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Abstract. We develop a general approach that uses holomorphic 1-
forms to parameterize anatomical surfaces with complex (possibly branch-
ing) topology. Rather than evolve the surface geometry to a plane or
sphere, we instead use the fact that all orientable surfaces are Riemann
surfaces and admit conformal structures, which induce special curvilin-
ear coordinate systems on the surfaces. Based on Riemann surface struc-
ture, we can then canonically partition the surface into patches. Each
of these patches can be conformally mapped to a parallelogram. The re-
sulting surface subdivision and the parameterizations of the components
are intrinsic and stable. To illustrate the technique, we computed con-
formal structures for several types of anatomical surfaces in MRI scans
of the brain, including the cortex, hippocampus, and lateral ventricles.
We found that the resulting parameterizations were consistent across
subjects, even for branching structures such as the ventricles, which are
otherwise difficult to parameterize. Compared with other variational ap-
proaches based on surface inflation, our technique works on surfaces with
arbitrary complexity while guaranteeing minimal distortion in the pa-
rameterization. It also offers a way to explicitly match landmark curves in
anatomical surfaces such as the cortex, providing a surface-based frame-
work to compare anatomy statistically and to generate grids on surfaces
for PDE-based signal processing.

1 Introduction

In brain imaging research, parameterization of various types of anatomical sur-
face models in magnetic resonance imaging (MRI) scans of the brain involves
computing a smooth (differentiable) one-to-one mapping of regular 2D coordi-
nate grids onto the 3D surfaces, so that numerical quantities can be computed
easily from the resulting models [II2]. Even so, it is often difficult to smoothly
deform a complex 3D surface to a sphere or 2D plane without substantial an-
gular or area distortion. Here we present a new method to parameterize brain
surfaces based on their Riemann surface structure. By contrast with variational
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approaches based on surface inflation, our method can parameterize surfaces
with arbitrary complexity including branching surfaces not topologically home-
omorphic to a sphere (higher-genus objects) while formally guaranteeing minimal
distortion.

1.1 Previous Work

Brain surface parameterization has been studied intensively. Schwartz et al. [3],
and Timsari and Leahy [4] compute quasi-isometric flat maps of the cerebral
cortex. Hurdal and Stephenson [5] report a discrete mapping approach that uses
circle packings to produce “flattened” images of cortical surfaces on the sphere,
the Euclidean plane, and the hyperbolic plane. Angenent et al. [6] represent the
Laplace-Beltrami operator as a linear system and implement a finite element
approximation for parameterizing brain surfaces via conformal mapping. Gu et
al. [7] propose a method to find a unique conformal mapping between any two
genus zero manifolds by minimizing the harmonic energy of the map.

1.2 Theoretical Background and Definitions

We begin with some formal definitions that will help to formulate the param-
eterization problem(for further reading, please refer to [§]). For a manifold M
with an atlas A = {U,, ¢}, if all chart transition functions ¢og = ¢g 0 ¢, ! :
¢a(Ua NUg) — ¢p(Uy N Ug) are holomorphic, A is a conformal atlas for M. A
chart {U}, ¢.,} is compatible with an atlas A, if the union AU {U], ¢} is still
a conformal atlas. Each conformal compatible equivalence class is a conformal
structure. A 2-manifold with a conformal structure is called a Riemann surface.
It has been proven that all metric orientable surfaces are Riemann surfaces.

Holomorphic and meromorphic functions and differential forms can be gen-
eralized to Riemann surfaces by using the notion of conformal structure. For
example, a holomorphic one-form w is a complex differential form, such that in
each local frame z, = (uq, V), the parametric representation is w = f(z4)dzq,
where f(z,) is a holomorphic function. On a different chart {Ug, ¢}, w =
f (za(ZB))‘fTZng. For a genus g closed surface, all holomorphic one-forms form
a real 2¢g dimensional linear space.

At a zero point p € M of a holomorphic one-form w, any local parametric
representation w = f(zq)dza, f|p = 0. According to the Riemann-Roch theorem,
in general there are 2g — 2 zero points for a holomorphic one-form defined on a
surface of genus g.

