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Visualizing the Evolutions of Silhouettes

Abstract Silhouettes play a crucial role in visualization, graph-
ics and vision. This work focuses on the global behaviors
of silhouettes, especially their topological evolutions, such
as their splitting, merging, appearing and disappearing. The
dynamics of silhouettes are governed by the topology, the
curvature of the surface, and the viewpoint.

Some theoretical results are established: the integration
of signed geodesic curvature along a silhouette is equal to
the view cone angle; critical events can only happen when
the view point is on the aspect surfaces (ruled surface of the
asymptotic lines of parabolic points).

We introduce a method to visualize the evolution of sil-
houettes, especially all the critical events where the topolo-
gies of the silhouettes change. The results have broad ap-
plications in computer vision for recognition, graphics for
rendering and visualization.

Keywords silhouette · geodesic curvature · topological
change · normal curvature · cusp · projection · aspect graph

1 Introduction

Silhouettes refer to the locus of points on the surface where
the view rays tangentially touch the surface. Projected sil-
houettes refer to the projection images of silhouettes.

Silhouettes play a crucial role in computer vision. Pro-
jected silhouettes convey rich geometric information about
the original surface. For example, the inflection point of pro-
jected silhouettes corresponds to the parabolic point on the
original surface. The curvature signs of points on the pro-
jected silhouettes are consistent with the Gaussian curva-
ture sign of their pre-images on the surface. Silhouettes have
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been applied for surface reconstruction, pattern recognition
and aspect graphs in computer vision.

Silhouettes are one of the major research focuses in Non-
Photorealistic Rendering in graphics. For human visual per-
ception, silhouettes carry the most important shape infor-
mation. Accurately and efficiently computing the silhouettes
has attracted many researchers. In order to improve the effi-
ciency of computing silhouettes, it is highly desirable to in-
terpolate silhouettes from pre-computed ones when the view
is moved between sampled views. If the topological struc-
tures of the pre-computed silhouettes are consistent, the in-
terpolation is sensible and easy to perform. Therefore, it is
critical to fully understand the topological evolutions of sil-
houettes when the view point is moved in space.

The major goal of this work is to study when, where,
and how the topologies of the silhouettes will change, along
with the global properties of the silhouettes. Silhouettes can
shrink to a point and disappear, intersect each other either
transversally or tangentially and reconnect. These critical
events can only happen when the view point is on the ruled
surface of asymptotic lines of parabolic points. Furthermore,
we show that the integration of the geodesic curvature along
a closed smooth silhouette is equal to the view cone angle.

Contributions In this work, we make the following contri-
butions:

– Visualization of all possible topological changes of a sil-
houette.

– Development of a theorem of the relation of geodesic
curvature of a silhouette and the view cone angle.

– Introduction of the concept of the aspect surface, all topo-
logical changes happen when the view is on the aspect
surface. The silhouettes are homotopic to each other if
two views can be connected by a curve which doesn’t
cross the aspect surface.

1.1 Previous Works

Non-Photorealistic Rendering Finding silhouettes from a given
object is a key ingredient in Non-Photorealistic Rendering.
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A comprehensive review of silhouettes for NPR is not scope
of this paper, and we refer the reader to the excellent books
and survey papers [13,37,16] for details.

Usually, for non-photorealistic rendering silhouettes are
rendered with a hybrid approach; object-space detection and
image-space detection [28]. The object-space silhouette de-
tection is performed with simple n(p) · v(p) computation,
where n(p) and v(p) are the normal direction and the view
direction defined with a point p on the object, respectively.
The silhouettes are detected with the contours of zero-points
on the object [15]. The image-space algorithm detects the
visible portions of silhouette in the image-space, and gener-
ates meaningful strokes for stylization.

In contrast to previous work in computer graphics, we
study the silhouette revolution on the object space with re-
spect to viewpoint changes. Our methods could be utilized to
the animation with non-photorealistic rendering scene, since
the key problem in here is to smoothly interpolate the silhou-
ettes between coherent frames [17].

Silhouette for Shape Recognition and Aspect Graph For 3D
shape analysis and recognition from images [4,11,32], sil-
houettes are well studied in computer vision literatures [12,
25].

Since image-space silhouettes cannot convey sufficient
information for non-trivial objects, several studies have been
done on the connections between the evolution of images-
space silhouettes and the 3D shape of objects. Pae and Ponce
[29] studies the structural changes of silhouette of algebraic
surfaces.

