

6. Conformally map the rectangle to an annulus with unit imadius byeQT”Z.

The procedure computing conformal map from a topologicalitus in the previous example(Figure 2) onto the canonical

annulus is shown in Figure 3(e)-(h).
2.5 Eliminating the Mo6bius Ambiguity

Conformal mappings between surfaces are not unique; d.ggrdormal mappings from a unit disk? to itself form a

M®obius group, with the formr : z — w,w = €% f_*;)ﬂz,z, zo € C,0 € [0,2m), wherez is a constant poinf] is a constant
angle. All suchr form a 3 real dimensional group. Two mappings from a topaalgilisk to a unit disk differ by a Mobius
transformation, this ambiguity affects the signature aaslto be eliminated via certain extra constraints.

For closed genus-zero surfaces, we first fix a marker poamt the surface and define a tangent direcﬁogoing out from
p. A closed curvd® separated/ into two disk-topology patches, the patch containirig denoted a¥' . We require thaf
mapsp onto the origin, anoT,, onto the positive x-axis direction. These constraints uelgdeterminel , .

For open genus-zero surfaces, we fix the maplken the boundary? . mapsl'; to A, whereA is a canonical annulus
with unitinner radius. The outer radius Af, is denoted a®, which is uniquely determined by the surfdce. Furthermore,
we require tha , (p) = R. Such¥ uniquely exists.

Through the above construction pipeline, every closedelirg (M) corresponds to a diffeomorphisine Dif f(S?1).

I corresponds to two signaturds, ¥, if and only if there exists a Mobsiis transformationD? — D2, such thatl,o¥ ;! =
T|ap2. The above equation defines an equivalence relatian Dif f(S'). We claim that the mappin@ : Q(M) —
Diff(S')/ ~ is an one-to-one map. With appropriate metricstid/) and Di f f(S1), it is a homeomorphism. In other

words, each closed curve @i corresponds to an equivalence class of diffeomorphisnns the unit circle to itself.



In some scenarios, we might want to completely eliminateatindiguity of signatures. For this purpose, we can further
eliminate Mobius ambiguity using more markers. To uniguetonstruct a curvel and three markers are sufficient for the

closed genus-zero surfaces while for the open genus-zeexes, ¥ and two markers are sufficient.

2.6 Distances between Curves
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Figure 4. The stability of curve signatures under isometry, perttiooaand bending of embedded surfaces.

For a genus-zero surfadd, we create signatures for curves definedMdn The deviation between two curves can be
measured by the distance between their signatures WggilgPeterson metrion Dif f(S*) as introduced in [27].

If surfacesM; and M, are with similar Riemannian geometriesl, then there exists a diffeomorphism M; — M,
close to an isometry, the induced mapetween the signatures is close to the identity map ffaifif (S*) to itself. In other
words, if the curvd’; C M; corresponds td's C M, with T's = ¢(I';), thenI'; andI'; have similar signatures. Hence, the
signatures of curves have a property of strong stabilityentige Riemannian metric perturbation of their embeddefhses
and can be used to analyze curves on different surfaces asist tool.

Figure 4 demonstrates the stability of the signatures.h&lidurves and their corresponding signatures are drawe wetine
color. Note that the signature is a diffeomorphism from aleito itself, thus it can be considered as a periodic reaitfan
from [0, 27) to [0, 27r), and only one period is shown in our figures.(In), a planar rectangle is isometrically deformed to a
cylinder, our computation shows that the correspondingesihave exactly the same signatures(2p the planar rectangle
is perturbed abowi% in z direction, and abolit% in x, y directions, signatures of the corresponding curves arngaclese to
each other. I1{3), the planar surface ifu) is simulated as cloth and deforms as show(bin namely, it allows large bending
but little stretching, the signatures of the correspondimyes are also almost identical(i.e., undistinguishahbleo, the curve
on surface if(a) is perturbed a little and shown in red curvei), the signature perturbs little.

