
Brain Surface Conformal Parameterization with
Algebraic Functions

Abstract. In medical imaging, parameterized 3D surface models are
of great interest for anatomical modeling and visualization, statistical
comparisons of anatomy, and surface-based registration and signal pro-
cessing. Here we introduce a parameterization method based on algebraic
functions. By solving the Yamabe equation with the Ricci flow method,
we can conformally map a brain surface to a multi-hole disk. The re-
sulting parameterizations do not have any singularities and are intrinsic
and stable. To illustrate the technique, we computed parameterizations
of several types of anatomical surfaces in MRI scans of the brain, in-
cluding the hippocampi and the cerebral cortices with various landmark
curves labeled. For the cerebral cortical surfaces, we show the parameter-
ization results are consistent with selected landmark curves and can be
matched to each other using constrained harmonic maps. Unlike previous
planar conformal parameterization methods, our algorithm does not in-
troduce any singularity points. It also offers a method to explicitly match
landmark curves between anatomical surfaces such as the cortex, and to
compute conformal invariants for statistical comparisons of anatomy.

1 Introduction

Surface-based modeling is valuable in brain imaging to help analyze anatomical
shape, to statistically combine or compare 3D anatomical models across subjects,
and to map and compare functional imaging parameters localized on anatomical
surfaces. Parameterization of these surface models involves computing a smooth
(differentiable) one-to-one mapping of regular 2D coordinate grids onto the 3D
surfaces, so that numerical quantities can be computed easily from the result-
ing models [1, 2]. The mesh-based work contrasts with implicit methods, which
typically define a surface as the level set of a higher-dimensional function [3, 4].
Relative to level set methods, surface meshes can allow regular 2D grids to be
imposed on complex structures, transforming a difficult 3D problem into a 2D
planar problem, with simpler data structures, discretization schemes, and rapid
data access and navigation. Here we present a new method to parameterize brain
surfaces based on algebraic functions. We find a planar conformal parameteri-
zation without any singularities by solving the Yamabe equation with the Ricci
flow method. This method can compute conformal invariants of brain surfaces
which can be used to compare and classify brain surface structures. Compared
with previous brain conformal parametrization work [5, 6], the parameterization
provided by our algorithm does not have any zero points so there is less area
distortion. By solving a harmonic map in the parameter domain, our algorithm
provides smooth correspondence fields for matching of different brain surfaces
matching while explicitly matching labeled sets of landmark curves.



1.1 Previous Work

Brain surface parameterization has been studied intensively. Schwartz et al. [7],
and Timsari and Leahy [8] computed quasi-isometric flat maps of the cerebral
cortex. Drury et al. [9] presented a multiresolution method for flattening the cere-
bral cortex [10]. Hurdal and Stephenson [11] report a discrete mapping approach
that uses circle packings to produce “flattened” images of cortical surfaces on
the sphere, the Euclidean plane, and the hyperbolic plane. The obtained maps
are quasi-conformal approximations of classical conformal maps. Haker et al. [12]
implement a finite element approximation for parameterizing brain surfaces via
conformal mappings. They select a point on the cortex to map to the north pole
of the Riemann sphere and conformally mapped the rest of the cortical surface to
the complex plane by stereographic projection of the Riemann sphere to the com-
plex plane. Gu et al. [13] propose a method to find a unique conformal mapping
between any two genus zero manifolds by minimizing the harmonic energy of the
map. They demonstrate this method by conformally mapping a cortical surface
to a sphere. Ju et al. [14] present a least squares conformal mapping method
for cortical surface flattening. Joshi et al. [15] propose a scheme to parameterize
the surface of the cerebral cortex by minimizing an energy functional in the pth

norm. Wang et al. [5, 6] have used holomorphic 1-forms to parameterize anatom-
ical surfaces with complex (possibly branching) topology. Recently, Ju et al. [16]
reported the results of a quantitative comparison of FreeSurfer [17], CirclePack,
and least squares conformal mapping (LSCM) with respect to geometric distor-
tion and computational speed. They found that FreeSurfer performs best with
respect to a global measurement of metric distortion, whereas LSCM performs
best with respect to angular distortion and best in all but one case with a lo-
cal measurement of metric distortion. Among the three approaches, FreeSurfer
provides a more homogeneous distribution of metric distortion across the whole
cortex than CirclePack and LSCM. LSCM is the most computationally efficient
algorithm for generating spherical maps, while CirclePack is extremely fast for
generating planar maps from patches.

