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Abstract

In geometric modeling and processing, computer graphics, smooth sur-

faces are approximated by discrete triangular meshes reconstructed from

sample points on the surface. A fundamental problem is to design rig-

orous algorithms to guarantee the geometric approximation accuracy by

controlling the sampling density.

This theoretic work gives explicit formula to the bounds of Hausdorff

distance, normal distance and Riemannian metric distortion between the

smooth surface and the discrete mesh in terms of principle curvature and

the radii of geodesic circum-circle of the triangles. These formula are

applied to design sampling density.

Furthermore, we prove the meshes induced from the Delaunay trian-

gulations of the dense samples on a smooth surface are convergent to the

smooth surface under both Hausdorff distance and normal fields. The

Riemannian metrics and the Laplace-Beltrami operators on the meshes

are also convergent. These theoretic results lay down the foundation to

guarantee the approximation accuracy of many algorithms in geometric

modeling and processing.

1 Introduction

In geometric modeling and processing, computer graphics, computer vision and
geometric modeling, smooth surfaces are often approximated by polygonal sur-
faces, which are reconstructed from a set of sample points. With the devel-
opment of data acquisition techniques, such as laser scanning, CT or MRI in
medical imaging, reconstructing surfaces from sample points becomes more and
more important.
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Different surface reconstruction algorithms have been discussed by many re-
searchers. Hoppe et. al [HDD+92, EH96] reprensented the surface by the zero
set of a signed distance function. Amenta et. al developed a series of algorithms
based on voroni diagram in [ABK98, AB99, ACDL02]. Bernardini and Ba-
jaj used α shapes for manifold sampling and reconstruction [BBX95, BB97].
Recently Ju et. al introduced the dual contour method for reconstruction
[JLSW02], later Ju et. al developed an algorithm to build 3D surfaces from 2D
curvature networks and applied for anatomical modeling. Floater and Reimers
reconstructed surfaces based on parameterizations [FR01]. Surface reconstruc-
tion has been applied to reverse engineering [BMV01], geometric modeling
[HQ04], mesh optimization and simplification [Hop96] and many other impor-
tant applications.

It is a common belief that by increasing the sampling density, the recon-
structed discrete mesh will approximate the smooth surface with any desired
accuracy. This work aims at precisely formulating this common belief and rigor-
ously prove it in an appropriate setting. This result will offer the theoretic guar-
antee for the general algorithms in geometric modeling and processing, where
the measurements on smooth surface are calculated on its discrete approxima-
tions, the physical phenomena on original surface are simulated on the discrete
counterpart as well.

Geometric Accuracy There are different levels of accuracy when approxi-
mating a smooth surface by discrete meshes,

1. Topological consistency, it requires the surface and mesh are homeomor-
phic to each other;

2. Positional consistency, measured by Hausdorff distance between the sur-
face and the mesh;

3. Normal consistency, it requires the normal fields on the surface and on
the mesh are close to each other.

Many previous works address the theoretic guarantee of topological con-
sistency. Leibon et al proved that if the sample density is high enough, the
smooth surface and the triangle mesh induced by the delaunay triangulation is
homeomorphic in [LL00]. Amenta et. al proved similar result in [ACDL02].

In terms of positional consistency, to the best of our knowledge, the best
estimation is introduced in [ACDL02]. Amenta et al invented a series of al-
gorithms which reconstruct the meshes from sample points based on voronoi
diagrams. Assume the diameter of the circum-circle of the triangles is ǫ and the
normal error is small enough, the Hausdorff distance between the mesh and the
surface is bounded by the ǫ2.

Positional consistency does not grantee the normal consistency. It is very
easy to find a sequence of meshes, which converge to a smooth surface under
Hausdorff distance, but the normal field does not converge. It has been shown
in [HPW05], that under the assumption of convergence of Hausdorff distance,
the followings are equivalent:
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1. Normal field convergence

2. Area convergence,

3. Riemannian metric tensor convergence

4. Laplace-Beltrami operator convergence

In geometric modeling and processing, computer graphics, many algorithms
require calculating the geodesics [SSK+05]. Many parameterization works re-
quire accurately approximating the Riemannian metrics [FH05], spectrum com-
pression also needs good approximation of Laplacian-Beltrami operators [BCG05].
These important applications demand the theoretic guarantee of the normal ac-
curacy. To the best of our knowledge, our work is the first one to bound the
normal error by sampling density.

