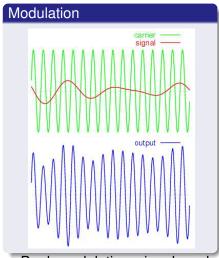
Xianfeng (David) Gu¹ Song Zhang² Liangjun Zhang³ Peisen Huang¹ Ralph Martin⁴ Shing-Tung Yau²

¹Engineering School Stony Brook University

²Mathematics Department Harvard University

³Computer Science Department North Carolina University

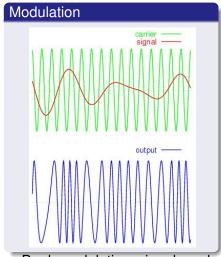

⁴Computer Science Department Cardiff University

ACM Solid and Physical Modeling Symposium, 2006

Radio Modulation

Carrier wave $c(t) = C \sin(\omega_c t + \phi_c)$, Signal m(t)

Amplitude Modulation


Add signal to the amplitude,

$$y(t) = (C + m(t)) \sin(\omega_c t + \phi_c).$$

By demodulation, signal can be extracted from the modulated wave.

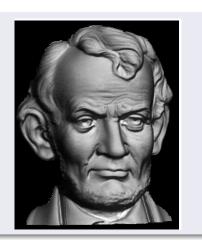
Radio Modulation

Carrier wave $c(t) = C \sin(\omega_c t + \phi_c)$, Signal m(t)

Phase Modulation

Add signal to the phase,

$$y(t) = C\sin(\omega_c t + \phi_c + m(t)).$$


By demodulation, signal can be extracted from the modulated wave.

Key Idea

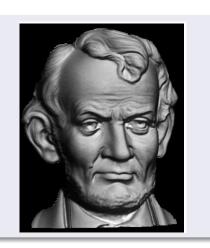
Modulate geometry and shading with spacial waves.


- Signal is both the geometry and the shading of a smooth surface.
- Carrier wave is the spacial carrier wave.
- Shading is encoded by amplitude modulation.
- Geometry is encoded by phase modulation.

Holoimage: Represent both shading and geometry by a single image.

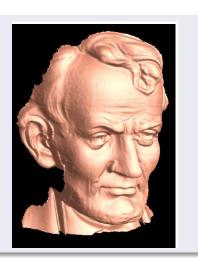
Holoimage

A conventional image only records amplitude information.

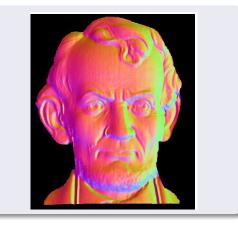

Holoimage

A holoimage records both amplitude and phase information.

Holoimage


Phase map.

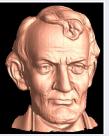
Holoimage


Intensity Map,

$$I(\mathbf{r}) = |a(\mathbf{r})|^2.$$

Holoimage

Geometry can be deduced from the phase map.


Holoimage

Normal field can be deduced from the geometry.

Comparison to Previous Works

- Comparison to Geometry image
 - Holoimage encodes both geometry and shading;
 - Holoimage can be captured from real life in real time;
 - Holoimage requires less bits for each pixel;
 - Holoimage can not represent the whole surface.
- Comparison to other geometric data acquisition methods:
 - Simple devices with higher acquisition speed;
 - Holoimage uses two wave length phase unwrapping, it is much simpler and can be implemented on GPU;
 - Difficult for glossy or dark surfaces.

Wave Optics

Wave Equation

Light is a eletromagnetic field. Let $\mathbf{r} = (x, y, z)$ represent a point in the space, t represent the time, $u(\mathbf{r}, t)$ is the electric field instensity at the point \mathbf{r} and time t, then wave equation is

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0.$$

where

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

c is the light speed. Wave equation is linear.

