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Geometry

Erlangen Program - F. Klein 1872

Different geometries study the invariants under different
transformation groups.

Euclidean Geometry : Rigid motion on R
2. Distances

between arbitrary two points are the invariants.
Affine Geometry: Affine transformations. Parallelism and
barry centric coordinates are the invariants.
Real Projective Geometry: Real projective transformations.
Collinearity and cross ratios are the invariants.
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Algorithms vs. Geometries

Central Problem
Can different geometries be defined on general surfaces?
Can different planar algorithms be generalized to surface
domains directly?

The answers are yes and yes. The major theoretic tool is the
Geometric Structure.
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Main Ideas

Geometry Structure
A surface is covered by local coordinate charts. Geometric
construction is invariant during the transition from one local
coordinate to another.
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Manifold

Definition (Manifold)
A manifold is a topological space Σ covered by a set of open
sets {Uα}. A homeomorphism φα : Uα → R

n maps Uα to the
Euclidean space R

n. (Uα, φα) is called a chart of Σ, the set of
all charts {(Uα, φα)} form the atlas of Σ. Suppose Uα ∩ Uβ 6= ∅,
then

φαβ = φβ ◦ φα : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is a transition map.

Transition maps satisfy cocycle condition, suppose
Uα ∩ Uβ ∩ Uγ 6= ∅, then

φβγ ◦ φαβ = φαγ .
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(X , G) structure

Definition ((X,G) Atlas)
Suppose X is a topological space, G is the transformation
group of X . A manifold Σ with an atlas A = {(Uα, φα)} is an
(X , G) atlas if

1 φα(Uα) ⊂ X , for all charts (Uα, φα).
2 Transition maps φαβ ∈ G.
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(X,G) structure

Definition (Equivalent (X , G) atlases)

Two (X , G) atlases A1 and A2 of Σ are equivalent, if their union
is still an (X , G) atlas of Σ.

Definition ((X,G) structure)

An (X , G) structure of a manifold Σ is an equivalent class of its
(X , G) atlases.
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Geometries

M.C.Esher’s art works: Angels and Devils

Regular divisin Sphere with Angels Circle limit IV
of the plane and Devils Heaven and Hell
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Geometries defined on surfaces
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Common (X,G) structure
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Spherical Structure

X : Unit sphere S
2.

G: Rotation group.
Surfaces: Genus zero
closed surfaces; any open
surfaces.
Harmonic maps.
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Common (X,G) structure
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Affine Structure

X : Real plane R
2.

G: Affine transformation
group.
Surfaces: Genus one
closed surface and open
surfaces.
Holomorphic 1-forms.
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Common (X,G) structure
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Hyperbolic Structure

X : Hyperbolic plane H
2.

G: Möbius transformation
group.
Surfaces: with negative
Euler number.
Hyperbolic Ricci flow
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Common (X,G) structure
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Real Projective Structure
X : Real projective plane
RP

2.
G: Real projective
transformation group.
Surfaces: any surface.
Hyperbolic Ricci flow.
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Pseudo (X,G) structure
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Conformal Structure
X : Complex plane C.
G: Biholomorphic maps.
Surfaces: any surface.
Holomorphic 1-forms
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Conformal Structure
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(X,G) Invariant Algorithms

Definition ((X,G) invariant Algorithm)

Suppose X is a topological space, G is the transformation
group on X . A geometric operator Ω defined on X is (X , G)
invariant, if and only if

Ω ◦ g = g ◦ Ω,∀g ∈ G.

Examples:
Convex Hull: Projective invariant.
Voronoi Diagram: Rigid motion invariant.
Polar form : Affine invariant.
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(X,G) structure

Theorem
Suppose a manifold with an (X , G) structure, then any (X , G)
invariant algorithms can be generalized on the manifold.

Corollary (Manifold Splines - Gu,He,Qin 2005)
Spline schemes based on polar forms can be defined on a
manifold, if and only if the manifold has an affine structure.
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Planar Splines
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Parametric Affine Invariant
The spline is invariants under the affine transformations of the
knots and the parameters.
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Manifold SPlines
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φα,β = φβ ◦ φ−1
α

Idea: Geometry Structure
A mesh is covered by local
coordinate charts. Geometric
construction is invariant during
the transition from one local
coordinate to another.

Global Parameterization
Find atlas with special
transition functions.
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Topological Obstructions

Theorem (Benzécri 1959)
If a closed surface admits an affine structure, it has zero Euler
class.