Therefore, curves on different surfaces, which are clossatth other in terms of geometry or differ by a near-isometric

mapping, can be robustly and accurately compared and athbsing their signatures.



3 Surface Matching

Based on the analysis of curve space, we design our surfac@imgframework for curve alignment, surface registratio

and shape comparison.
3.1 Feature Alignment for Surface Segmentation and Matching

We now decompose the entire surface comparison problemvistsub-tasks: (1) segmenting a surface via a set of feature
curves and their alignment; (2) matching boundary curvessamface patch interiors. The general framework is asvalo
AssumelM; and M- are the two surfaces to be matched and compared, if they shmailar geometries, meaning there

exists a mapping : M; — Mo, ¢ is close to an isometry, then

1. Extract a set of feature curvéE}, '3, - 'L} on My, which can be either marked by users as certain meaningful fe
tures, or automatically computed based on geometric irdition of //; such as the extremals of the principal curvatures

along the corresponding principal directions.

2. Compute the curve signatures 0f on M; using algorithms introduced in Section 2, and obtain theatgre set

{\Illa \I/27 Ty \Iln}
3. Compute the curve s¢t'3,T'3, - - -, T2}, such that the curve signaturelof equals tol;.

4. The curve sefl'*} segment\/, to several connected componefit§, cs - - -, ¢k, }, k = 1,2, such that the boundaries

of ¢} correspond to the boundariesd@f

5. Matchc! with ¢? pairwise. ¢} andc? are conformally mapped to the canonical planar domaing@sna by-product
from the process of computing signatures). We reduce thepimgjbetween 3D surfaceg andc? to the matching on
their 2D planar domains.

From the theoretical perspective, the entire algorithripelne can be formulated as the problem of solvingM; — M,

from knowing¢ = id : Diff(S') — Diff(S'), then the resultanp is the one closest to an isometry: is the best
diffeomorphism for the surface registration betwédnand M.

In practice, in Step 3 above, users may prefer to label thenimghul feature curve sefl's, I'3, - --,'2} on M,. Then we
compute their signatures and by comparing the signature$ing an one-to-one matching between these two sets of &atur
curves. Then following Steps 4 and 5, the matchirean be constructed in the similar way. Because the sigreatiegend on
the curves continuously and stably, small deviations ofabeled feature curves will have no or very little affect be final

comparison result as far as the surface comparison is coeter
3.2 Surface Comparison in 2D Planar Canonical Domains

When all feature curves are matched, we segment the suifdoeseveral patches, each of which is conformally mapped

onto a canonical planar domain, then we reduce the 3D sucfamoparison task to an much easier 2D matching problem on



the planar domain, which can possibly be solved with manstieg techniques. A possible technique to solve such a enobl
is to use theconformal representatidfO], which consists of two functions\(u, v), H (u,v)) defined on canonical domains,
where\ is called conformal factor, representing the area stretchbi the mapping from the original surface to the planar
domain andH is the mean curvature implying the bending information &f $hurface. In our experiments, we normalize the
original surface and then compute its conformal factor ahegertex by dividing its one-ring-neighbor area on the acefby
its counterpart on the planar domain.

There are several advantages to measure surface patdeniéiéeusing conformal representation. First, the confbrma
representation is complete in the sense that it allows uglipreconstruct the original surface from the represéotatvhich

is guaranteed by the following theorem.

Theorem 3 (Conformal Representation) If a surfaceS(u,v) is parameterized by some conformal paraméterv) on a
domainD, then the conformal factor functiok(u, v) and mean curvature functioH (u, v) defined onD satisfy the Gauss
and Codazzi equation. X(u,v) and H (u, v) are given, along with the boundary conditidtfu, v)|0D, thenS(u, v) can be

uniquely reconstructed.

Second, according to [10], conformal representation gtedgresents the geometry distance between surfades;ithe
perturbation in geometry leads to stable and continuousifiition in their conformal representations.