The aspect graph presents the topological changes of sil-
houettes in the image-spaces with respect to viewpoint changes.
A node of the aspect graph corresponds to a topological
configuration of image silhouettes of the object. The status
changing from a node to another happens when a view point
is at the critical position [19].

In contrast to the approaches in computer vision, we study
the evolution of silhouettes on the object-space since we
have exact 3D geometry in graphics applications. The topo-
logical changes of silhouettes on a surface are much rare
than those of projected silhouettes in images, because pro-
jection introduces many singularities (e.g., the image of a
smooth silhouette may contain several cusps). Moreover, we
propose the novel concept of aspect surfaces, which is the
locus of all the critical view points. By identifying the as-
pect surfaces, we can easily detect the topological changes
of silhouettes for computer graphics and visualization appli-
cations.

Silhouette in singularity and catastrophe theory Also, in math-
ematics, silhouette is analyzed as the projections of surfaces
to planes from a visual perspective[20]. All the critical events
of projected silhouettes have been thoroughly classified in
the works of Arnold [1], McCrory [26], Platonova [31] and
Landis [21] in the setting of singularity and catastrophe the-
ory.

Arnold et al[1][26] give us a classification of apparent
contours of surfaces. Related work has been done by [31]
and [21].

2 Local Properties of Silhouettes

This section aims at visualizing all possible critical events
for silhouettes. The local properties of silhouettes have been
thoroughly studied in computer vision, singularity theory
and catastrophe theory. The curvature of projected silhou-
ettes and the normal curvature are strongly related to the
Gaussian curvature. All the possible critical events of pro-
jected silhouettes have been completely categorized. We fol-
low the categories as explained in [1].

2.1 Preliminaries

The Gauss map G : Σ → S2 maps a point r(u,v) ∈ Σ to its
normal n(u,v) ∈ S2.

Definition 1 The derivative map of the Gauss map DG :
T Σ → TS2 is called the Weingarten map,

dn = −W (dr) (1)
dr = rudu+ rvdv (2)
dn = nudu+nvdv (3)

A Weingarten map is a self conjugate linear map, where the
eigenvalues k1,k2 of W are called principal curvatures, and
the eigen vectors e1,e2 are called principal directions. The
product of k1,k2 are called the Gaussian curvature.

The local behavior of a silhouette is determined by the
view direction and the Gaussian curvature at the touching
point. We classify the points on a surface according to their
Gaussian curvature and study the local behavior of silhou-
ettes on each class respectively.

Definition 2 On a smooth surface with at least C2 continu-
ity, k1,k2 are principal curvatures. All points are classified,

1. elliptic, 0 < k1 ≤ k2,
2. hyperbolic, k1 < 0 < k2,
3. parabolic, k1k2 = 0.

A special class of parabolic points are called flat, if both k1
and k2 are zeros.

For general surfaces, the locus of parabolic points is a
finite number of curves on the surface. Silhouettes on them
are also curves. For special surfaces with flat regions, silhou-
ettes may contain some flat regions, and they are difficult to
analyze with classical differential geometry. In the following
discussion, we assume the flat regions are with zero mea-
sures.
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Definition 3 An asymptotic direction for a parabolic point
is the principal direction with zero principal curvature. An
asymptotic direction dr on a hyperbolic point satisfies <
dr,W (dr) >= 0, where <,> is the inner product in E3. Two
tangent vectors dr1,dr2 are conjugate, if < dr1,W (dr2) >=
0.

Asymptotic directions play important roles in analyzing the
local behavior of silhouettes.

2.2 Relation between curvatures

The curvature of the projected silhouettes and the normal
curvature along the view direction are strongly related to the
Gaussian curvature. Assume the orthographic projection is
π , a point p is on the silhouette γ , then π(p) ∈ π(γ). The
curvature of π(p) is denoted as kc. The view direction and
the normal at p to the surface determines a plane, the plane
intersect the surface at the sectional curve τ . The curvature
of τ at p is denoted as kr. According to Koenderink [19], the
following equation holds

kr(p)kc(π(p)) = K(p),

where K(p) is the Gaussian curvature of p, as shown in fig-
ure 1.

kc krkc kr

Fig. 1 Curvature relation krkc = K. K is the Gaussican curvature at p,
kc is the curvature of π(p), π is an orthographic projection, kr is the
normal curvature of the view ray direction.

