Manifold T-spline

Ying He¹ Kexiang Wang² Hongyu Wang² Xianfeng David Gu² Hong Qin²

¹School of Computer Engineering Nanyang Technological University, Singapore

²Center for Visual Computing (CVC) Stony Brook University, USA

Geometric Modeling and Processing 2006

A B > A B >

Erlangen Program - F. Klein 1872

Different geometries study the invariants under different transformation groups.

- Euclidean Geometry : Rigid motion on ℝ². Distances between arbitrary two points are the invariants.
- Affine Geometry: Affine transformations. Parallelism and barry centric coordinates are the invariants.
- Real Projective Geometry: Real projective transformations. Collinearity and cross ratios are the invariants.

(日)

Erlangen Program - F. Klein 1872

Different geometries study the invariants under different transformation groups.

- Euclidean Geometry : Rigid motion on ℝ². Distances between arbitrary two points are the invariants.
- Affine Geometry: Affine transformations. Parallelism and barry centric coordinates are the invariants.
- Real Projective Geometry: Real projective transformations. Collinearity and cross ratios are the invariants.

ヘロト ヘアト ヘヨト

프 🖌 🛛 프

Central Problem

- Can different geometries be defined on general surfaces?
- Can different planar algorithms be generalized to surface domains directly?

The answers are yes and yes. The major theoretic tool is the *Geometric Structure.*

イロン イ理 とく ヨン トロン

э

Central Problem

- Can different geometries be defined on general surfaces?
- Can different planar algorithms be generalized to surface domains directly?

The answers are yes and yes. The major theoretic tool is the *Geometric Structure*.

ヘロト ヘアト ヘヨト

Geometry Structure

A surface is covered by local coordinate charts. Geometric construction is invariant during the transition from one local coordinate to another.

ヘロト ヘアト ヘヨト

프 🖌 🖉

Manifold

Definition (Manifold)

A manifold is a topological space Σ covered by a set of open sets $\{U_{\alpha}\}$. A homeomorphism $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n} . $(U_{\alpha}, \phi_{\alpha})$ is called a chart of Σ , the set of all charts $\{(U_{\alpha}, \phi_{\alpha})\}$ form the atlas of Σ . Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a transition map.

Transition maps satisfy cocycle condition, suppose $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$, then

$$\phi_{\beta\gamma} \circ \phi_{\alpha\beta} = \phi_{\alpha\gamma}.$$

イロト 不得 とくほ とくほ とう

э.

Definition ((X,G) Atlas)

Suppose *X* is a topological space, *G* is the transformation group of *X*. A manifold Σ with an atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ is an (X, G) atlas if

- $\phi_{\alpha}(U_{\alpha}) \subset X$, for all charts $(U_{\alpha}, \phi_{\alpha})$.
- 2 Transition maps $\phi_{\alpha\beta} \in G$.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Definition (Equivalent (X, G) atlases)

Two (X, G) atlases A_1 and A_2 of Σ are *equivalent*, if their union is still an (X, G) atlas of Σ .

Definition ((X,G) structure)

An (X, G) structure of a manifold Σ is an equivalent class of its (X, G) atlases.

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 ● のへの

Definition (Equivalent (X, G) atlases)

Two (X, G) atlases A_1 and A_2 of Σ are *equivalent*, if their union is still an (X, G) atlas of Σ .

Definition ((X,G) structure)

An (X, G) structure of a manifold Σ is an equivalent class of its (X, G) atlases.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

M.C.Esher's art works: Angels and Devils

Regular divisin of the plane

Sphere with Angels and Devils

Circle limit IV Heaven and Hell

< < >> < </p>

Geometries defined on surfaces

Spherical Structure

- X: Unit sphere \mathbb{S}^2 .
- G: Rotation group.
- Surfaces: Genus zero closed surfaces; any open surfaces.

A B > A B >

Harmonic maps.

Spherical Structure

- X: Unit sphere \mathbb{S}^2 .
- G: Rotation group.
- Surfaces: Genus zero closed surfaces; any open surfaces.
- Harmonic maps.

Affine Structure

- X: Real plane \mathbb{R}^2 .
- *G*: Affine transformation group.
- Surfaces: Genus one closed surface and open surfaces.
- Holomorphic 1-forms.

Affine Structure

- X: Real plane \mathbb{R}^2 .
- G: Affine transformation group.
- Surfaces: Genus one closed surface and open surfaces.
- Holomorphic 1-forms.