Third, as a by-product, the computation process of curveasiges has already computed conformal maps from most 3D
patches to the planar domains, so the surface matching bagkdse mappings can be done without further computatisin co

The matching energy between two corresponding surfac@esic, andM; is defined on their common canonical planar

domainsD: E = f(u v)eD ||>\()(’LL, ’U) — )\1(’&, v)||2dudv + f( |H()(’LL, ’U) — Hl(u, v)||2dudv.

w,v)ED |
Figure 5 shows an example on how to make use of conformalgeptation for surface comparison. A unit disk planar
surfaceM, as shown in (a) is compared with a center-bulb surfelgeshown in (b). The conformal factor and mean curvature
of planar surface is constant everywhere; the conformébfamd mean curvature of surface (b) in 2D planar domain@ime ¢
coded and shown in (d) and (e); the deviatifin, v) = (Ao (u, v) — A1 (u, v))? + (Ho(u, v) — Hy(u, v))* between the matched

surfaces are color-coded in surfakf and shown in (f).

4 Experimental results
4.1 Human Faces

To illustrate our framework, we firstly present a human faeganing example. Two human facgg(female) andf; (male),
as shown in Figure 6 (a) and (b), are compared by aligningifeaturves enclosing eyes, noses and mouths. Assuming that
the geometries of human faces are similar, namely, thest mdppingsb : fy — f1 that are close to isometry, we manually
label on each face four feature curves and compute theiagiges. The curves and their signatures are highlighted thvé
same color. For example, curves enclosing the right eyedhaidsignatures are colored in red. As shown in Figure 6 (c),

signatures with the same color are quite similar to eachrothe
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Figure 5. Conformal representation. (a) and (b) are surface s to be compared, (c) is the color scheme

we use in this paper, (d) and (e) are conformal factor and mean curvature of (b) drawn in 2D planar
domain, and (f) is the conformal representation difference distribution between (a) and (b).
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Figure 6. Curves on faces((a),(b)), their signatures(c), and thmeatations for the matching purpose((d),(e)).

The experiment shows that similar feature curves on twosféeee similar signatures, while different feature curves o
the faces have dramatic different signatures. Therefbesctirve signature is a reliable tool to align the same featacross
different human faces. The faces can then be segmented gpuethanto common canonical planar domains for subsequent

registration and comparison, as shown in Figure 6 (d) and (e)

4.2 Brain Cortex Analysis

Another example is brain cortex comparison, we locate featurves segmenting the whole surface into disks and annuli
These features are functional "landmarks” given by usersr @actical example is for medical imaging: The two cortex
surface data are reconstructed using MRI images of oneypiaratquired at different times. The feature curves areuaiy
labeled by the clinical doctor who is monitoring the recgvef this patient’s brain. It is desirable to compare the eort

surfaces such that the corresponding curves and regiomaated. Noted here although these two brains are similar in



(a) First brain (b) First brain (c) First brain 2 (d) First bra
view from left view from top view from bottom view from right

(e) Second brain (f) Second brain (g) Second brain 2 (h) SkEboain
view from left view from top view from bottom view from right

(i) Green Patch () Yellow Patch (k) Red Patch () Blue Patch

conformally conformally conformally conformally
mapped to disk mapped to annulus mapped to annulus mappestkto d

o

— ~
| |
(m) Three curves on (n) Signatures of (o) Three curves on i¢paures of
first brain curves on 1st brain second brain curves on 2nabrai

Figure 7. Surface match on brains using curve features simil arity comparison.



terms of Riemannian metric, they cannot be matched simplyavigid transformatior?

We apply our matching procedure as explained above. Tharfeatirves for the first and the second brain are shown
separately in Figure 7 (a) - (d) and (e) - (h) from differerewidirections. Feature curves and their correspondingsiges
are shown in (m),(n) and (0),(p). By comparing their sign@gueach curve on the first brain is mapped to the the curve on
the second brain with the same color. The curves segmenbtitexcsurfaces to four components, each of which is either a
topological disk or an annulus; the segmentation is colopded as shown in Figure 7 (a)-(h).