A holomorphic one-form induces a special system of curves on a surface, the
so-called conformal net. A curve v C M is called a horizontal trajectory of w,
if w?(dry) > 0; similarly, 7 is a vertical trajectory if w?(dy) < 0. The horizontal
and vertical trajectories form a web on the surface. The trajectories that connect
zero points, or a zero point with the boundary are called critical trajectories. The
critical horizontal trajectories form a graph, which is called the critical graph. In
general, the behavior of a trajectory may be very complicated, it may have infi-
nite length and may be dense on the surface. If the critical graph is finite, then
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all the horizontal trajectories are finite. The critical graph partitions the surface
into a set of non-overlapping patches that jointly cover the surface, and each
patch is either a topological disk or a topological cylinder. Each patch 2 C M
can be mapped to the complex plane using the following formulae. Suppose we
pick a base point pg € (2, and any path - that connects pg to p. Then if we
define ¢(p) = f,yw, the map ¢ is conformal, and ¢(2) is a parallelogram. We
say ¢ is the conformal parameterization of M induced by w. ¢ maps the verti-
cal and the horizontal trajectories to iso-u and iso-v curves respectively on the
parameter plane. The structure of the critical graph and the parameterizations
of the patches are determined by the conformal structure of the surface. If two
surfaces share similar topologies and geometries, they can support consistent
critical graphs and segmentations (i.e. surface partitions), and the parameteri-
zations are consistent as well. Therefore, by matching their parameter domains,
the entire surfaces can be directly matched in 3D. This generalizes prior work
in medical imaging that has matched surfaces by computing a smooth bijection
to a single canonical surface, such as a sphere or disk.

This paper takes the advantage of conformal structures of surfaces, consis-
tently segments them and parameterizes the patches using a holomorphic 1-form.
We call this process - i.e., finding a critical graph and partitioning the surface
into conformally parameterized patches - the holomorphic flow segmentation.
This parameterization and partitioning of the surface is completely determined
by the surface geometry and the choice of the holomorphic 1-form. (Note that
this differs from the typical meaning of segmentation in medical imaging, and
is concerned with the segmentation, or partitioning, of a general surface, rather
than classification of voxels in an image). Computing holomorphic 1-forms is
equivalent to solving elliptic differential equations on surfaces, and in general,
elliptic differential operators are stable. Therefore the resulting surface segmen-
tations and parameterizations are intrinsic and stable, and are applicable for
matching noisy surfaces derived from medical images.

2 Holomorphic Flow Segmentation

To compute the holomorphic flow segmentation of a surface, first we compute the
conformal structure of the surface; then we select one holomorphic differential
form, and locate the zero points on it. By tracing horizontal trajectories through
the zero points, the critical graph can be constructed and the surface is divided
into several patches. Each patch can then be conformally mapped to a planar
parallelogram by integrating the holomorphic differential form.

In our work, surfaces are represented as triangular meshes, namely piecewise
polygonal surfaces.The computations with differential forms are based on solving
elliptic partial differential equations on surfaces using the finite element method.

2.1 Conformal Structures Computation

A method to compute the conformal structure of a surface was introduced in [9].
Suppose M is a closed genus g > 0 surface with a conformal atlas 4. The con-
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formal structure A induces holomorphic 1-forms; all holomorphic 1-forms form a
linear space 2(M) of dimension 2¢g which is isomorphic to the first cohomology
group of the surface H(M,R). The set of holomorphic one-forms determines
the conformal structure.

2.2 Canonical Conformal Parameterization Computation

Given a Riemann surface M, there are infinitely many holomorphic 1-forms, but
each of them can be expressed as a linear combination of the basis elements.
We define a canonical conformal parameterization as any linear combination of
the set of holomorphic basis functions w;, ¢ = 1, ..., g. They satisfy fCi w; =67,

where (;,7 = 1,...n are homology bases and 6{ is the Kronecker symbol. Then
we compute a canonical conformal parameterization w = Z?:l Wi

2.3 Zero Points Location

For surface with genus g > 1, any holomorphic 1-form w has 2g — 2 zero points.
The horizontal trajectories through the zero points will partition the surface into
several patches. Each patch is either a topological disk or a cylinder, and can be
conformally parameterized by w using ¢(p f w.