Triangulations Triangulations play vital roles in surface reconstruction. There
are different ways to measure the refinement of a triangulation,

1. The bound l of the longest lengths of the edges of triangles in the mesh.

2. The bound d of the diameters of the circum-circles of triangles in the mesh.

It is obvious that the diameter bounds the edge length, but the edge length does
not bound the diameter. In the following discussion, we will demonstrate that
the Hausdorff distance is bounded by the square of the edge length, whereas the
normal error is bounded by the diameter of the circum-circle.

In figure 1, we demonstrate a one dimensional example, where a family of
curves converge to a straight line segment under Hausdorff distance. The lengths
and normals do not converge.

In figure 2, we demonstrate an example, where for the same sets of sample
points, the bounds of edge lengths go to zero, but the bounds of the diameters of
circum-circles remain constant. Therefore, the area, the metrics on the meshes
do not converge to those on the smooth surface.

Given a dense set of point samples, it is highly desirable to find a triangula-
tion such that the circum-circles are as small as possible. For point samples on
the plane, Delaunay triangulation is a good candidate for such a triangulation.
Leobon generalizes Delaunay triangulation to arbitrary Riemannian manifolds
[]. In the following discussion, we use Delaunay triangulation to refer Delaunay
triangulation on surfaces. The Delaunay triangulation is determined solely by
the point samples. In the following discussion, we will show that the meshes
induced by the Delaunay triangulations are convergent both under Hausdorff
distance and normal distance.

In practice, there is no prior knowledge of the smooth surface, only the
dense point samples are available. The connectivity induced by the surface
Delaunay triangulation can be best approximated using voronoi diagram in R3

as described in [ABK98, ACDL02]. We have not fully proven the consistency
between the two triangulations.
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Figure 1: Hausdorff convergence doesn’t guarantee normal conver-

gence and length convergence. The black curve is a half circle with radius
r, the blue curve is composed by two half circles with radii r

2 ; the red curve
is composed by 4 half circles with radii r

4 . A sequence of curves can be con-
structed, they converge to the diameter PQ under the Hausdorff distance. But
the length of each of them equals to πr, which do not converge to the length of
the diameter 2r

Factors Affecting Geometric Accuracy In order to achieve bounded Haus-
dorff error and normal error, the following factors play crucial rules, the sampling
density should be carefully designed. The major factors determine the sampling
density are as followings,

• Principle curvature For regions with higher principle curvature, the
samples should be denser.

• Distance to medial axis For regions closer to the medial axis, the sam-
ples should be denser to avoid topological ambiguity during the recon-
struction process. It is also called local feature size.

• Injectivity radius Each point p on the surface M has a largest radius r,
for which the geodesic disk B(p, r) is an embedding disk. The injectivity
radius of M is the infinum of the injectivity radii at each point. Each
geodesic triangle on the surface should be contained in a geodesic disk
with radius less than the injectivity radius.

These factors are not independent, but closely related. Suppose k is the
bound of principle curvature on the surface, then the distance to the medial
axis is no greater than 1

k
as proved in [Fed59].

Comparisons to previous theoretic results Hildebrandt et.al’s work [HPW05]
focuses on the equivalence between convergences of polyhedral meshes under dif-
ferent metrics, such as Hausdorff, normal, area and Laplace-Beltrami. Assuming
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Figure 2: Hausdorff convergence vs. normal convergence. In the left
frame, the center is the north pole of the unit sphere. C1 is the equator, C2 is
the intersection circle between the sphere with the plane z = 1

2 . All the arcs
QiQj and PiQj are geodesics, the arcs PiPj are arcs along C2. The right frame
shows one step subdivision: insert the middle points of all the arcs in the left
frame, split each triangle to 4 smaller ones, such that if an edge connecting two
points on C2, the edge is the arc on C2, otherwise the edge is the geodesic con-
necting its end points. Repeating this subdivision process to get a sequence of
triangulations {Tn}, and a sequences meshes Mn induced by the triangulations.
The longest edge length of Tn goes to zero, Mn converge to the hemi-sphere
under Hausdorff distance. For any Mn there is one triangles f0 adjacent to P0

and contained in the curved triangle P1P0P3. Because all three vertices of f0

are on C2, its circumscribe circle is C2, the normal of f0 is constant which differs
from the normal at P0 to the sphere. Therefore, {Mn} doesn’t converge to the
sphere under normal distance.

the Hausdorff convergence and the homeomorphism between the surface and the
mesh, all the error estimation is based on the homeomorphism.