Each component on the cortex surface is conformally mappeittter the unit disk or the canonical planar annulus. Egur
(q) through (t) show the conformal mappings for the 4 compsef the first cortex surface. Similarly, the components on
the second cortex surface are conformally mapped to thaligkis or canonical annuli. By matching these canonicalaian

domains, the map between two cortex surfaces can be eadilged using existing method such as [10].

4.3 Elephant Gallop

K WA RS

(2) Tail (3)Leg 1 (4) Leg 2 (5) Leg 3 (6) Leg 4
J ‘ & g\ (N
‘\(’ Y. _ \ LF
(8) Tail (10) Leg 2 (11) Leg 3 (12) Leg 4
(13) (14) (15) (16) a7 (18)
Figure 8. Feature curves and their signatures on two elephan t models with different postures. The
first row: (1)-(6) shows one geometric configuration of the el ephant from different view directions;
the second row: (7)-(12) shows another model from different view directions; the third row: (13)-
(18) shows the signatures. Note that, each column shows a spe cial curve on two models and their
signatures, and the curve is depicted with the same color as i ts signature. In (13), the red and blue
signatures are almost identical so that they overlap and are not distinguishable.

We use an elephant gallop example to further evaluate oweaignatures and our surface comparison framework. As
shown in Figure 8, there are two models of one elephant iemdifft postures. Suppose we want to compare these two models,
we first label feature curves which segment the elepharisinteral parts. We compute signatures for all curves ondaoth

faces, as shown in the third row. Every signature of curveransurface is matched to the most similar signature of cunve o

3Because the cortex surfaces are highly convoluted, twapoin the surface with small Euclidean distanc&ihmay have huge geodesic distance on
the surface.
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Figure 9. Segmented parts from the elephant model and their ¢ olor-coded function distributions, high-
lighting their intrinsic differences. The first row: (1)-(8 ) show the conformal factor function distribu-
tions mapped on the original surface of the first model; the se cond row: (9)-(16) show the conformal
factor distributions of the second model; the third row: (17 )-(24) shows the mean curvature distri-
butions of the first model; the fourth row: (25)-(32) shows th e mean curvature distributions of the
second model; the last row: (33)-(40) shows the difference o f conformal representation between two

models.

—
~

another surface. The matched pairs are all placed in the salmen, and each feature curve and its corresponding signat
are drawn in the same color. The experiment results denatastrat the correct matching can be induced automaticatty w
out human intervention. This attractive property on cuigaatures results from the fact that the signatures foresponding
curves are very similar, and the underlying reason of tlasifathat the skin deformation is very close to isometry liseghe
stretch of skin under these kinds of deformation is relétigenall.

Once the corresponding feature curves are matched, thecesrére segmented into several parts with explicit cooresp
dence established by the segmenting curves. These patiteareonsidered separately on their own canonical plamaadts,
as shown in Figure 9. On each domain, we use the stretchingemting functions to compare their differences. The con-
formal factor and mean curvature are computed and colonizgte original surface to show the function value distribas.
We color-code the conformal factor of the first model in thetfiow, (Figure 9 (1)-(8)), and color-code this model's mean

curvature in the second row ((9)-(16)); similarly we cobmrde the conformal factor and the mean curvature of the sipose



in the third ((17)-(24)) and fourth rows((25)-(32)). The tetsing difference between two surfaces based on the fureto

2D domains are color-coded on the first pose and shown in ghede ((33)-(40)). The color-code scheme is the same as in
the previous example (Figure 5 (c)), where “red” represtr@snax value and “blue” is for the min value. Note that, tret la
column is color coded in one uniform scheme. And the reshitsvs that largest stretching and bending differenceséoaat

leg joints and ankles.