Wave Optics

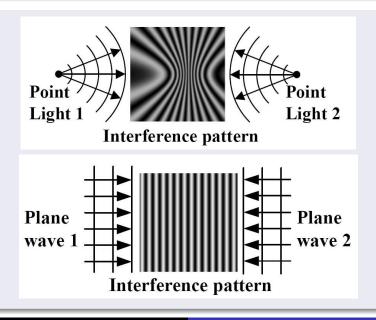
Wave

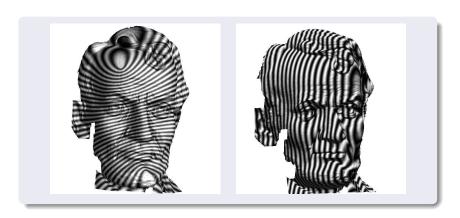
The wave function of a monochromatic wave:

$$u(\mathbf{r},t) = a(\mathbf{r})\cos[2\pi v t + \phi(\mathbf{r})],$$

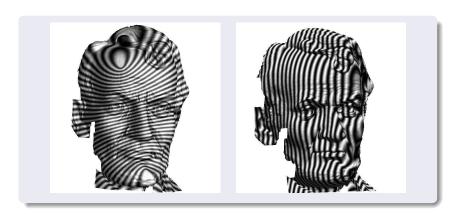
- Amplitude, intensity
- Frequency, color
- Phase, geometry

Interference

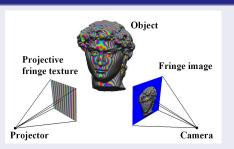

Complex wave function


$$\Psi(\mathbf{r},t)=a(\mathbf{r})e^{i\phi(\mathbf{r})}e^{i2\pi\nu t}.$$

Interference wave function

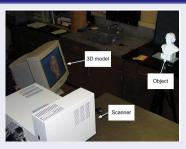

$$\Psi(\mathbf{r},t) = \Psi_1(\mathbf{r},t) + \Psi_2(\mathbf{r},t)$$

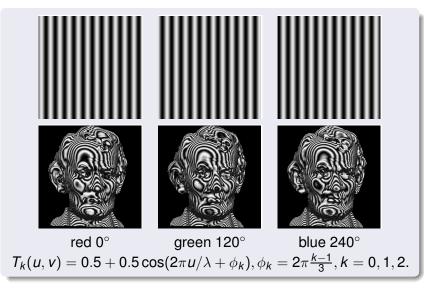
intensity $I(\mathbf{r}, t) = |\Psi(\mathbf{r}, t)|^2$.


Idea The distortion of the fringe pattern conveys the geometric information of the surface.

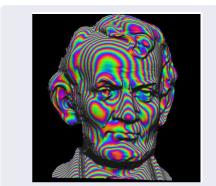
Idea The distortion of the fringe pattern conveys the geometric information of the surface.

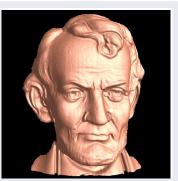
System Set up


Set up


- A digital projector and a camera.
- Project sinusoidal fringe pattern.

System Set up


Projector, Camera


Digital Fringe Pattern

Holoimage Synthesis

Holoimage

Shading Geometry

Shading Model

Shading model:

$$I_k(x,y) = a(x,y) + r(x,y)\cos[\psi(x,y) + 2\pi x\cos\theta/\lambda + \phi_k]$$

much more general than diffuse model.

x, y: image coordinates

I: Intensity

a: ambient light intensity

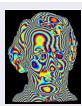
r: reflectivity, BRDF

 ψ : phase shifting

 θ : projection angle

 ϕ_k : $2\pi(k-1)/3$

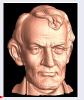
Reconstruction


Reconstruction Formula

$$\psi = \tan^{-1} \sqrt{3} \frac{I_0 - I_2}{2I_1 - I_0 - I_2}$$

$$r = 2\sqrt{3(I_0 - I_2)^2 + (2I_1 - I_0 - I_2)^2}$$

$$a = (I_0 + I_1 + I_2)/3 - r/2.$$

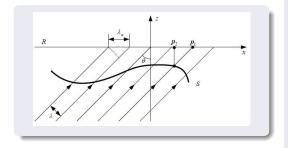

Reconstructed shading a + r/2.

Reconstruct Depth from Phase

Challenges

Phase Ambiguity The phase reconstructed is from $[-\pi, \pi)$, the reconstructed phase differs from the real phase by $2m\pi$, m is an integer.