Leibon et al’s work [LL00] focuses on the existence of Delaunay triangulation
for dense sample set. It only estimates the Riemannian metric error without
considering Hausdorff error and normal error.

Amenta et al’s work [ACDL02] only demonstrates the estimation of Haus-
dorff error under the two assumptions, first the sampling density is sufficiently
high, second the normal field error is given and bounded.

Our work gives much sharper and more complete error estimations for Haus-
dorff error, normal error and Riemannian metric error, the only assumption is
the sampling density.

The main theorem of the work is that if the sample density is ǫ, then the
Hausdorff distance is no greater 4kǫ2, the normal error is no greater than 9kǫ,
where k is the upper bound of the principle curvature. The metric distorsion is

5



measured by the infinitesimal length ratio, which is bounded by 1 − 4k2ǫ2 and
1+4k2ǫ2

1−9kǫ
.

The paper is organized as the following, the next section 2 introduces the
preliminary concepts and theorems proven in previous works; our new theoretic
results are explained in details in 3. This section is the most technical part of
the work, the main focus is the proofs of three major theorems; experimental
results are demonstrated in secetion 4; Finally the paper is concluded in 5,
future works will be briefly discussed.

2 Definitions and Preliminaries

In this section, we review the preliminary concepts necessary for our further
theoretic arguments. We adapt the definitions from [LL00],[HPW05], [ABK98]
and [ACDL02].

We assume that the surface S is closed without any boundary, at least C2

smooth with bounded principle curvature, embedded in R3.

2.1 Medial axis, ǫ-sampling and Delaunay triangulation

The medical axis of a surface S embedded in R3 is the closure of the set of points
with more than one nearest neighbor in S. The local feature size f(p) at point
p ∈ S is the least distance of p to the medial axis.

A geodesic disk B(p, r) centered at p with radius r is the the point sets

B(p, r) = {q ∈ S|d(p, q) ≤ r},

d is the geodesic distance on the surface. The injectivity radius at a point p ∈ S
is the largest radius τ(p), for which the geodesic disk B(p, τ(p)) is an embedding
on S.

Suppose ǫ : S → R is a positive function defined on the surface S, a point
set X is an ǫ-sample, if for any point p ∈ S, there is at least one sample inside
the geodesic disk B(p, ǫ(p)).

The definition of Delaunay triangulations of X on S is the same as it is in
R2. They are defined as having the empty circumscribing circle property: the
circum-circle for each geodesic triangle contains no vertices of the triangulation
in its interior. In order to gurantee the uniqueness and embedness of the circum-
circles, X should be dense enough.

Leibon et al. proved in [LL00] that, suppose X is a generic ǫ-sample, ǫ
satisfies the following conditions:

ǫ(p) ≤ min{2τ(p)

5
,

2π

5k(p)
}, (1)

where k(p) = maxq∈B(p,τ(p)) |k(q)|, then the delaunay triangulation of X exists
and is unique.
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2.2 Hausdorff Distance, Normal Distance and the Nearest

Distance Map

Let M1, M2 ⊂ R3 be non empty point sets, the Hausdorff distance between M1

and M2 is defined as

dH(M1, M2) = inf{ǫ > 0|M1 ⊂ Uǫ(M2), M2 ⊂ Uǫ(M1)}, (2)

where Uǫ(M) = {x ∈ R3|∃y ∈ M : d(x, y) < ǫ}.
Suppose S and M are two surfaces embedded in R3, the shortest distance

map g : M → S is defined to map p ∈ M to its nearest point g(p) on S. It is
proved that the line connecting p to g(p) is along the normal direction at g(p)
on S. It has been proven in [LL00], if the sample density ǫ satisfies 2 and the
following

ǫ(p) ≤ f(p)

4
, (3)

then the g is a homeomorphism between the mesh M and S induced by the
Delaunay triangulation. Then we denote the inverse of g as Φ = g−1 : S → M ,
then

Φ(p) = p + φ(p)n(p), p ∈ S (4)

where n(p) is the normal vector at p on S, φ(p) measures the distance from p
to Φ(p) on the mesh. The normal distance between S and M is defined as

dn(S, M) = max
p∈S

|n(p) − n ◦ Φ(p)|.