1.2 Theoretical Background and Definitions

Given a multi-hole punctured surface, it is conformally equivalent to a special
type of algebraic function

ω2 = (z − z0)(z − z1)(z − z2)...(z − z2g+1).

where z0, z1, ..., z2g+1 ∈ R+ are 2g + 2 real numbers [18]. On the other hand,
an algebraic function is conformally equivalent to a multi-hole punctured disk.
Thus, for any genus zero surface with punctures, it can be shown that there exists
a multi-hole punctured disk and a conformal map between the surface and the
punctured disk. The disk is not unique, but any two such kind of punctured
disks can be mapped to each other by a Möbius transformation τ of the form

τ =
az + b

cz + d
, a, b, c, d ∈ R, z ∈ C, ad− bc = 1



The challenge of computing conformal maps between a punctured sphere
to a multi-hole punctured disk lies in the fact that the range surface is under-
determined. Although it is clear that the boundaries of the domain surface will
be mapped to circles on the plane, it is totally unknown what the centers and
radii of these circles should be. These parameters need to be estimated during
the computation process.

In the following, we formulate the conformal mapping problem in rigorous
terms. Suppose M is a genus zero surface, with n + 1 holes, N is a n-hole
punctured disk, φ : M → N is a conformal map between them, g is the metric
tensor on M , usually g is induced by the ambient Euclidean metric of R3.

From the theory of complex geometry, the problem of finding a conformal
map, φ : M → N , is equivalent to finding a function u : M → R, such that g̃ =
e2ug is the metric on M induced by φ, which satisfies the Yamabe equation [19].





K̃ = 0
∆u−K + e2uK̃ = 0
kg̃|∂M = const

(1)

Basically, the domain surface M is conformally deformed such that the Gaus-
sian curvature of the interior points is zero everywhere and the boundaries be-
come circles.

We can solve Equation 1 with the Ricci flow [20],

du(t)
dt

= K̃ −K(t) (2)

where K̃ is the target Gaussian curvature and K is the Gaussian curvature at
time t. We study a conformal deformation that deforms the surface accordingly
until the maximal Gaussian curvature error maxt|K̃ −K(t)| falls below a given
threshold.

2 Algorithms

In section 2.1, we explain the algorithm details to conformally map an open
boundary genus zero surface to a multi-hole punctured disk. In section 2.2, we
explain how to match two open boundary genus zero surfaces via their conformal
parameterizations using multi-hole punctured disks.

2.1 Conformal Mapping to a Multi-hole Punctured Disk

The algorithm is equivalent solving Equation 1 that describes a conformal de-
formation. We use the Ricci flow method [20] to solve this equation.

1. Computing initial radii γi for each vertex, and angle φij for each edge eij ,
such that

lij = γ2
i + γ2

j − 2γiγjcosφij



2. Compute boundary loops, denoted as Γ0, Γ1, ..., Γn. The Γ0 is the exterior
boundary.

3. Set target Gaussian curvature of each interior vertex to be zero,

K̃i = 0

.
4. For any vertex on vk ∈ Γ0, set its target Gaussian curvature to

K̃k =
2π

|Γi|
where |Γ0| denotes the number of vertices in Γ0.

5. For any vertex on vk ∈ Γi, i 6= 0, set its target Gaussian curvature to

K̃k = − 2π

|Γi|
where |Γi| denotes the number of vertices in Γi.

6. Compute the Ricci flow

dγj

dt
= −(Kj(t)− K̃j)

7. Update the target Gaussian curvature for boundary vertices, suppose vk ∈
Γi, suppose ek−1,k, ek,k+1 ∈ Γi, then let

Si = Σepq∈Γi lpq,

then
K̃k =

lk−1,k + lk,k+1

2Si
× Ci,

where Ci is

Ci =
{

2π, i = 0
−2π, i 6= 0

8. Repeat step 6 and 7 until the maximal Gaussian curvature error

maxi|Ki − K̃i|
is less than a given threshold.

2.2 Surface Matching with Punctured Disk Parameterization

After the computation of conformal parameterizations for open boundary genus
zero surfaces with a multiple-hole punctured disk, we can compute the direct
correspondence of two surfaces by solving a constrained harmonic mapping prob-
lem [6]. Given two surfaces S1 and S2, their punctured disk parameterizations
are τ1 : S1 → R2 and τ2 : S2 → R2, we want to compute a map, φ : S1 → S2.
Instead of directly computing of φ, we can easily find a harmonic map between
the parameter domains. We look for a harmonic map, τ : R2 → R2, such that
τ ◦ τ1(S1) = τ2(S2), τ ◦ τ1(∂S1) = τ2(∂S2), ∆τ = 0. Then the map φ can be
obtained by φ = τ1 ◦ τ ◦ τ−1

2 . Since τ is a harmonic map while τ1 and τ2 are
conformal map, the resulting φ is a harmonic map.



3 Experimental Results

We applied our algorithms to parameterize various anatomic surfaces extracted
from 3D MRI scans of the brain. We tested our algorithm on a left hippocam-
pal surface, a structure in the medial temporal lobe of the brain. The original
surface is shown in Figure 1(a). We leave two holes on the front and back of
the hippocampal surface, representing its anterior junction with the amygdala,
and its posterior limit as it turns into the white matter of the fornix. It can
be logically represented as an open boundary genus one surface, i.e., a cylinder
(note that spherical harmonic representations would also be possible, if ends
were closed [21]). Its conformal map to a 1-hole disk is illustrated in Figure 1(d).
For the two boundaries of the hippocampal surface, one boundary is mapped to
the exterior circle and the other is mapped to the internal circle.