At the cusps of the projected silhouette, the view direc-
tion is asymptotic to a hyperbolic point, kr = 0, therefore kc
is infinite. We will show that at those cusps, the geodesic cur-
vature is also zero. Therefore, those cusps correspond to an
inflection point on the silhouette on the view cone surface.

An important corollary is that the sign of the curvature of
a point on a visible projected silhouette is consistent with the
sign of the Gaussian curvature of its pre-image on the sur-
face. Therefore, the projected silhouette of a convex surface
must be convex.

2.3 Critical events

Catastrophe theory [1] has indicated all possible critical events
for projected silhouettes. The major approach to study the

critical events is to classify points on the surface according
to the maximum contact order of all tangency directions.

Definition 4 Suppose Σ is a generic smooth surface with
position function r(u,v). A point p ∈ Σ , a tangent direction
t ∈ T Σ(p) has contact of order n, if

∂ kr(u,v)
∂ kt

= 0,k = 1,2, · · · ,n−1,

and

∂ nr(u,v)
∂ nt

6= 0.

All points on the surface can be classified according to
their order of tangency as shown in figure 2. The critical
events corresponding to the special directions of each class
are illustrated in figure 6.

1
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Fig. 2 Classification of points on a generic surface. The class types are
labeled numerically (adopted from [1])

1. The elliptic domain, where all tangents are of order 2.
2. The hyperbolic domain, where each point has two asymp-

totic directions. The asymptotic directions have tangency
order of 3. On the projected silhouettes, there will be a
cusp as shown in the type 2 of the figure.

3. The curve of parabolic points, each point has one asymp-
totic direction. The lip event is shown as the type 3 and
10, the beak-to-beak event is shown as the type 4 and 11.

4. The envelops of asymptotic directions are called asymp-
totic curves. The inflections of the projection of the asymp-
totic curves onto the tangent plane form a flecnodal curve,
where each point has a tangent of order 4 or greater. This
is shown in type 6.

5. The self intersection point of a flecnodal curve, which is
with two tangents of order 4.

6. The biflecnodes, which are the inflections of flecnodal
curve, with a tangent of order 5. This is shown in types
8,9 and 13.

7. The godrons, which are points of tangency of the parabolic
curve and the flecnodal curve, with a tangent of order 4.
This is shown in type 7 and type 12.

8. The gutterpoints on parabolic curves, which are station-
ary points of the asymptotic tangents, as shown in type
5.
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The topological changes happen when the view is along
the asymptotic directions of some parabolic points: this case
give birth to the lip (type 3,10 )and beak-to-beak events (type
4, 11); the asymptotic directions along the parabolic curves
and flecnodal curves give birth to the self intersection of
the silhouettes on the surface (type 7, 12). The other critical
events change the topologies of the projected silhouettes, but
preserve the topologies of the silhouettes on the surface.

3 Global Properties of Silhouettes

This section aims at developing some theoretical results for
the global properties of silhouettes without using any ad-
vanced machinery from singularity theory or catastrophe the-
ory.

3.1 Aspect Surface

In this section, we define the aspect surface, and prove that
all critical events for silhouettes happen when the view is on
the aspect surface. If two views can be connected by a curve
without intersecting the aspect surface, then the silhouettes
are homotopic. The proofs use only local differential geom-
etry.

Lemma 1 Suppose r(u,v) is a generic smooth surface, with
local parameters (u,v). The view point is ν , r(s) is a silhou-
ette. Then the tangent direction ṙ is conjugate to the view ray
direction r−ν .

Proof According to the definition of silhouette, < r−ν ,n >=
0, take the derivative on both sides,

< ṙ,n > + < r−ν , ṅ >= 0,

therefore

< r−ν, ṅ >=< r−ν,W ṙ >= 0,

where W is the Weingarten map. ut
Lemma 2 Suppose Γ is a silhouette on a generic smooth
surface Σ with a view point ν , which is not on the surface
ν 6∈ Σ . A point p ∈ Γ is in one of the three cases

– p is elliptic, K(p) > 0;
– p is hyperbolic, K(p) < 0;
– p is parabolic, but the view direction p−ν is not along

the asymptotic direction of p.

then in a neighborhood of p, the silhouette Γ is a one di-
mensional manifold.

Proof We take a special local parameterization, such that ,at
point p, ru = e1,rv = e2, where e1,e2 are principal direc-
tions. Then nu =−k1e1, nv =−k2e2.

The silhouette is the zero level set of the function

f (u,v) =< r(u,v)−ν ,n(u,v) > .