Suppose γ : t → S is a curve on S, then Φ ◦ γ : t → M is a curve on M . It is
proven in [HPW05], the infinitesimal distortion of length satisfies

min
i

(1 − φki) ≤
dlM
dl

≤ 1 − φki

< n,n ◦ Φ >
, (5)

where dl =
√

< dγ, dγ > is the length element on S, dlM =
√

< dγ ◦ Φ, dγ ◦ Φ >
is the corresponding length element on M , ki is the principle curvature.

3 Geometric Accuracy Analysis

In this section, we analyze the geometric accuracy of reconstructed meshes.
Suppose X is an ǫ-sample on S, if ǫ is small enough then X induces a unique
Delaunay triangulation T , where all edges are geodesics. Each face on T has
a unique geodesic circumscribed circle, the bound of all the radii is r(X) de-
termined the sampling density ǫ. Then by replacing geodesic triangles on T
to Euclidean triangles, a piecewise linear complex M(X) is produced, denoted
as the Delaunay mesh induced by X . Our goal is to estimate the Hausdorff
error, normal error and metric error between S and M , in terms of the r(X)
and sampling density ǫ.

The following is the major steps of our proof,
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1. We first estimate the Hausdorff distance between a geodesic triangle and
the planar triangle through its vertices.

2. Then we estimate the normal deviation between the normal at an arbitrary
point in a geodesic triangle and the normal of the planar triangle.

3. Finally we discuss the Hausdorff distance and normal distance between S
and M , then we estimate the metric distortion.

3.1 Hausdorff Distance Between a geodesic triangle and a

planar triangle

Lemma 0.1 Let R(t) be an arc length parameterized smooth space curve with

curvature bound κ > 0, 0 ≤ a, b, t, t′ ≤ π/κ, ~m = R(b)−R(a)
|R(b)−R(a)| then the following

estimates hold

t ≥ |R(t)| > 2 sin(κt/2)/κ (6)

|R′(t) × ~m| ≤ 1

4
κ(b − a), t ∈ [a, b], κ(b − a) <

√
6 (7)

|R′(t′) − R′(t)| ≤ |2 sin(κ(t − t′))| (8)

∠R(a)R(t)R(b) ≥ π/2 (9)

|R′(t) × ~m| ≤ κ(b − a)min(t − a, b − t)

4
, 0 < a < t < b <

√
6/κ (10)

0 < (R(t) − R(a), ~m) < |R(b) − R(a)|, t ∈ (a, b) (11)

where dist(·, ·) denote the distance.

Proof: Consider function f(t) = (R′(t), R′(0)), then since R′(t) ⊥ R′′(t),

f ′(t) = (R′′(t), R′(t0)) = (R′′(t), R′(t0) − (R′(t0), R
′(t))R′(t))

≥ −κ|R′(t) × R′(t0)| = −κ
√

1 − f2(t)

f(t) satisfies f ′(t) ≥ −κ
√

1 − f2(t), then

∂

∂t
(arccos f(t)) ≤ κ

f(t) ≥ cos(κt), t ∈ [0, π/κ]

Now the estimates follows by integration:

|R(t)|2 =

∫ t

0

∫ t

0

(R′(t1), R
′(t2)) dt1dt2

≥
∫ t

0

∫ t

0

cos(κ(t2 − t1)) dt1dt2

= 4κ−2 sin2(κt/2) ⇒ (6)
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|R(b) − R(a)|(R′(t), ~m) ≥
∫ b

a

cosκ(s − t) ds

=
1

κ
(sin κ(b − t) + sin κ(t − a)) (12)

≥ (b − a) − κ2(b − a)3

6

|R′(t) × ~m| =
√

1 − (R′(t), ~m)2

≤
√

1 − (1 − κ2(b − a)2/6)2, if (b − a) <
√

6

≤
√

2

6
κ(b − a) ⇒ (7)

Equation (12) implies (R′(t), R(b)−R(a)) > 0 when b−a < π, hence (R(t), R(b)−
R(a)) is an increasing function of t, hence (11) is proved.