Reconstruct Depth from Phase



Challenges

Phase Ambiguity The phase reconstructed is from $[-\pi,\pi)$, the reconstructed phase differs from the real phase by $2m\pi$, m is an integer.

Reconstruct Depth

x: image coordinates

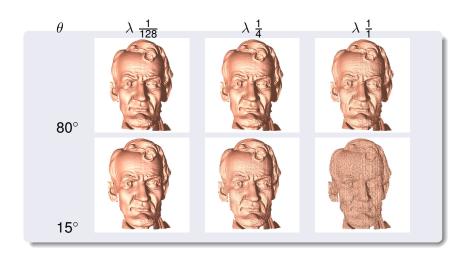
z: depth along optical axis

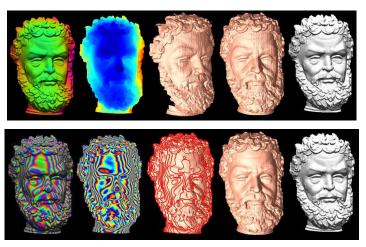
S: Surface z(x, y)


 λ : fringe period

 θ : projection angle

$$z(x,y) = \frac{\psi(x,y)\lambda}{2\pi\sin\theta}$$


Phase Unwrap

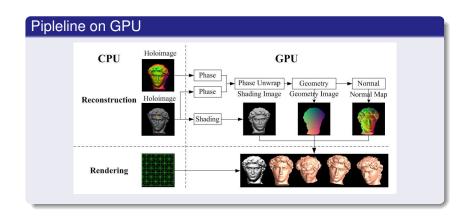

Wrapped geometry. Unwrapped geometry.

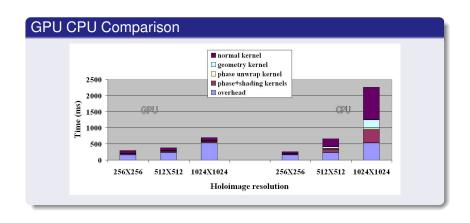
Reconstruction Error Analysis

Two wave length phase unwrapping Demo

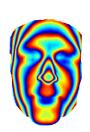
Reconstructed SurfaceMesh Movie

Holoimage Synthesis

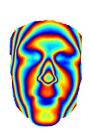




Geometry



Grayscale Holoimage


Entropy

- Holoimage and geometric surface have the same entropy.
- Conventional image entropy is inappropriate.
- Need to develop new concept on entropy.

Grayscale Holoimage

Entropy

- Holoimage and geometric surface have the same entropy.
- Conventional image entropy is inappropriate.
- Need to develop new concept on entropy.

Grayscale Holoimage

The image intensity is modeled as

$$I(x,y) = a(x,y) + r(x,y)\cos(\psi(x,y) + 2\pi fx)$$

namely

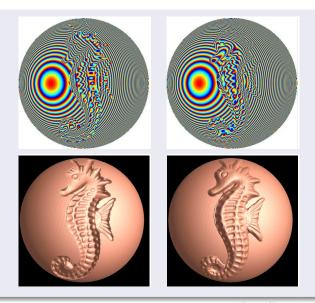
$$I(x, y) = a(x, y) + c(x, y)e^{i2\pi fx} + c^*(x, y)e^{-i2\pi fx},$$

where $c(x, y) = r(x, y)e^{i\psi(x, y)}/2$, c^* is the complex conjugate of c, f is the spacial frequency of the carrier wave.

A one-dimensional Fourier transformation of I(x, y) produces

$$\tilde{I}(\zeta, y) = \tilde{a}(\zeta, y) + \tilde{c}(\zeta - f, y) + \tilde{c}^*(\zeta + f, y),$$

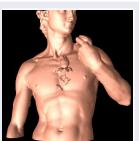
where indicate the Fourier transform. If f $\tilde{c}(\zeta - f, y)$ can be obtained by bandpass filter.