At the point p,

∂ f
∂u = < r−ν ,nu >
∂ f
∂v = < r−ν ,nv >

When K(p) 6= 0, since r−ν 6= 0, ∂ f
∂u and ∂ f

∂v cannot be both
zeros.
When K(p) = 0, assume e1 is the asymptotic direction and
r(p)−ν is not along e1, then r(p)−ν is not orthogonal to
e2, therefore ∂ f

∂v is not zero.
From the implicit function theorem, we know that locally

the solution of f = 0 around p is a one dimensional subman-
ifold. ut

When the view is along the asymptotic direction of a
parabolic point, the silhouettes may not be a one dimen-
sional manifold, thus the lip event or the beak-to-beak event
may happen as shown in figure 3, the three colored curves
show the progress of topology changes of silhouettes.

a. lip event b. beak-to-beak event

Fig. 3 Critical events for a bell shape.

If the view point is on the surface, the following lemma
depicts the topological change of the silhouettes. Figure 4
illustrates the evolution of the silhouettes when the view
crosses the surface.

a. View crosses an elliptic point b. View crosses a hyperbolic point.

Fig. 4 Topological changes when the view crosses the surface. The
view point and its corresponding silhouette are marked with same
color.

Lemma 3 Suppose Σ is a generic smooth surface, view point
ν crosses the surface along the normal direction through p
from outside to inside, then
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– if p is elliptic, then a closed silhouette will shrink to the
point p and disappear.

– if p is hyperbolic, two silhouettes will intersect and re-
connect, the silhouettes are along the asymptotic direc-
tions of p.

Proof For elliptic and hyperbolic points, we can use quadratic
models (x,y,z(x,y)) to locally approximate the surface, where

z =
1
2
(k1x2 + k2y2),

By examining the silhouette evolutions when ν crosses the
surface along z direction, we can straight forwardly obtain
the conclusion. ut

For parabolic points, one has to use higher order approx-
imation model as described in the section 2. From lemma
3 and 2, it is obvious that the topological changes of sil-
houettes can only happen when the view points are either
on the object surface itself or along asymptotic directions of
parabolic points.

Definition 5 Suppose Σ is a generic smooth surface, γ(s) is
a parabolic curve, at each point e(s) is the asymptotic direc-
tion of γ(s). The following surface

Γ (s, t) = γ(s)+ te(s),

is called the aspect surface of γ(s). The union of the aspect
surfaces of all parabolic curves and the surface Σ itself is
called the aspect surface of Σ , and denoted as Ω(Σ).

Theorem 1 Suppose Σ is a generic smooth surface. The topo-
logical changes of the silhouettes only happens when the
view point ν is on the aspect surface of Σ , ν ∈Ω(Σ).

Proof It is obvious from lemma 2 and 3. ut
Suppose Σ is a generic smooth surface, two views ν0 and

ν1 are connected by a curve ν(t). Suppose the view curve
doesn’t intersect the aspect surface Ω(Σ), Γk is the silhouette
for νk, k = 0,1, then

Γk = {γk
0 ,γk

1 , · · · ,γk
n},

such that γk
i are curve segments or loops, γ0

i is homotopic to
γ1

i .

3.2 Geodesic Curvature Relation

In this section, we discover a relation between the integra-
tion of the geodesic curvature of a silhouette and the view
cone angle. To our surprise, this simple relation has not been
discussed before. Perhaps, most research focuses only on ex-
trinsic geometry.

Definition 6 Suppose Σ is a generic smooth surface. A view
ν is at a generic position, if it is not on the aspect surface,
ν 6∈Ω(Σ). Otherwise, it is at a critical position.

Fig. 5 View cones for a pear shape.

First we define the view cone surface as shown in figure
5,

Definition 7 Suppose the view ν is in a generic position for
a generic smooth surface. The distance between ν and Σ is
finite. A connected component of the silhouette is γ(s). The
view cone surface Λ(s, t) is defined

Λ(s, t) = νt + γ(s)(1− t), t ∈ [0,+∞)

The view cone surface Λ is tangent to the original sur-
face Σ at the silhouette γ . But the orientation of the silhou-
ette with respect to the visible region of Σ and the orientation
with respect to the view cone may not be consistent. More
precisely, we define an orientation of γ , such that if one trav-
els along γ with the orientation, the visible region on Σ is
always on the left hand side of γ . Then we treat γ as a curve
on the view cone Λ , sometimes the view point ν is on the
left hand side of γ , sometimes it is on the right hand side.
Then we define the following orientation function:

Definition 8 Suppose Σ is a generic smooth surface, ν is
the generic view point. γ is a silhouette with consistent ori-
entation of the visible region on Σ . The view cone surface is
Λ . Then orientation function φ is defined as

φ : γ →{+1,0,−1},φ(p) = sign < (ν− p)× γ̇,n(p) >; (4)

where n(p) is the normal to the surface Σ .