(R(b) − R(t), R(t) − R(a)) ≥
∫ t

a

∫ b

t

cosκ(u − v) dudv

= cosκ(b − t) + cosκ(t − a) − 1 − cos(b − a)

≥ 0, if κ(b − a) < π ⇒ (9).

(R′(t), R′(t′)) ≥ cosκ(t′ − t), |R(t)| = |R′(t′)| = 1 ⇒ (8)

Assume t − a < b − t, then (7) implies that

dist(R(t), R(a)R(b)) = |(R(t) − R(a)) × ~m)| ≤ κ(b − a)(t − a)/4 ⇒ Eqn(10).

�

Notation: We use˜ to denote an geometric object on a surface in geodesic

sense, such as ÃB, ∆̃ABC to denote a geodesic or a geodesic triangle.

Lemma 0.2 P , Q are two points in a geodesic convex region of a smooth surface

with principal curvature bounded by κ, then the normal at P , Q differs by at

most κ|P̃Q|.

Proof: Bound of principal curvature implies |∇~n| ≤ κ, where ∇ is the covariant
derivative and ~n is the normal. Hence the estimate. �

The following theorem estimate the distance of points inside a geodesic tri-
angle to the plane through the vertices, independent of the shape of the triangle.

Theorem 1 Let ∆ÃBC be a geodesic triangle on a smooth surface embedded

in R3 where the principal curvature is bounded by κ and the maximal length d

of edges of ∆ÃBC is bounded by 1/κ. P is any point inside the triangle, PABC

is the plane through A, B, C, then the dist(P, PABC) ≤ κd2/4.

Proof: Assume A is the vertex farthest from P , ÃP intersects B̃C at Q, P ′ is
the projection of P onto AQ. By (10),

dist(Q, PABC) ≤ dist(Q, BC) ≤ κd2/8.

|PP ′| ≤ κd2/8
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(11) implies that P ′ is inside AQ and dist(P ′, PABC) ≤ dist(Q, PABC),

dist(P, PABC) ≤ |PP ′| + dist(P ′, PABC) ≤ κd2/4

�

3.2 Normal Error Estimation between a geodesic triangle

and a planar triangle

Lemma 1.1 Let ÃBC be a geodesic triangle with maximal length of edge d, the

principal curvature is bounded by κ, d < 2/κ, ∠BAC = α, then the normal nA

to the surface at A and the normal n to PABC satisfies

|nA × n| ≤ max(
κd

4 sin(α/2)
,

κd

4 cos(α/2)
) (13)

Proof: Denote by T1 the tangent vector at A to ÃB, T2 tangent to ÃC, V1 the
unit vector along AB, V2 along AC. Then by (7)

|T1 × V1| ≤ κd/2, |T2 × V2| ≤ κd/4

So

|(nA, V1)| = |(nA, V1 − (V1, T1)T1)|
≤ |V1 − (V1, T1)T1| = |T1 × V1| ≤ κd/4

|(nA, V2)| ≤ κd/4

The projection of nA onto PABC falls into the parallelogram with both width
κd/2 and inner angle α, π − α, centered at A. Now (13) follows by simple
trigonometry. �

Lemma 1.2 Let l(t) be a geodesic circle radius r, parameterized by arc length.

Suppose the principal curvature is bounded by κ in the disk and r ≤ 1/(4κ).
N(t) is the tangent vector at l(t) normal to l′(t). Then for t < r,

(l(t) − l(0), N(0)) ≥ t2

5r
(14)

Proof: Let n(t) be the normal to the surface at l(t). The curvature condition
implies |(l′′(t), n(t))| ≤ κ. Hessian comparison theorem [SY94] implies

(l′′(t), N(t)) ≥ κ cot(κr) ≥ 19

20r
, if κr < 1/4

|l′′(t)| ≤ κ
√

coth κr2 + 1 ≤ 11

10r
, if κr < 1/4 (15)
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Lemma 1.1 implies |n(t) − n(0)| ≤ κt. (8) and (15) implies |l′(t) − l′(0)| ≤
11t/10r, then for t ≤ r