Real projective structure
Real projective structure is general, it exists for all surfaces.
Real projective structure is simple, all transitions are linear
rational functions.
Real projective structure is suitable for designing manifold
spline schemes.
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Conformal Structure

Global Tensor Product Structure
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Holomorphic 1-forms

Definition (Holomorphic 1-form)
Suppose Σ is a Riemann
surface, {zα} is a local complex
parameter, a holomorphic
1-form ω has a local
representation as

ω = f (zα)dzα,

where f (zα) is a holomorphic
function.

Locally, ω is the derivative of a
holomorphic function. Globally,
it is not.
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Holomorphic 1-forms

Original Surface
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Holomorphic 1-forms

One basis holomorphic 1-
form
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Holomorphic 1-forms

Another one basis holomorphic
1-form

He, Wang, Wang, Gu, Qin Manifold T-spline



Holomorphic 1-forms

Summation of ω1 and ω2
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Holomorphic 1-forms

Difference between ω1 and ω2

He, Wang, Wang, Gu, Qin Manifold T-spline



Holomorphic 1-forms

Holomorphic 1-form induces a
conformal parameterization.
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Holomorphic 1-forms

Theorem (Holomorphic 1-forms)

All holomorphic 1-forms form a linear space Ω(Σ) which is
isomorphic to the first cohomology group H1(Σ, R).
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Affine Structure

Theorem
Holomorphic 1-form induces affine structure By integrating a
holomorphic 1-form, local coordinate charts can be established.
The charts covers the surface without the singularises, the
transition maps are translations.
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Manifold Splines SPM2005
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Manifold Powell-Sabin Spline
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Manifold Powell-Sabin Spline
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T-spline

T-spline is the superset of tensor-product B-spline and
industry-standard NURBS
Allow T-junction in parametric domain and control net
Natural hierarchical structure
Much more flexible than NURBS!
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Critical Graph
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Critical Graph and Local Charts
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Critical Graph
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Given the domain manifold M with conformal structure
φ : M → R

2, the manifold T-spline can be formulated as follows:

F(u) =

n∑

i=1

CiBi(φ(u)), u ∈ M, (1)

where Bis are basis functions and Ci = (xi , yi , zi , wi) are control
points in P

4 whose weights are wi , and whose Cartesian
coordinates are 1

wi
(xi , yi , zi ). The cartesian coordinates of

points on the surface are given by
∑n

i=1(xi , yi , zi )Bi(φ(u))∑n
i=1 wiBi(φ(u))

. (2)

Given a parameter u ∈ M, the evaluation can be carried out on
arbitrary charts covering u.
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Hierarchical Surface Reconstruction

Minimize a linear combination of interpolation and fairness
functionals,

min E = Edist + λEfair , (3)

where

Edist =

m∑

i=1

‖F(ui) − pi‖
2

and Efair in (3) is a smoothing term.
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Hierarchical Surface Reconstruction

P, Nv = 200K Conformal
structure

N1
c = 105

L1
∞

= 9.6%
N2

c = 295
L2
∞

= 5.7%
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Hierarchical Surface Reconstruction

N3
c = 950

L3
∞

= 3.8%
N4

c = 2130
L4
∞

= 2.4%

N5
c = 5087

L5
∞

= 1.3%
N6

c = 7706
L6
∞

= 0.74%
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Hierarchical Surface Reconstruction

Figure: Close-up view of the reconstructed details
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Manifold T-spline Examples
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Manifold T-spline Examples
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Statistics

Table: Statistics of test cases. Np, # of points in the polygonal mesh;
Nc , # of control points; rms, root-mean-square error; L∞, maximal
error. The execution time measures in minutes.

Object Np Nc rms L∞ Time
David 200, 000 7, 706 0.08% 0.74% 39m
Bunny 34, 000 1, 304 0.09% 0.81% 18m

Iphegenia 150, 000 9, 907 0.06% 0.46% 53m
Rocker Arm 50, 000 2, 121 0.04% 0.36% 26m

Kitten 40, 000 765 0.05% 0.44% 12m
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Future Directions

Manifold Splines with single singularity.
Manifold Splines which are polynomials everywhere with
Ck continuity.
Planar splines based on projective invariants.
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Thanks

For more information, please email to gu@cs.sunysb.edu.

Thank you!
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