It is obvious that if φ(p) = 0, then p must be a hyperbolic
point, the view direction is along its asymptotic direction.

Lemma 4 The geodesic curvature of a point p on the sil-
houette is zero when p is hyperbolic and the view direction
is along its asymptotic direction.

Proof At the asymptotic direction, the line of sight is tan-
gent to the surface of order 3, therefore the curvature k of
the silhouette at p is zero.

k2 = k2
n + k2

g,

therefore both kn and kg vanish. ut
The view cone surface Λ(s, t) is a developable surface.

One can slice Λ(s, t) open along a straight line Λ(0, t), the
angle at the view point is called the cone angle at the view
point.



6 Dai et al.

Theorem 2 Suppose Σ is a generic smooth surface. The view
ν is not on the surface ν 6∈ Σ . A closed silhouette γ(s) is
smooth (without cusps on Σ ), where s is the arc length; the
cone angle at the view point is Φ , then
∫

γ
kg(s)ds = Φ . (5)

Proof Fix the orientation of γ such that it is consistent with
both Σ and Λ . Denote its geodesic curvature as kg(s). Be-
cause the view cone surface Λ is tangent to the original sur-
face Σ at the curve γ , the geodesic curvature of γ on Λ equals
kg(s).

On the view cone surface Γ , γ(s) bounds a topological
disk. We use Gauss-Bonnet theorem,
∫

γ
kg(s)ds+K(ν) = 2π,

where K(ν) is the discrete Gaussian curvature at the view
point (ν), K(ν) = 2π−Φ . ut

When the view point moves to infinity, then the view
cone angle Φ approaches 0, and the integration of the signed
geodesic curvature goes to 0.

4 Experimental Results

We verified our theoretical results by tracing silhouettes as
shown in figures 7, 8, and 9. The experimental results are
consistent with our theorems and corollaries.

The silhouette tracing system is implemented in C++ on
the windows platform with 3.6GHz CPU and 3.0G RAM.
The silhouette tracing is efficient enough to allow the user
to move views arbitrarily and visualize the evolution of the
silhouettes in real time.

We computed the silhouettes, aspect surfaces for spline
surfaces as shown in figure 9. When the view point crosses
the aspect surfaces, the topologies of silhouettes are changed.
From a to b, a beak-to-beak event happens, from b to e, the
silhouette disappears, from e to h, a lip event happens. If
the view is moved without touching the aspect surface, the
silhouettes are homotopic.

5 Conclusion

This paper studies the global behavior of silhouettes. All the
topological changes happen when the view is on the aspect
surface. The typical topological changes are the lip event and
the beak-to-beak event. Therefore, silhouettes of two views
are homotopic if the views can be connected by a curve with-
out crossing the aspect surface. The integration of a signed
geodesic curvature along a silhouettes is equal to the view
cone angle.

We also illustrate all possible critical events for projected
silhouettes. Finally, we built a real time silhouette visualiza-
tion.

In the future, we will design practical algorithms to inter-
polate silhouettes of different views for Non-Photo-Realistic
Rendering purposes. Furthermore, we will explore other global
properties of silhouettes.
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2. z = x3 + xy 3. z = x3 + xy2

4. z = x3− xy2 5. z = x3 + xy3

6. z = x4 + xy 7. z = x4 + x2y+ xy2

8. z = x5 + x3y+ xy 9. z = x5 + x3y− xy

10. z = x3 + xy4 11. z = x3− xy4

12. z = x4 + x2y+ xy3 13. z = x5 + xy

Fig. 6 All possible critical events for generic surfaces with arbitrary views.
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Fig. 7 Beak-to-beak critical event on a pear surface.

Fig. 8 Beak-to-beak critical event on a torus surface.

a. b. a beak-to-beak event c. d.

e. f. g. a lip event h.

Fig. 9 Evolution of silhouettes when view crosses the aspect surface of a pear shape. The arrow points to the view point.