(l′′(t), N(0)) = (l′′(t), N(t)) + (l′′(t), N(0) − N(t))

= (l′′(t), N(t)) + (l′′(t), n(0) × l′(0) − n(t) × l′(t))

≥ (l′′(t), N(t)) − |l′′(t)|(|n(0) − n(t)| + |l′(0) − l′(t)|)

≥ 1

r
(
19

20
− 11κt

10
− 121t

100r
) (16)

Use l′(0) ⊥ N(0), integrate (16) to get

(l(t) − l(0), N(0)) ≥ 9t2

40r

�

Theorem 2 D is a geodesic disk of radius r of a smooth surface embedded

in R3 with principal curvature bounded by κ, r < 1/(4κ). A, B, C are three

distinct points on the boundary of D, PABC is the plane through A, B, C, φ
is the projection map from D onto PABC . For any point p ∈ D, v ∈ Tp is a

tangent vector, we have

|np − nABC | ≤ 4.5κr (17)

|v| ≥ |φ∗(v)| ≥ |v|(1 − 4.5κr) (18)

dist(p, PABC) ≤ 9κr2 (19)

Proof: Consider the intersection angle between the radial geodesic connecting
center O of D and the vertices A, B, C.

If two such intersection angle is less than 9/10, say ∠ÃOB, ∠B̃OC, then
comparison theorem shows that the arc between A, B or between B, C along
boundary of D is less than

9

10
· eκr − e−κr

2κ
≤ r (20)

Let d1, d2 be the length of line segment AB, BC respectively, then (11) implies
∠ABC > π/2 while Lemma 1.2 implies

∠ABC ≤ π − arcsin(d1/5r) − arcsin(d2/5r)

Then apply Lemma 1.1 to get

|nB − nABC | ≤
κ(d1 + d2)

4 cos(∠ABC)/2
≤ κ(d1 + d2)

2d1/5r + 2d2/5r
= 2.5κr
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If only one such intersection angle is less than 9/10, say ∠ÃOB. For the
triangle AOC, by (6) and (7)

∠AOC ≥ 9/10 − 2 arcsin(κr/4) ≥ 0.77

r > |OA|, |OC| > .99r

|AC| ≥ 2 ∗ .99 sin(0.77/2)r > 0.74r (21)

∠CAO ≤ arccos((.992 + .742 − 1)/(2 ∗ .99 ∗ .74)) < 1.21

∠BAO ≤ π/2 + arcsin(κr/4) ≤ 1.64

4 cos(∠(CAB)/2) ≥ 4 cos(1.425) ≥ 0.58 (22)

On the other hand for ∆ABC, r > |AC|, |BC| ≥ 0.74r by (21), |AB| ≤ r by
(20), so

∠BAC ≥ min(arccos(.5/.74), 2 arcsin(.74/2)) ≥ .75

4 sin(∠BAC/2) ≥ 1.4 (23)

Now apply Lemma 1.1 with estimate (22) and (23) to give an estimate of
the difference of the normal at A and to the plane ABC, then use Lemma 0.2
to get (17).

Given (17) proved, (18) easily follows as

|v − φ∗(v)| = |(v, nABC)| = |(v, nABC − nA)| ≤ 4.5κr|v|

and for (19), let l(t) be the geodesic connecting A and p

dist(p, PABC) = |
∫

l

(l′(t), nABC)dt| ≤ d̃ist(p, A) ∗ 4.5κr ≤ 9κr2

�

3.3 Geometric Accuracy for Delaunay Meshes

Combine the theoretic results in section 2 and the estimations on a single geo-
desic triangle theorem 1 and theorem 2, we can easily get the following theorem.

Theorem 3 Suppose S is a closed C2 smooth surface embedded in R3. The

principle curvature upper bound is k, the injective radius lower bound is τ , the

lower bound of local feature size is f . Suppose X is a ǫ-sample set on S, such

that constant ǫ satisfies the following conditions,

ǫ ≤ min{2τ

5
,
2π

5k
,
f

4
,

1

4k
},

then X induces a unique Delaunay triangulation T , (X, T ) induces a piecewise

linear complex M ,

1. M is homeomorphic to S, the nearest distance map Φ : M → S is a

homeomorphism.
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2. The Hausdorff distance

dH(M, S) ≤ 4kǫ2 (24)

3. The normal distance

dn(M, S) ≤ 9kǫ (25)

4. The infinitesimal length ratio

1 − 4k2ǫ2 ≤ dlM
dl

≤ 1 + 4k2ǫ2

1 − 9kǫ
. (26)

Proof: Because X is an ǫ-sample, ǫ satisfies the condition in 2, therefore the
unique Delaunay triangulation T exists from [LL00]. ǫ is less than a quarter of
the local feature size 3, then the nearest distance map is a homeomorphism.