Estimating the Conformal Factor. Suppose we already have a global confor-
mal parameterization, induced by a holomorphic 1-form w. Then we can esti-
mate the conformal factor at each vertex, using the following formulae: A(v) =

Z[u ek, %7 u,v € Ky, where n is the valence of vertex v.
Locating Zero Points. We find the cluster of vertices with relatively small con-
formal factors (the lowest 5 — 6%). These are candidates for zero points. We
cluster all the candidates using the metric on the surface. For each cluster, we
pick the vertex that is closest to the center of gravity of the cluster, using the
surface metric to define geodesic distances.

2.4 Holomorphic Flow Segmentation

Tracing Horizontal Trajectories. Once the zero points are located, the horizontal
trajectories through them can be traced. First we choose a neighborhood U, of a
vertex v representing a zero point, U, is a set of neighboring faces of v, then we
map it to the parameter plane by integrating w. Suppose a vertex w € U, and
a path composed by a sequence of edges on the mesh is v, then the parameter
location of w is ¢(w f w.

The map ¢(w) is a plecewise linear map. Then the horizontal trajectory is
mapped to the horizontal line y = 0 in the plane. We slice ¢(U,) using the line
y =0by edge splitting operations. Suppose the boundary of ¢(U,) intersects y =
0 at a point v’, then we choose a neighborhood of v’ and repeat the process. Each
time we extend the horizontal trajectory and encounter edges intersecting the
trajectory, we insert new vertices at the intersection points, until the trajectory
reaches another zero point or the boundary of the mesh. We repeat the tracing
process until each zero point connects 4 horizontal trajectories.
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Critical Graph. Given a surface M and a holomorphic 1-form w on M, we define
the graph G(M,w) = {V, E, F'}, as the critical graph of w. Here V is the set of
zero points of w, E is the set of horizontal trajectories connecting zero points
or the boundary segments of M, and F' is the set of surface patches segmented
by E.

Given two surfaces with similar topologies and geometries, by choosing ap-
propriate holomorphic 1-forms, we can obtain isomorphic critical graphs, which
will be used for patch-matching described in the next section.

3 Experimental Results

We tested our algorithm on various anatomic surfaces extracted from 3D MRI
scans of the brain to illustrate the approach.

Figure [1 (a)-(d) shows experimental results for a hippocampal surface, a
structure in the medial temporal lobe of the brain. The original surface is shown
in (a). (b) shows the conformal mapping of (a) to a sphere with a variational
method introduced in [7]. Since the shape of hippocampal surface is not quite
similar to a sphere, lots of distortion has been introduced. In our method, we
leave two holes on the front and back of the hippocampal surface, representing its
anterior junction with the amygdala, and its posterior limit as it turns into the
white matter of the fornix. It can be logically represented as an open boundary
genus one surface, a cylinder (note that spherical harmonic representations would
also be possible, if the ends were closed). The computed conformal structure is
shown in (c¢). Then we can conformally map the hippocampus to a rectangle (d).
Since the surface of rectangle is similar to the one of hippocampus, the detailed
surface information is well preserved in (d). Compared with other spherical pa-
rameterization methods (e.g. (b)), which may have high-valence nodes and dense
tiles at the poles of the spherical coordinate system, our parameterization can
represent the surface with minimal distortion.

Shape analysis of the lateral ventricles is of great interest in the study of
psychiatric illnesses, including schizophrenia, and in degenerative diseases such
as Alzheimer’s disease. These structures are often enlarged in disease and can
provide sensitive measures of disease progression. We can optimize the conformal
parameterization by topology modification. For the lateral ventricle surface in
each brain hemisphere, we introduce five cuts. Since these cutting positions are
at the end of the frontal, occipital, and temporal horns of the ventricles, they can
potentially be located automatically. The second row in Figure [Il shows 5 cuts
introduced on three subjects ventricular surfaces. After the cutting, the surfaces
become open boundary genus 4 surfaces.