4.4 The Collapsing Horse

— Curve 4 Signature — Curve’s Signature — Curve 6 Signature

Figure 10. The first row views feature curves on the standing-horse intiesecond row shows their corresponding signatures;
the third row displays the accordingly reconstructed csime the collapsed-horse model.

The next experiment is to compare a horse and its collapssel pdsers first mark feature curves on one pose. With their
signatures, we could reconstruct the curves on the secofateuTechniques introduced in [27] can be used to recactdtre
curve on the complex domain, which corresponds to a unignean the spherical domain. Combined with three predefined
markers introduced in section 2.5 and the mapping from tiggral surface to the sphere, the unique curve on the ofligina
surface can be reconstructed. With this process, featuvesgan be transferred onto the second object as shownureFig.

The original feature curves on rest pose, their signatames the transferred curves are shown in the three rows inéit
respectively.

The conformal factor and the mean curvature distributidredlgarts are computed and color-coded in the first four rows
of Fig 11 (the first two rows are for the standing pose, whikettkird and fourth rows are for the collapsed pose).

The surface comparison framework can be interactivelyrotlatl by changing weights of the two terms in our matching
energy. For example, if isometry-invariant comparisonrsf@red, only stretching factor needs to be consideredbyso
ignoring the mean curvature, a metric invariant under bemai designed, which naturally leads to a bend-invariapose-

invariant result. The conformal representation diffeeshetween the two horse modéls and(b) is color-coded on the first



(d)

Figure 11. The first and the second row color-code conformal faitand mean curvatur® of the standing horse model; the third
and fourth rows are of the collapsed horse model; the lasstmws the final matching results between the standing mageind
the collapsed modé€b), with (¢)-(e) color-coding differences on conformal representatiorend H respectively. (Mesh size: 17k
Triangles)

model as shown in Figure 1t) and the difference ignoring the bending term is shown in f&dil (d); also, the difference
with only the bending term is color-codeda). As shown in the above examples, our matching algorithm find$etween
two complicated objects a difference distribution whichn d¢ee flexibly adjusted for different goals such as tending-
invariant purpose. Since it can catch the difference on the metricriggaghe embedding of the surfacelt?, it becomes a
useful tool for non-rigid matching applications. One ex#arip the colons matching and analysis in medical imagingpke
with different poses under CT scans might have large bendiiffigrences on their colons with little changes in metric, i

which case such a bending-invariant matching is ideal festhmalysis purpose.

5 Conclusions and Future Work

We have designed a metric space for simple closed curvesmusgrero surfaces via conformal mappings. Curves on
surfaces are represented by equivalence classes of difpbisms of the unit circle to itself. The proposed curvenaigre
corresponds uniquely to the curve defined on a surface. litdes information of how the curve segments the surface;hwhi
are invariant under isometry and stable under near-isdcrteansformation of surfaces. Therefore, the signatuabbss a
powerful practical tool for the effective analysis of cus\and surfaces among geometrically similar objects.

Besides the above theoretical results, we develop a frankefoo shape registration and comparison guided by feature



curves alignments. After curves with the most similar stgnes are correctly identified and aligned, genus-zerasad are
then segmented into several parts and registered seyardtéd automatic process accurately forces the alignmicieadure
curves and alleviates the difficulties of 3D surface matglhiy reducing it to the simple comparison of functions definad
canonical planar domains. Also, the algorithm can be flgxalljusted to provide a pose-invariant shape descriptor.

One potential limitation is that the curve signature depebbin this paper is perhaps best suitable to analyze cuefised
on one surface or two surfaces of similar geometry. When igneature is compared for curves defined on surfaces with
large difference, it is only stable when there exists a g@metric mapping between the surfaces. In general, aligoirves
defined on surfaces with dramatically different geomettgdhnically challenging.

Constructing shape space of curves on surfaces with anpttspology is promising and challenging. We plan to explore

further along these directions in the near future.
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