Suppose C is a circumscribe circle of a triangle in T , then there is no interior
point belonging to X . If the radius of C is greater than 2ǫ, then C contains
at least disks with radii ǫ, therefore, it contains at least one point of X as its
interior. Thus the radius of C is no greater than 2ǫ.

From theorem 1, the Hausdorff distance is no greater than 4kǫ2. From
theorem 2, the normal distance is no greater than 9kǫ.

In the nearest distance map 4, φ is less or equal to the Hausdorff distance.
From formula 5 we can derive the 26. �

Although the sample density ǫ is a constant here, it can be generalized to
be a function on the surface, such that

ǫ(p) ≤ min{2τ(p)

5
,

2π

5k(p)
,
f(p)

4
,

1

4k(p)
},

then we can estimate the Hausdorff distance, normal distance and metric dis-
tortion at point p using the formula similar to 24,25,26 with ǫ replaced by ǫ(p).

4 Experimental Results

In order to verify our theorems, we tessellate several smooth surfaces with dif-
ferent resolutions, and measure the Hausdorff distance and normal deviation.

The smooth surfaces are represented as NURBS surfaces, therefore the com-
putation of the bound of principle curvature is straight forward.

The Hausdorff distance is calculated by minimizing the following functional,
suppose p ∈ M , S is S(u, v)

f(u, v) =< S(u, v) − p, S(u, v) − p > .

For any point p on M , first we find the closest vertex p0 on M , p0 is also on
S with parameter (u0, v0). Then we use (u0, v0) as the initial point, then use
Newton’s method to find the global minimum of f(u, v). We densely sample M ,
and find the maximum distance between the sample points to S.

Table 4 illustrates the numerical results. From the table it is obvious that our
theoretic estimated Hausdorff errors converge to the real measured Hausdorff
error when the sampling density is increased. This verifies our theoretic results.
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Shape Vertices Edges D κ d 1/4κd2

sphere 92 180 0.013750 1.758418 3.420931 0.656359
sphere 252 500 0.010597 1.758418 1.248911 0.135940
sphere 1002 2000 0.010025 1.758418 0.314097 0.014678
torus 60 120 0.153249 4.525904 2.467277 0.839321
torus 120 240 0.051237 4.525904 1.233638 0.216549
torus 240 480 0.049931 4.525904 0.616819 0.065040
knot 400 800 0.039319 9.280646 1.955026 0.215511
knot 840 1680 0.035839 9.280646 0.930965 0.111673
knot 2000 4000 0.032552 9.280646 0.391005 0.053959

teapot 302 552 0.040195 1104.996852 2.293478 2.381761
teapot 822 1560 0.021245 1104.996852 0.842616 0.809765
teapot 3242 6320 0.020297 1104.996852 0.213643 0.196828

Table 1: D the real Hausdorff distance measured. κ maximal principal curva-
ture. d maximal length of edges. 1/4κd2 maximum of the estimated distance.

5 Conclusion and Future Work

This work gives explicit formula of approximation error bounds for both Haus-
dorff distance and normal distance in terms of sampling density. For a set of
sample points on a surface with sufficient density, it induces a unique Delau-
nay triangulation, and a discrete mesh. With the increase of sampling density,
the Delaunay meshes converge to the original surface under both Hausdorff dis-
tance and normal distance, therefore, the area, the Riemannian metrics and the
Laplace-Beltrami operators are also convergent.

In the future, we will apply these error estimation formula to prove the
convergence of other advanced algorithms in geometric modeling and processing,
such as the conformal parameterizations, Poisson editing etc.
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Figure 3: Smooth surfaces approximated meshes, which are induced by Delau-
nay triangulations with different sampling density.
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