Embossing, Engraving, Geometric Texture

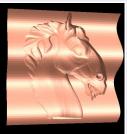
Operations between surfaces

By manipulating holoimages, we can compute the sum and difference between their phase maps, then we can accomplish the following geometric operations,

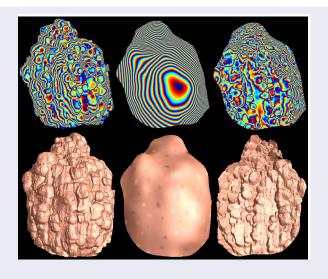
- Embossing
- Engraving
- Extract Geometric Texture
- Measure geometric deformation

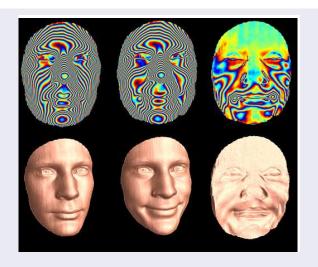

Embossing and Engraving

Embossing and Engraving



Embossing and Engraving



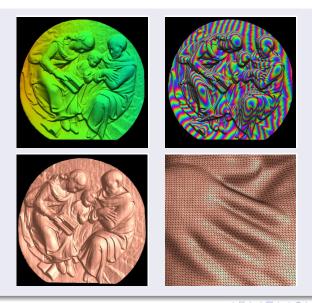


Geometric Texture Extraction

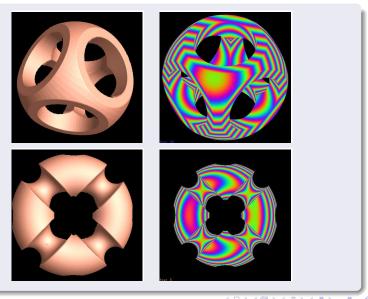
original surface, smoothed surface, geometric texture.

Expression Extraction

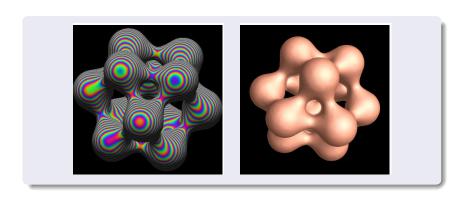
calm face, smiling face, the smile without a face

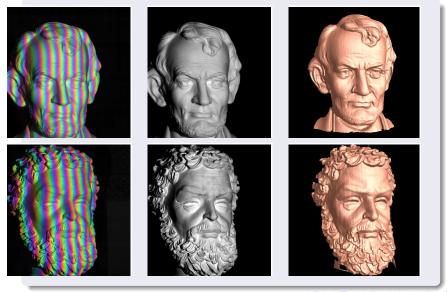

Meshing and Remeshing

Geometric Surface Meshing and Remeshing


All geometric representations, if they can be rendered, they can be meshed and remeshed using holoimage.

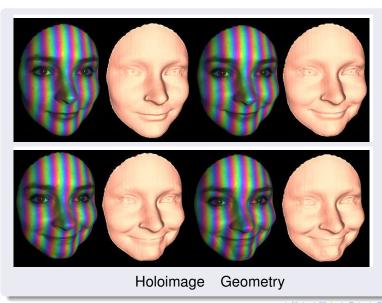
- Point cloud
- Triangle soup
- Implicit surface
- CSG model

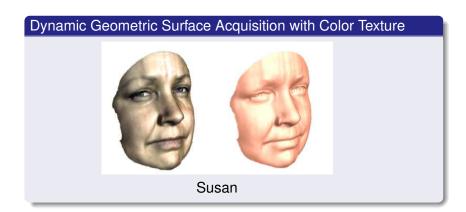

Point Cloud Meshing


CSG Model Meshing

Implicit Model Meshing

Static Geometric Data Acquisition


Static Geometric Data Acquisition


Static Geometric Data Acquisition

Dynamic Geometric Data Acquisition

Dynamic Geometric Data Acquisition

Summary

- A novel geometric representation, holoimage. A holoimage encodes both amplitude and phase information, therefore records shading and geometry.
- Holoimage can be captured from real life by simple setups for high speed geometric data acquisition.
- Holoimage can be rendered using graphics hardware efficiently.
- 4 Holoimage can be utilized for many geometric processing tasks.

Thanks

For more information, please email to gu@cs.sunysb.edu.

Thank you!