Figure[dl (e)-(g) show parameterizations of the lateral ventricles of the brain.
(e) shows the results of parameterizing a ventricular surface for a 65-year-old
patient with HIV/AIDS (note the disease-related enlargement), (f) the results
for the ventricular model of a 21-year-old control subject, and (g) the results for
a 28-year-old control subject. The surfaces are initially generated by using an
unsupervised tissue classifier to isolate a binary map of the cerebrospinal fluid in
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Fig. 1. [llustrates surface parameterization results for the hippocampal surface and the
lateral ventricles. (a) is the original hippocampal surface; (b) the result of inflation of
surface (a) to a sphere; (c) the computed conformal structure; and (d) the rectangle
that (a) is conformally mapped to. The second row shows how 5 cuts are introduced;
they convert the lateral ventricle surface into a genus 4 surface. (e)-(g) show models
parameterized using holomorphic 1-forms, for a 65-year- old subject with HIV/AIDS,
a healthy 21-year-old subject and a second healthy 28-year-old subject, respectively.
The computed holomorphic flow segmentations and their associated sets of rectangular
parameter domains are shown (the texture mapped into the parameter domain here
simply corresponds to the intensity of the surface rendering, which is based on the
surface normals).
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the MR image, and tiling the surface of the largest connected component inside
the brain. Based on the computed conformal structure, we can partition the
surface into 6 patches. Each patch can be conformally mapped to a rectangle.
Although the three brain ventricle shapes are very different, the segmentation
results are consistent in that the surfaces are partitioned into patches with the
same relative arrangement and connectivity. Thus our method provides a way
for direct surface matching between any two ventricles.

For the surface of the cerebral cortex, our algorithm also provides a way
to perform surface matching, while explicitly matching sulcal curves or other
landmarks lying in the surface. Note that typically two surfaces can be matched
by using a landmark-driven flow in their parameter spaces. An alternative ap-
proach is to supplement the critical graph with curved landmarks that can then

PARAMETERIZATION OF AN HIV/AIDS PATIENT’S CORTICAL SURFACE

Fig. 2. Illustrates the parameterization of cortical surfaces using the holomorphic 1-
form approach. The thick lines are landmark curves, including several major sulci lying
in the cortical surface. These sulcal curves are always mapped to a boundary in the
parameter space images.
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be forced to lie on the boundaries of rectangles in the parameter space. This
has the advantage that conformal grids are still available on both surfaces, as
is a correspondence field between the two conformal grids. Figure [2] shows the
results for the cortical surfaces of two left hemispheres. As shown in the first
row, we selected four major landmark curves, for the purpose of illustrating the
approach (thick lines show the precental and postcentral sulci, and the superior
temporal sulcus, and the perimeter of the corpus callosum at the midsagittal
plane). By cutting the surface along the landmark curves, we obtain a genus
3 open boundary surface. There are therefore two zero points (observable as a
large white region and black region in the conformal grid; an illustration of the
conformal structure is shown in the first panel the first row). We show corti-
cal surfaces from two different subjects in Figure [2 (these are extracted using a
deformable surface approach, but are subsequently reparameterized using holo-
morphic 1-forms). The second and fourth rows show the segmented patches for
each cortical surface. The rectangles that these patches conformally map to are
shown on the third and fifth row, respectively. Since the landmark curves lie
on the boundaries of the surface patches, they can be forced to lie on an iso-
parameter curve and can be constrained to map to rectangle boundaries in the
parameter domain. Although the two cortex surfaces are different, the selected
sulcal curves are mapped to the rectangle boundaries in the parameter domain.
This method therefore provides a way to warp between two anatomical surfaces
while exactly matching an arbitrary number of landmark curves lying in the
surfaces. This is applicable to tracking brain growth or degeneration in serial
scans, and composite maps of the cortex can be made by invoking the consistent
parameterizations. Lamecker et al’s work [I0] has the similar motivation as ours
for the cortex case, which is to partition a surface into canonical patches and pa-
rameterize the patches with minimal distortion. However, our partition method
is based on intrinsic Riemann surface structure and theirs is based on shortest
paths along lines of high curvature. Thus our method is global and more stable.

4 Conclusion and Future Work

In this paper, we presented a brain surface parameterization method that in-
vokes the Riemann surface structure to generate conformal grids on surfaces
of arbitrary complexity (including branching topologies). We tested our algo-
rithm on the hippocampus, lateral ventricle surfaces and on surface models of
the cerebral cortex. The grid generation algorithm is intrinsic (i.e. does not
depend on any initial choice of surface coordinates) and is stable, as shown
by grids induced on ventricles of various shapes and sizes. Compared with
other work conformally mapping brain surfaces to sphere, our work may intro-
duce less distortion and may be especially convenient for other post-processing
work such as surface registration and landmark matching. Our future work in-
clude automatic location of cutting positions and more experiments on disease
assessment.
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