Hyperbolic Structure

- X: Hyperbolic plane \mathbb{H}^2 .
- G: Möbius transformation group.
- Surfaces: with negative Euler number.

A B > A B >

• Hyperbolic Ricci flow

Hyperbolic Structure

- X: Hyperbolic plane \mathbb{H}^2 .
- G: Möbius transformation group.
- Surfaces: with negative Euler number.
- Hyperbolic Ricci flow

Real Projective Structure

- *G*: Real projective transformation group.
- Surfaces: any surface.
- Hyperbolic Ricci flow.

A B > A B >

Real Projective Structure

- G: Real projective transformation group.
- Surfaces: any surface.
- Hyperbolic Ricci flow.

• • • • • • • • • •

Pseudo (X,G) structure

Conformal Structure

- X: Complex plane \mathbb{C} .
- G: Biholomorphic maps.
- Surfaces: any surface.
- Holomorphic 1-forms

Pseudo (X,G) structure

Conformal Structure

- X: Complex plane \mathbb{C} .
- G: Biholomorphic maps.

< 17 ▶

- Surfaces: any surface.
- Holomorphic 1-forms

Conformal Structure

э

< □ > < 同 > < 回 > <

Definition ((X,G) invariant Algorithm)

Suppose X is a topological space, G is the transformation group on X. A geometric operator Ω defined on X is (X, G) invariant, if and only if

$$\Omega \circ \boldsymbol{g} = \boldsymbol{g} \circ \Omega, \forall \boldsymbol{g} \in \boldsymbol{G}.$$

Examples:

- Convex Hull: Projective invariant.
- Voronoi Diagram: Rigid motion invariant.
- Polar form : Affine invariant.

< ロ > < 同 > < 回 > .

э

Theorem

Suppose a manifold with an (X, G) structure, then any (X, G) invariant algorithms can be generalized on the manifold.

Corollary (Manifold Splines - Gu, He, Qin 2005)

Spline schemes based on polar forms can be defined on a manifold, if and only if the manifold has an affine structure.

<ロト < 同ト < 回ト < 回ト = 三

Planar Splines

Parametric Affine Invariant

The spline is invariants under the affine transformations of the knots and the parameters.

(日)

э

ъ

Manifold SPlines

Idea: Geometry Structure

A mesh is covered by local coordinate charts. Geometric construction is invariant during the transition from one local coordinate to another.

イロト イポト イヨト イヨト

Global Parameterization

Find atlas with special transition functions.

Manifold SPlines

Idea: Geometry Structure

A mesh is covered by local coordinate charts. Geometric construction is invariant during the transition from one local coordinate to another.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Global Parameterization

Find atlas with special transition functions.

Theorem (Benzécri 1959)

If a closed surface admits an affine structure, it has zero Euler class.

Real projective structure

- Real projective structure is general, it exists for all surfaces.
- Real projective structure is simple, all transitions are linear rational functions.
- Real projective structure is suitable for designing manifold spline schemes.

イロン イ理 とく ヨン トロン

Theorem (Benzécri 1959)

If a closed surface admits an affine structure, it has zero Euler class.

Real projective structure

- Real projective structure is general, it exists for all surfaces.
- Real projective structure is simple, all transitions are linear rational functions.
- Real projective structure is suitable for designing manifold spline schemes.

(日)

三 🖌 👘

Global Tensor Product Structure

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

Definition (Holomorphic 1-form)

Suppose Σ is a Riemann surface, $\{z_{\alpha}\}$ is a local complex parameter, a holomorphic 1-form ω has a local representation as

 $\omega = f(z_{\alpha}) dz_{\alpha},$

where $f(z_{\alpha})$ is a holomorphic function. PSfrag replacements

Locally, ω is the derivative of a **T**(**P**) holomorphic function. Globall**y**, (**g**(**P**)) it is not.

Holomorphic 1-forms

ヘロト 人間 とくほとく ほとう

₹ 990

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

Holomorphic 1-forms

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

Holomorphic 1-form induces a conformal parameterization.

ヘロト ヘ戸ト ヘヨト ヘ

문 문 문

Holomorphic 1-form induces a conformal parameterization.