We also applied our algorithm to parameterize the surface of the cerebral
cortex. We tested our algorithm with different landmark sets. Figure 1(b) and
(c) show two cortical surfaces with two central sulci on two hemispheres. After
we cut the cortical surface open along the two central sulci, the cortical surface
is topologically equivalent to an open boundary genus one surface. Figure 1(e)
and (f) show their conformal parameterization in a 1-hole disk. One of the two
landmark curves is mapped to the exterior circular boundary and the other is
mapped to the inner circular boundary. The circle center positions and radii are
two conformal invariants of the cortical surfaces studied. For example, the inner
circle centers of (e) and (f) are in the origins but the radius of (e) is 0.48 while
the inner circle radius of (f) is 0.53. These parameters may be used as a shape
index to classify and compare different cortical surfaces.

Figure 1(g) and (h) show a left hemisphere cortex with 5 landmarks labeled
(thick lines show the precentral sulcus, the superior temporal sulcus, the intra-
parietal sulcus, the anterior segment of cingulate sulcus and the corpus callosum
boundary at the midsagittal plane). After cutting along these landmark curves,
the cortical surface becomes an open boundary genus-4 surface. Our algorithm
conformally maps the surface to a 4-hole disk (Figure 1(j)). The boundary circle
of the corpus callosum is mapped to the exterior circular disk boundary and
other four landmark curves are mapped to the disk inner circle boundaries.

Figure 2 illustrate how our algorithm is used to match two left hemisphere
cortical surfaces. As shown in Figure 2(a), (b), (d) and (e), we selected four ma-
jor landmark curves on two different cortices, to illustrate the approach (thick
lines show the precentral and postcentral sulci, the superior temporal sulcus, and
the corpus callosum boundary at the midsagittal plane). By cutting the surface
along these landmark curves, we obtain two genus-3 open-boundary surfaces.
Figure 2(c) and (f) show their conformal map to a 3-hole disk. Because of the
shape difference between two cortices, the centers and the radii of inner circles
are different. By computing a constrained harmonic map from (f) to (c), we have
a new parameterization (Figure 2(g)) of the cortex in the second row ((d) and
(e)). The inner circle centers and radii of the new parameterization are identical
to the parameterization in (c). With the new 3-hole disk as the canonical space,
we can easily compute a direct surface correspondence between two surfaces (a)



and (d). Because the inner circles and exterior circle are identical for two pa-
rameterizations, the landmark curves lying in the surface are exactly matched to
each other. Figure 2 (h)-(m) illustrate the direct surface correspondence by mor-
phing between these two cortical surfaces. Figure 2(h) and (m) and surfaces (a)
and (d) respectively, viewed from a different viewpoint. (j), (k) and (l) are the in-
termediate shapes when linearly interpolating the surface correspondence vector
field between (h) and (m). We can see that although surface shape changes sub-
stantially from (h) to (m), the relative locations of the three landmarks remain
the same. This verifies that our algorithm provides a method to perform surface
matching, while explicitly matching sulcal curves or other landmarks lying in the
surface. Note although some previous approaches [5, 6] had the same motivation
as ours, because their work introduced singularities at the so-called zero points,
their surface matching results have some errors and inevitable distortions in the
areas around the zero points. Our approach provides an improved method for
global surface matching with exact landmark matching capability.

4 Conclusion and Future Work

In this paper, we present a brain surface conformal parameterization method
based on algebraic functions. With the Ricci flow method, we solve the Yam-
abe equation to obtain a conformal deformation that conformally maps open
boundary surfaces to multi-hole disk. We tested our algorithm on the hippocam-
pus and surface models of the cerebral cortex. Used as a canonical space, the
multi-hole disk conformal parameterization provides a brain surface matching
approach that can exactly match landmark curves lying on the surfaces. Com-
pared with other work which conformally maps brain surfaces to parallelograms,
our algorithm offers some advantages because it does not introduce any singular
points. Our future work will include algebraic function computation based on
the multi-hole disk parameterization and empirical application of these Yamabe
flow concepts to medical applications in computational anatomy.
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Fig. 1. Illustrates conformal maps from hippocampal and cortical surfaces to
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curves on each of them. After cutting along the landmark curves, each of these
two surfaces can be conformally mapped to a 1-hole disk ((e) and (f)). The radii
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Fig. 2. Illustrates direct surface matching between two different cerebral cortical
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same landmarks labeled and (f) shows its conformal map to a 3-hole disk. (g) is
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(f) to (c) is built. (h)-(m) show a morphing sequence from surface (a)-(b) to sur-
face (d)-(e). (j)-(l) are the intermediate shapes when we linearly interpolate two
surfaces (h) and (m). Although the cortical surface shape changes considerably,
the relative positions of the selected landmark curves do not change.
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