ヘロト ヘアト ヘヨト ヘ

문 문 문

Theorem (Holomorphic 1-forms)

All holomorphic 1-forms form a linear space $\Omega(\Sigma)$ which is isomorphic to the first cohomology group $H^1(\Sigma, \mathbb{R})$.

イロト 不得 トイヨト イヨト

Theorem

Holomorphic 1-form induces affine structure By integrating a holomorphic 1-form, local coordinate charts can be established. The charts covers the surface without the singularises, the transition maps are translations.

Manifold Splines SPM2005

He, Wang, Wang, Gu, Qin Manifold T-spline

・ロン・(理)・ ・ ヨン・ モン・

Manifold Powell-Sabin Spline

He, Wang, Wang, Gu, Qin Manifold T-spline

ヘロト 人間 とくほとう ほとう

Manifold Powell-Sabin Spline

He, Wang, Wang, Gu, Qin Manifold T-spline

・ロト ・聞 と ・ ヨ と ・ ヨ と …

T-spline

- T-spline is the superset of tensor-product B-spline and industry-standard NURBS
- Allow T-junction in parametric domain and control net
- Natural hierarchical structure
- Much more flexible than NURBS!

ヘロト ヘアト ヘヨト

프 > 프

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Critical Graph and Local Charts

æ

≣⇒ -

イロト イポト イヨト イ

Critical Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Given the domain manifold *M* with conformal structure $\phi: M \to \mathbb{R}^2$, the manifold T-spline can be formulated as follows:

$$\mathbf{F}(\mathbf{u}) = \sum_{i=1}^{n} \mathbf{C}_{i} B_{i}(\phi(\mathbf{u})), \ \mathbf{u} \in M,$$
(1)

where B_i s are basis functions and $\mathbf{C}_i = (x_i, y_i, z_i, w_i)$ are control points in \mathbb{P}^4 whose weights are w_i , and whose Cartesian coordinates are $\frac{1}{w_i}(x_i, y_i, z_i)$. The cartesian coordinates of points on the surface are given by

$$\frac{\sum_{i=1}^{n} (x_i, y_i, z_i) B_i(\phi(\mathbf{u}))}{\sum_{i=1}^{n} w_i B_i(\phi(\mathbf{u}))}.$$
(2)

→ 同 → → 三 →

Given a parameter $\mathbf{u} \in M$, the evaluation can be carried out on arbitrary charts covering \mathbf{u} .

Minimize a linear combination of interpolation and fairness functionals,

$$\min E = E_{dist} + \lambda E_{fair}, \qquad (3)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

where

$$E_{dist} = \sum_{i=1}^m \|\mathbf{F}(\mathbf{u}_i) - \mathbf{p}_i\|^2$$

and E_{fair} in (3) is a smoothing term.

Hierarchical Surface Reconstruction

▲ロト ▲圖ト ▲ ヨト ▲ ヨト -

э

Hierarchical Surface Reconstruction

・ロン・(理)・ ・ ヨン・ モン・

э

Hierarchical Surface Reconstruction

Figure: Close-up view of the reconstructed details

A B > A B >

포 🛌 표

He, Wang, Wang, Gu, Qin Manifold T-spline

・ロト ・聞 と ・ ヨ と ・ ヨ と …

He, Wang, Wang, Gu, Qin Manifold T-spline

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

He, Wang, Wang, Gu, Qin Manifold T-spline

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

He, Wang, Wang, Gu, Qin

・ロン・(理)・ ・ ヨン・ モン・

He, Wang, Wang, Gu, Qin

・ロン ・ 四 と ・ ヨ と ・ ヨ と …

Table: Statistics of test cases. N_{ρ} , # of points in the polygonal mesh; N_c , # of control points; *rms*, root-mean-square error; L_{∞} , maximal error. The execution time measures in minutes.

Object	Np	N _c	rms	L_{∞}	Time
David	200,000	7,706	0.08%	0.74%	39m
Bunny	34,000	1,304	0.09%	0.81%	18m
Iphegenia	150,000	9,907	0.06%	0.46%	53m
Rocker Arm	50,000	2,121	0.04%	0.36%	26m
Kitten	40,000	765	0.05%	0.44%	12m

- Manifold Splines with single singularity.
- Manifold Splines which are polynomials everywhere with *C^k* continuity.
- Planar splines based on projective invariants.

э

For more information, please email to gu@cs.sunysb.edu.

(日)

э

Thank you!

He, Wang, Wang, Gu, Qin Manifold T-spline